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ABSTRACT 
 
Search is the most prominent web service, which is about to 
change dramatically with the transition to the Semantic Web. 
Semantic Web applications are expected to deal with complex 
conjunctive queries, and not always such queries can be 
completely and precisely defined. Current Semantic Web 
reasoners built upon Description Logics have limited processing 
power in such environments. We discuss some of their 
limitations, and show how an alternative logical framework 
utilizing context-dependent rules can be extended to handle 
incomplete or imprecise query specifications. 
 
Keywords:    Semantic   Web,    Ontology Representation, 
Reasoning under Uncertainty and Incompleteness, 
Argumentative Reasoning. 

 

1. INTRODUCTION 
 
World Wide Web (WWW) is a huge repository of information 
which people helped by search engines and web crawlers can 
access and use in a variety of ways. To make this repository 
amenable to automated processing, it must be annotated and 
explicated using ontologies. These are formal specifications of 
limited web domains with well-defined semantics, which can be 
traced by automated reasoners to allow web agents to not only 
access information but also make use of it and even act on 
human behalf. Consider, for example, the following scenario. A 
student is looking for a graduate program that allows her to 
graduate within a year, fits her undergraduate specialization, 
and has GRE requirement that she satisfies. She also has 
preferences related to the type and location of the school, 
financial aid, etc.  Using current web services, the student will 
browse a (limited) number of universities and search through 
their web sites, which may be considerably different and thus 
hard to compare. Now, assume that university catalogs on the 
web are uniformly organized as ontologies of courses, 
requirements and services, and all those ontologies are linked 
via semantic bridges to allow entities from different ontologies 
to be mapped and compared easily. Assume further that there 

exists a web service intended to find the “best fit” for the 
student by automatically navigating through the university 
domain, collecting and evaluating information about all relevant 
programs.  The search should be carried out under the 
assumption that the student’s initial query may not be specific 
enough to precisely express her intentions in which case the 
web service should be able to (i) search in the presence of 
incompleteness or inconsistency, and (ii) generate query-
specific questions to guide the student to further detail her 
query.  The final result of the web search should be one or 
several best programs that the student can choose from helped 
by a detailed explanation as to why the selected program(s) is 
(are) a good fit.  
 
Implementation of this scenario requires a flexible 
representation framework that allows for concepts with 
different degree of significance or certainty to be represented 
and processed. For example, courses are often described in 
terms of “required” and “recommended” pre-requisites, while 
programs may allow for multiple implementation paths 
depending on student background. Current ontology languages 
such as RDF and RDFS are not expressive enough to allow for 
data to be associated with a degree of certainty, because they 
target simple typed ontologies. The Web Ontology Language, 
OWL [1], which builds upon RDF and RDFS, provides more 
expressive representation, but its inference capabilities are 
limited to those of Description Logics (DL) [2], upon which it 
is built. This limits its ability to represent and process 
imprecise, incomplete, and possibly inconsistent data that our 
hypothetical scenario allows. And finally, current ontology 
reasoners supporting OWL ontologies, such as Racer [3] and 
Fact++ [4], are capable of computing unsatisfiable, subsumped, 
equivalent and/or disjoint classes and types for individuals, but 
they do not provide explanation or justification for their 
reasoning. The importance of such service is being recognized 
recently by the Semantic Web community as highly desirable, 
because a broad audience of users is expected to rely on 
Semantic Web services [5, 6, 7].  
 
In [8], we have outlined one representation framework utilizing 
context-dependent rules, which we advocated was a good 
candidate for Semantic Web applications because of its 
expressiveness, adaptability and computational efficiency. 
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Further in [9] we have explored the ability of context-dependent 
rules to handle exceptions, defaults and inconsistencies. In this 
article, we show how processing power of context-dependent 
rules can be extended to handle incomplete or imprecise 
conjunctive queries. In Section 2, we discuss why such queries 
cannot be adequately processed by current DL-based reasoners 
and point out how some of their limitations can be tackled if 
reasoning contexts are used to automatically generate query-
specific questions to guide the user towards précising her query 
specification. In Section 3, we describe the augmented syntax of 
context-dependent rules (see [8] for detailed presentation of 
context-dependent reasoning framework) to allow for explicit 
recording of derivation paths. Section 4 outlines a query 
interpretation technique for processing incomplete query 
specifications. Section 5 presents an extended example to 
illustrate the proposed framework.  
 
 

2. PRELIMINARIES AND MOTIVATION 
 
Description Logics (DL) are decidable fragments of first-order 
logic  intended to provide a well-defined model-theoretic 
semantics for earlier representation schemes based on frames 
and semantic networks [2]. They are defined in terms of classes 
(unary predicates) representing domain concepts, and roles 
(binary predicates) representing relations between classes. 
Complex classes and roles can be built from atomic ones by 
means of conjunction, disjunction, negation, existential 
restriction and value restriction constructors.  
 
Domain descriptions expressed as DL ontologies are defined by 
two finite and mutually disjoint sets, called the Tbox, and the 
Abox. The Tbox contains concept inclusion axioms of the form 
C ⊆ D, where C and D are classes. The Abox contains facts 
about individual objects such as a : C, where a is an individual 
name and  C is a class, as well as relations between individual 
objects such as <a,b> : R, where a and b are individual names 
and R is a role. 
 
Given ontology Σ and query δ, Σ |=  δ iff every model of Σ is 
also a model of δ. Likewise, Σ |=  ¬δ iff every model of Σ is 
also a model of ¬δ. If δ is not completely and accurately 
defined, the following two cases are possible:  
 

• Case 1:  Both, δ and ¬δ, are derivable.   
• Case 2:  Neither δ, nor ¬δ is derivable. 

 
Current ontology reasoners recognize the former  case  as 
logical inconsistency and require all inconsistencies to be 
repaired before further processing. Inconsistencies, however, 
may be an integral part of ontological knowledge, and repairing 
them may not be possible or even desirable. Inconsistencies are 
common in merged or embedded ontologies, where ontology 
engineer has no authority to modify original ontologies and thus 
is unable to repair the inconsistency. In such case, reasoning 
may have to be carried out in the presence of an inconsistency. 
Work in this direction is reported in [10, 11]. 
 
Case 2 can be caused by either incompleteness in the domain 
representation, in which case the problem should be addressed 
prior to web service utilization, or by incompleteness in query 

specification. Addressing the later was somewhat ignored by 
the Semantic Web community under the assumption that (i) 
completeness is not a critical requirement in Semantic Web 
applications [12], and (ii) the user is responsible for precisely 
defining his query. While the former is dictated by the 
necessary tradeoff between completeness and efficiency, the 
later (as our example scenario suggests) may not always be 
possible and may have to be addressed by the web service by 
providing the user with some help in identifying relevant details 
to complete his query. Employing simple “question -- answer” 
techniques as utilized in conventional knowledge engineering 
will be highly inefficient because of unforeseen variety of 
queries. However, “guessing” user intentions may be helped by 
generating possible extensions of his query and testing those 
extensions for relevance. Consider, for example,  the following 
statement:  
 
“Networking class requires Data Structures class, but 
knowledge on Web Technologies and Computer Architecture is 
expected.” 
 
Notice that relations between Data Structures and Networking 
on one hand, and Web Technologies and Networking / 
Computer Architecture and Networking on the other hand, are 
different. The former can be stated as 
 
<Networking, Data-Structures>: Prerequisite (Required). 
 
The latter can be stated as  
 
<Networking,Web-Technologies>:Prerequisite (Recommended)  
<Networking, Computer-Architecture> : Prerequisite 
(Recommended).  
 
While the student cannot enroll in the Networking class without 
the required prerequisite, he can enroll without one or both of 
recommended prerequisites. That is, the role, Prerequisite, can 
have different semantic meaning depending on the associated 
type,   Required or Recommended, where the former is 
imperative, and the latter is supportive.  
 
Current ontology languages based on DL do not allow for types 
of roles which makes it impossible to precisely represent the 
above relations. Ignoring the type, these relations will be either 
overstated (“Networking class requires Data Structures, Web 
Technology, and Computer Architecture classes”) or 
understated (“Networking class requires Data Structures class”). 
That is, if the user asks if she can enroll in a networking class 
given that she has already completed data structures and 
computer architecture classes, the answer will be “NO” in the 
first case, and “YES” in the second case. While the first answer 
is clearly incorrect, the second answer is not exactly precise 
with respect to the original statement. 
 
One of the approaches to tackle this issue is to extend DL with 
non-monotonic features [13, 14]. But, as stated in [13] 
“Identifying a non-monotonic DL that is of sufficient 
expressivity and computationally well-behaved is a non-trivial 
task. In particular, the resulting formalisms often suffer from 
one or more of the following problems: (i) they have limitations 
in expressivity such as treating objects that are named by an 
individual constant different from unnamed ones; (ii) they are 
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computationally very hard and easily become undecidable; and 
(iii) they are often conceived as being difficult to understand.” 
These problems are largely caused by the fact that non-
monotonic logics work under the Closed World Assumption 
(CWA), which states that everything not explicitly declared to 
be true is false. An unwanted consequence of the CWA is that 
assumptions must be tested for consistency with the current 
knowledge. As the Semantic Web operates under the Open 
World Assumption (OWA) (i.e. everything not explicitly 
declared true is unknown), this is clearly impossible. In [9], we 
have shown how defaults and inconsistencies can be handled in 
a non-monotonic framework utilizing context-dependent rules, 
under the OWA, i.e. without the need for consistency check. 
This, in turn, provides a high degree of tolerance in processing 
incomplete data as we show further in this article. 
 
 

3. CONTEXT-DEPENDENT RULES: AN 
OVERVIEW 

 
The general form of context-dependent rules is the following: 
 
<namei> (T1,...,Tn)(P1,...,Pm) AU , where 
 
•    <namei> is a reference to the rule. It is part of the 

justification for the rule’s conclusion, A, to allow for more 
convenient identification of the reasoning path leading to 
that conclusion. 

•     T1,..,Tn define the minimal context required to support the   
plausibility of A. They are called T-premises for A.  

•    P1,...,Pm  define additional evidence which, if present, will 
extend the minimal context and enforce the truth of A. 
They are called P-premises. If the set of P-premises is 
empty, then A is derived with maximum certainty with 
respect to that rule. 

 
Context-dependent rules facilitate two types of relations 
between concepts:  
 
• Relations that necessary hold, such as <Networking, Data-

Structures> : Prerequisite (Required). 
• Relations that possibly hold, such as <Networking, Web-

Technologies> : Prerequisite (Recommended). 
 

The conclusion of context-dependent rule, A, is the following 
data structure representing the justification (or evidence) for 
conclusion A: 
 

ALV:  (T1,...,Tn)(P1,...,Pm)(<namei>), where: 
 
• LV∈ {T, T*, U} defines the truthfulness of A. T means 

“necessarily true”, T* means evidentially true, and U may 
mean unknown / uncertain / plausible depending on the 
context. 

• T1,...,Tn, are statements defining the minimal support for 
A. They must be logically or evidentially true statements, 
and ¬A ∉ {T1,...,Tn}. We call them the T-set of A. 

• P1,...,Pm are statements that may provide  additional 
support for A if they become true later. We call them the 
P-set for A.    

• <namei> identifies the rule by which A was derived. The 
complete reasoning path to A can be easily defined by 
computing the transitive closure of the justifications for all 
statements in the T-set. 

 
To illustrate the notion of the context, consider again the 
statement: “Networking class requires Data Structures class, but 
knowledge on Web Technologies and Computer Architecture is 
expected.” This statement translates into the following context-
dependent rule: 
 

<namei>(Data-Structures)(Web-Technologies,  
                    Computer-Architecture) NetworkingU 
 
The conclusion, Networking, can be derived in one of the 
following contexts: 
 
•    NetworkingU: (Data-Structures) (Web Technologies, 

Computer-Architecture)  (<namei>), i.e. the T-premise 
holds, but none of the P-premises hold. This defines the 
minimal context, where the degree of truthfulness of the 
conclusion is nominal. 

•    NetworkingT*:(Data-Structures, Web Technologies, 
Computer-Architecture) ( ) (<namei>), i.e. the T-premise 
and both P-premises hold. This defines the maximal 
context, where the truthfulness of the conclusion is the 
highest with respect to that rule.  

• NetworkingU: (Data-Structures, Web-Technologies) 
(Computer-Architecture) (<namei>), i.e. the T-premise and 
one of the P-premises hold (either Web-Technologies, or 
Computer-Architecture). The T-premise and the satisfied 
P-premises define the context in which the conclusion 
holds, and the truthfulness of the conclusion is evaluated 
with respect to this context.  
 
 

4. PROCESSING OF INCOMPLETE QUERIES 
 
Definition  A set of context-dependents rules describing 
minimal contexts for their respective conclusions is called the 
R-set (rule set). 
 
Definition   A set of statements with their associated 
justifications describing individual objects in the domain of 
interest is called the B-set (belief set). 
 
It is important to note that the B-set may contain inconsistent 
statements such as  AT : (T1,...,Ti) ( ) (namei) and ¬AT : 
(Tj,...,Tk) ( ) (namej). As stated above, some inconsistencies 
may be impossible to resolve or ignore, in which case they must 
be defined as part of ontological knowledge. They are recorded 
as new statements of the form CA

U: (A, ¬A) (CA) (namei, 
namej), which results in the following revision of both B- and 
R-sets required to ensure the soundness of ontological 
knowledge. 
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Revision of the R-set 
 
For each CX

U: (X, ¬X) (CX) (namei, namej)  ∈ B-set, the 
following transformations take place: 
 
<namei> (X, T1,...,Ti)( )  AT ⇒  
                     <namei-rev> (X, T1,...,Ti)(CX)  AU  
<namej> (¬X, Tj,...,Tn)( )  AT ⇒   
                     <namej-rev> (¬X, Tj,...,Tn)(CX)  AU  
<namei> (X, T1,...,Ti)(P1,...,Pm)  AU ⇒    
                     <namei-rev> (X, T1,...,Ti)(P1,...,Pm, CX)  AU 
<namej> (¬X, Tj,...,Tn)(P1,...,Pm)  AU ⇒   
                     <namej-rev> (¬X, Tj,...,Tn)(P1,...,Pm, CX)  AU  

 
Notice that uncertainty associated with the conclusions of the 
revised rules increases. Moreover, these conclusions cannot be 
further matched to T-premises of other rules, thus efficiently 
blocking the propagation of the inconsistency. 
 
 
Revision of the B-set 
 
For each CX

U: (X, ¬X) (CX) (namei, namej)  ∈ B-set, the 
following transformations take place: 
 
AT : (X, T1,...,Ti) ( ) (namei)  ⇒   
                         AU : (X, T1,...,Ti) (CX) (namei, namej)    
AT : (¬X, Tj,...,Tn) ( ) (namei)  ⇒   
                         AU : (¬X, Tj,...,Tn) (CX) (namei, namej)   
AU : (X, T1,...,Ti) (P1,...,Pm ) (namei)  ⇒ 
                         AU: (X, T1,..,Ti)(P1,...,Pm, CX) (namei, namej)   
AU: (¬X, Tj,...,Tn) (P1,...,Pm) (namei)  ⇒ 
                         AU: (¬X,Tj,..,Tn)(P1,..,Pm, CX)(namei, namej)   
 
Reasoning with context-dependent rules can be carried out in 
forward or backward chaining manner depending on the 
specific task. The forward chaining algorithm is the main 
reasoning tool in the described framework and it is discussed in 
[9]. Here we present a backward chaining algorithm which 
kicks off when forward chaining halts as a result of potential 
incompleteness in the B-set. 
 
 
Backward chaining algorithm for finding the maximal 
support for a statement 
 
Given domain description Σ = <B-set, R-set>, query δ, such that 
Σ |≠  δ and Σ |≠  ¬δ, δU: (T1,...,Ti) (P1,...,Pm) (namei)  ∈ B-set 
or/and  ¬δU: (Tj,...,Tp) (Pn,...,Ps) (namej)  ∈ B-set, and |P1,...,Pm| 
∩ |Pn,...,Ps| = ∅,  for each Pi ∈ |P1,...,Pm| ∩ |Pn,...,Ps| do: 
 

1. Find the minimum support for Pi to make it evidentially true. 
This may require the following revisions of B- and R-sets: 

     Pi
U : (T1,...,Ti) (P1,...,Pm ) (namei)  ⇒ 

               ⇒Pi
T* : (T1,...,Ti, P1,...,Pm)  ( ) (namei-rev), where  

     < namei-rev> (T1,..,Ti, P1,..,Pm) ( )  Pi
T* 

2. Apply forward chaining with the revised R-set to gather 
additional evidence for either δ or ¬δ.  

3. Repeat steps 1 and 2 until either δ or ¬δ is justified as 
evidentially true.  

4. Return justifications for both δ and ¬δ to the user for 
evaluation. 

  
An extended example is shown next to illustrate the presented 
algorithm in the context of the overall search for an answer. 
 
 

5. EXAMPLE 
 
This is a modified version of the domain description presented 
in [9] (the original example was inspired by the well-known 
“koala” ontology [15]). 
 
“Most people are not nocturnal species, unless they are party 
lovers or live in the rain forest. People who leave in the rain 
forest are lemur researchers. Nocturnals are not hardworking 
unless they are lemur researchers. Students are people, and PhD 
students are students with BS degrees. Most people are 
hardworking, especially those living in the rain forest. Lemur 
researchers who live in the rain forest are nocturnal, so are party 
lovers. People who live in the rain forest typically are not party 
lovers. Most students who live at universities are party lovers. 
PhD students are typically hardworking, especially those who 
are lemur researchers. Hardworking people are successful. Most 
party lovers are not successful, especially those who are not 
hardworking.” 
 
Most of the concepts in this description are not precisely 
defined. This is why the domain as described cannot be 
translated exactly in OWL. However, the following is a 
semantically acceptable approximation of it. 
 
1a. Person ⊆ ¬Nocturnal 
1b. Person ∩ PartyLover ⊆ Nocturnal 
1c. Person ∩ ∃hasHabitat.RF ⊆ Nocturnal 
2.   Person ∩ ∃hasHabitat.RF ⊆ LemurReseracher 
3.   Nocturnal ∩ ¬LemurResearcher ⊆ ¬ Hardworking 
4.   Student ⊆ Person  
5.   PhDStudent ⊆ Student ∩ ∃hasDegree.BS 
6.   Person ∩ ∃hasHabitat.RF ⊆ Hardworking 
7.   LemurResearcher ∩ ∃hasHabitat.RF ⊆ Nocturnal  
8.   PartyLover ⊆ Nocturnal 
9.   Person ∩ ∃hasHabitat.RF ⊆ ¬PartyLover 
10. ∃hasHabitat.University ∩ Student  ⊆ PartyLover 
11. PhDStudent ∩ LemurResearcher ⊆ Hardworking 
12. Hardworking ⊆  Successful 
13. PartyLover ∩ ¬Hardworking ⊆ ¬Successful 
 
A DL reasoner such as RACER will find this set of concept 
definitions inconsistent and no queries will be answered until all 
inconsistencies are repaired. An obvious inconsistency here is 
that party lovers are both nocturnal and not nocturnal. The 
problem is due to the fact that statement 1b defines an exception 
to statement 1a. We can repair this inconsistency by 
specializing 1a as follows: 
 

1a*. Person ∩ ¬PartyLover ⊆ ¬Nocturnal 
 
If ¬PartyLover were the only exception to 1a. this would be an 
easy fix. However, in case of multiple exceptions (1c. here is 
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yet another exception to 1a. and many other exceptions, some 
of which not known in advance, are possible) we need a more 
flexible representation to represent and process defaults and 
some types of inconsistencies that may follow from there. 
 
Here is the set of context-dependent rules that matches the 
concept inclusion axioms above, but is semantically more 
accurate description of the example domain.   
 
<1>  (Person) (¬PartyLover, ¬hasHabitat.RF) 
                                                    ¬NocturnalU 
<2>  (Person, hasHabitat.RF) ( )  LemurResearcherT 
<3>  (Nocturnal) (¬LemurResearcher)  
                                                     ¬HardworkingU 
<4>  (Student) ( )  PersonT 
<5a> (PhDStudent) ( )  StudentT 
<5b> (PhDStudent) ( )  hasDegree.BST 
<6>   (Person) (hasHabitat.RF)  HardworkingU 
<7>   (LemurResearcher) (hasHabitat.RainForest)   
                                                     NocturnalU 
<8>   (PartyLover) ( )   NocturnalT 
<9>   (Person) (hasHabitat.RF )  ¬ PartyLoverU 
<10> (Student) (hasHabitat.University)   PartyLoverU 
<11> (PhDStudent) (LemurResearcher)  HardworkingU 
<12> (Hardworking)  ( )  SuccessfulT 
<13> (PartyLover) (¬Hardworking)  ¬SuccessfulU 
 
Consider the following query (notice that it cannot be answered 
in a DL-based framework because it does not fully describe the 
instance we are trying to derive): 
 

PhDStudent ∩ hasHabitat.RF ⊆ Successful  
 
Processing of this query in the presented framework is carried 
out as follows: 
 
Step 0: Define initial, possibly incomplete B-set. 
 
PhDStudentT: ( ) ( ) ( ), hasHabitat.RFT: ( ) ( ) ( ), 
SuccessfulU: ( ) ( ) ( ), ¬SuccessfulU: ( ) ( ) ( ) 
 
Apply rules whose T-premises match necessarily or evidentially 
true statements from the B-set and augment the later with newly 
derived conclusions, i.e. B-set = B-set ∪ Cons(B-set, R-set). 
 
Step 1:  
StudentT: (PhDStudent) ( ) (5a) 
hasDegree.BST: (PhDStudent) ( ) (5b) 
HardworkingU: (PhDStudent)(LemurResearcher) (11) 
 
Step 2: 
PersonT:  (Student) ( ) (4) 
PartyLoverU : (Student)(hasHabitat.University) (10) 
 
Step 3  
¬NocturnalU: (Person) (¬PartyLover, ¬hasHabitat.RF) (1) 
LemurResearcherT: (Person, hasHabitat.RF) ( ) (2) 
HardworkingT* : (Person, hasHabitat.RF) ( ) (6) 
¬PartyLoverT*: (Person, hasHabitat.RF) ( ) (9) 
 

Notice that LemurResearcher was derived as a true statement, 
which causes rule 11 to be revised. Because rule 11 has already 
been applied in a different context, its conclusion must be 
updated to reflect the new evidence as follows: 
 
HardworkingT*: (PhDStudent, LemurResearcher)( ) (11rev) 
 
Hardworking is now supported as a true statement by two 
independent justifications, namely rules 6 and 11rev. Notice 
that ¬PartyLover was derived as a true statement which 
overrides PartyLover derived as a plausible statement by rule 
10, and also causes rule 1 to be revised as well as its conclusion 
which now becomes: 
 
¬NocturnalU: (Person,¬PartyLover)(¬hasHabit.RF) (1rev) 
 
Step 4  
NocturnalT*: (LemurResearcher, hasHabitat.RF)( ) (7-rev) 
 
Step 5  
SuccessfulT*: (Hardworking) ( ) (12) 
¬HardworkingU:(Nocturnal)(¬LemurResearch) (3) 
 
Here Successful is supported as evidentially true by the 
following two justifications:  
 
SuccessfulT*: (PhDStudent, LemurResearcher,  

                                          Hardworking) ( ) (12, 11rev) 
SuccessfulT*: (Person,hasHabitat.RF, Hardworking )( ) (12,6) 
 
We were not able to derive any support for ¬Successful, and 
therefore the initial query is answered “Yes”. 
 
Consider now the following query:  
 
         PhDStudent  ∩ hasHabitat.University ⊆ Successful 
 
Step 0 (initial B-set) 
PhDStudentT: ( ) ( ) ( ), hasHabitat.UniversityT: ( ) ( ) ( ), 
SuccessfulU: ( ) ( ) ( ), ¬SuccessfulU: ( ) ( ) ( ) 
 
Step 1  
StudentT: (PhDStudent) ( ) (5a) 
hasDegree.BST: (PhDStudent) ( ) (5b) 
HardworkingU : (PhDStudent) (LemurResearcher) (11) 
 
Step 2 
PersonT:  (Student) ( ) (4) 
¬PartyLoverU : (Person) (hasHabitat.RF) (9) 
PartyLoverT* : (Student, hasHabitat.University) ( ) (10) 
 
Step 3  
¬NocturnalU:(Person)(¬PartyLover, ¬hasHabitat.RF) (1) 
HardworkingU: (Person) ( hasHabitat.RF) ( ) (6) 
NocturnalT: (PartyLover) ( ) (8) 
¬SuccessfulU: (PartyLover) (¬Hardworking) (13) 
 
Step 4 
¬HardworkingU: (Nocturnal) (¬LemurResearcher) (3) 
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No further evidence for Successful or ¬Successful can be 
derived. To complete the evidence for one of them, the 
backward chaining algorithm presented in the previous section 
must identify a stronger justification for ¬Hardworking or find 
a justification of Hardworking. Currently, ¬Hardworking is 
weakly supported by rules 6 and 11. If ¬LemurResearcher can 
be derived or supported as a true statement, it will provide 
additional evidence for ¬Hardworking. Context specific 
question about LemurResearcher will confirm or reject 
¬Hardworking. Let the answer be LemurResearcher. Then, 
rules 7 and 11 must be revised to reflect this new evidence 
resulting in the following changes in the B-set: 
 
HardworkingT*: (PhDStudent, LemurResearcher) ( ) (11rev) 
NocturnalU: (LemurResearcher) (hasHabitat.RF) (7rev) 
 
Thus, SuccessfulT*:  (Hardworking) ( ) (12) 
 
Notice that although there is evidence supporting ¬Successful, 
the evidence for Successful overrides it, because the later is 
justified as evidentially true (vs. plausible for ¬Successful). 
 
Assume now that the answer to the question was 
¬LemurResearcher. Then, rules 3 and 13, respectively, will be 
revised to reflect the new evidence resulting in the following 
justifications: 
 
¬HardworkingT*: (Nocturnal, ¬LemurResearcher)   ( ) (3rev) 
¬SuccessfulT*: (PartyLover, ¬Hardworking) ( ) (13rev) 
 
Thus, ¬Successful will now be justified as a true statement 
with respect to the given context. 
 
 

6. CONCLUSION 
 
We advocated in this paper that many Semantic Web 
applications will have to deal with complex conjunctive queries, 
and that such queries should not be expected to be completely 
and accurately specified. We discussed why conjunctive queries 
are hard for Description Logic reasoners and how the context-
dependent reasoning framework utilizing context-dependent 
rules can be extended to handle them. An example was 
presented to illustrate how the proposed framework identifies, 
maintains and interprets contexts to answer incomplete query 
specifications. 
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