

Processing Incomplete Query Specifications in a Context-Dependent Reasoning
Framework

Neli P. ZLATAREVA

Department of Computer Science,
Central Connecticut State University

1615 Stanley Street,
New Britain, CT 06050, USA

ABSTRACT

Search is the most prominent web service, which is about to
change dramatically with the transition to the Semantic Web.
Semantic Web applications are expected to deal with complex
conjunctive queries, and not always such queries can be
completely and precisely defined. Current Semantic Web
reasoners built upon Description Logics have limited processing
power in such environments. We discuss some of their
limitations, and show how an alternative logical framework
utilizing context-dependent rules can be extended to handle
incomplete or imprecise query specifications.

Keywords: Semantic Web, Ontology Representation,
Reasoning under Uncertainty and Incompleteness,
Argumentative Reasoning.

1. INTRODUCTION

World Wide Web (WWW) is a huge repository of information
which people helped by search engines and web crawlers can
access and use in a variety of ways. To make this repository
amenable to automated processing, it must be annotated and
explicated using ontologies. These are formal specifications of
limited web domains with well-defined semantics, which can be
traced by automated reasoners to allow web agents to not only
access information but also make use of it and even act on
human behalf. Consider, for example, the following scenario. A
student is looking for a graduate program that allows her to
graduate within a year, fits her undergraduate specialization,
and has GRE requirement that she satisfies. She also has
preferences related to the type and location of the school,
financial aid, etc. Using current web services, the student will
browse a (limited) number of universities and search through
their web sites, which may be considerably different and thus
hard to compare. Now, assume that university catalogs on the
web are uniformly organized as ontologies of courses,
requirements and services, and all those ontologies are linked
via semantic bridges to allow entities from different ontologies
to be mapped and compared easily. Assume further that there

exists a web service intended to find the “best fit” for the
student by automatically navigating through the university
domain, collecting and evaluating information about all relevant
programs. The search should be carried out under the
assumption that the student’s initial query may not be specific
enough to precisely express her intentions in which case the
web service should be able to (i) search in the presence of
incompleteness or inconsistency, and (ii) generate query-
specific questions to guide the student to further detail her
query. The final result of the web search should be one or
several best programs that the student can choose from helped
by a detailed explanation as to why the selected program(s) is
(are) a good fit.

Implementation of this scenario requires a flexible
representation framework that allows for concepts with
different degree of significance or certainty to be represented
and processed. For example, courses are often described in
terms of “required” and “recommended” pre-requisites, while
programs may allow for multiple implementation paths
depending on student background. Current ontology languages
such as RDF and RDFS are not expressive enough to allow for
data to be associated with a degree of certainty, because they
target simple typed ontologies. The Web Ontology Language,
OWL [1], which builds upon RDF and RDFS, provides more
expressive representation, but its inference capabilities are
limited to those of Description Logics (DL) [2], upon which it
is built. This limits its ability to represent and process
imprecise, incomplete, and possibly inconsistent data that our
hypothetical scenario allows. And finally, current ontology
reasoners supporting OWL ontologies, such as Racer [3] and
Fact++ [4], are capable of computing unsatisfiable, subsumped,
equivalent and/or disjoint classes and types for individuals, but
they do not provide explanation or justification for their
reasoning. The importance of such service is being recognized
recently by the Semantic Web community as highly desirable,
because a broad audience of users is expected to rely on
Semantic Web services [5, 6, 7].

In [8], we have outlined one representation framework utilizing
context-dependent rules, which we advocated was a good
candidate for Semantic Web applications because of its
expressiveness, adaptability and computational efficiency.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 2 - YEAR 2013 35

Further in [9] we have explored the ability of context-dependent
rules to handle exceptions, defaults and inconsistencies. In this
article, we show how processing power of context-dependent
rules can be extended to handle incomplete or imprecise
conjunctive queries. In Section 2, we discuss why such queries
cannot be adequately processed by current DL-based reasoners
and point out how some of their limitations can be tackled if
reasoning contexts are used to automatically generate query-
specific questions to guide the user towards précising her query
specification. In Section 3, we describe the augmented syntax of
context-dependent rules (see [8] for detailed presentation of
context-dependent reasoning framework) to allow for explicit
recording of derivation paths. Section 4 outlines a query
interpretation technique for processing incomplete query
specifications. Section 5 presents an extended example to
illustrate the proposed framework.

2. PRELIMINARIES AND MOTIVATION

Description Logics (DL) are decidable fragments of first-order
logic intended to provide a well-defined model-theoretic
semantics for earlier representation schemes based on frames
and semantic networks [2]. They are defined in terms of classes
(unary predicates) representing domain concepts, and roles
(binary predicates) representing relations between classes.
Complex classes and roles can be built from atomic ones by
means of conjunction, disjunction, negation, existential
restriction and value restriction constructors.

Domain descriptions expressed as DL ontologies are defined by
two finite and mutually disjoint sets, called the Tbox, and the
Abox. The Tbox contains concept inclusion axioms of the form
C ⊆ D, where C and D are classes. The Abox contains facts
about individual objects such as a : C, where a is an individual
name and C is a class, as well as relations between individual
objects such as <a,b> : R, where a and b are individual names
and R is a role.

Given ontology Σ and query δ, Σ |= δ iff every model of Σ is
also a model of δ. Likewise, Σ |= ¬δ iff every model of Σ is
also a model of ¬δ. If δ is not completely and accurately
defined, the following two cases are possible:

• Case 1: Both, δ and ¬δ, are derivable.
• Case 2: Neither δ, nor ¬δ is derivable.

Current ontology reasoners recognize the former case as
logical inconsistency and require all inconsistencies to be
repaired before further processing. Inconsistencies, however,
may be an integral part of ontological knowledge, and repairing
them may not be possible or even desirable. Inconsistencies are
common in merged or embedded ontologies, where ontology
engineer has no authority to modify original ontologies and thus
is unable to repair the inconsistency. In such case, reasoning
may have to be carried out in the presence of an inconsistency.
Work in this direction is reported in [10, 11].

Case 2 can be caused by either incompleteness in the domain
representation, in which case the problem should be addressed
prior to web service utilization, or by incompleteness in query

specification. Addressing the later was somewhat ignored by
the Semantic Web community under the assumption that (i)
completeness is not a critical requirement in Semantic Web
applications [12], and (ii) the user is responsible for precisely
defining his query. While the former is dictated by the
necessary tradeoff between completeness and efficiency, the
later (as our example scenario suggests) may not always be
possible and may have to be addressed by the web service by
providing the user with some help in identifying relevant details
to complete his query. Employing simple “question -- answer”
techniques as utilized in conventional knowledge engineering
will be highly inefficient because of unforeseen variety of
queries. However, “guessing” user intentions may be helped by
generating possible extensions of his query and testing those
extensions for relevance. Consider, for example, the following
statement:

“Networking class requires Data Structures class, but
knowledge on Web Technologies and Computer Architecture is
expected.”

Notice that relations between Data Structures and Networking
on one hand, and Web Technologies and Networking /
Computer Architecture and Networking on the other hand, are
different. The former can be stated as

<Networking, Data-Structures>: Prerequisite (Required).

The latter can be stated as

<Networking,Web-Technologies>:Prerequisite (Recommended)
<Networking, Computer-Architecture> : Prerequisite
(Recommended).

While the student cannot enroll in the Networking class without
the required prerequisite, he can enroll without one or both of
recommended prerequisites. That is, the role, Prerequisite, can
have different semantic meaning depending on the associated
type, Required or Recommended, where the former is
imperative, and the latter is supportive.

Current ontology languages based on DL do not allow for types
of roles which makes it impossible to precisely represent the
above relations. Ignoring the type, these relations will be either
overstated (“Networking class requires Data Structures, Web
Technology, and Computer Architecture classes”) or
understated (“Networking class requires Data Structures class”).
That is, if the user asks if she can enroll in a networking class
given that she has already completed data structures and
computer architecture classes, the answer will be “NO” in the
first case, and “YES” in the second case. While the first answer
is clearly incorrect, the second answer is not exactly precise
with respect to the original statement.

One of the approaches to tackle this issue is to extend DL with
non-monotonic features [13, 14]. But, as stated in [13]
“Identifying a non-monotonic DL that is of sufficient
expressivity and computationally well-behaved is a non-trivial
task. In particular, the resulting formalisms often suffer from
one or more of the following problems: (i) they have limitations
in expressivity such as treating objects that are named by an
individual constant different from unnamed ones; (ii) they are

36 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 2 - YEAR 2013 ISSN: 1690-4524

computationally very hard and easily become undecidable; and
(iii) they are often conceived as being difficult to understand.”
These problems are largely caused by the fact that non-
monotonic logics work under the Closed World Assumption
(CWA), which states that everything not explicitly declared to
be true is false. An unwanted consequence of the CWA is that
assumptions must be tested for consistency with the current
knowledge. As the Semantic Web operates under the Open
World Assumption (OWA) (i.e. everything not explicitly
declared true is unknown), this is clearly impossible. In [9], we
have shown how defaults and inconsistencies can be handled in
a non-monotonic framework utilizing context-dependent rules,
under the OWA, i.e. without the need for consistency check.
This, in turn, provides a high degree of tolerance in processing
incomplete data as we show further in this article.

3. CONTEXT-DEPENDENT RULES: AN
OVERVIEW

The general form of context-dependent rules is the following:

<namei> (T1,...,Tn)(P1,...,Pm) AU , where

• <namei> is a reference to the rule. It is part of the

justification for the rule’s conclusion, A, to allow for more
convenient identification of the reasoning path leading to
that conclusion.

• T1,..,Tn define the minimal context required to support the
plausibility of A. They are called T-premises for A.

• P1,...,Pm define additional evidence which, if present, will
extend the minimal context and enforce the truth of A.
They are called P-premises. If the set of P-premises is
empty, then A is derived with maximum certainty with
respect to that rule.

Context-dependent rules facilitate two types of relations
between concepts:

• Relations that necessary hold, such as <Networking, Data-

Structures> : Prerequisite (Required).
• Relations that possibly hold, such as <Networking, Web-

Technologies> : Prerequisite (Recommended).

The conclusion of context-dependent rule, A, is the following
data structure representing the justification (or evidence) for
conclusion A:

ALV: (T1,...,Tn)(P1,...,Pm)(<namei>), where:

• LV∈ {T, T*, U} defines the truthfulness of A. T means

“necessarily true”, T* means evidentially true, and U may
mean unknown / uncertain / plausible depending on the
context.

• T1,...,Tn, are statements defining the minimal support for
A. They must be logically or evidentially true statements,
and ¬A ∉ {T1,...,Tn}. We call them the T-set of A.

• P1,...,Pm are statements that may provide additional
support for A if they become true later. We call them the
P-set for A.

• <namei> identifies the rule by which A was derived. The
complete reasoning path to A can be easily defined by
computing the transitive closure of the justifications for all
statements in the T-set.

To illustrate the notion of the context, consider again the
statement: “Networking class requires Data Structures class, but
knowledge on Web Technologies and Computer Architecture is
expected.” This statement translates into the following context-
dependent rule:

<namei>(Data-Structures)(Web-Technologies,
 Computer-Architecture) NetworkingU

The conclusion, Networking, can be derived in one of the
following contexts:

• NetworkingU: (Data-Structures) (Web Technologies,

Computer-Architecture) (<namei>), i.e. the T-premise
holds, but none of the P-premises hold. This defines the
minimal context, where the degree of truthfulness of the
conclusion is nominal.

• NetworkingT*:(Data-Structures, Web Technologies,
Computer-Architecture) () (<namei>), i.e. the T-premise
and both P-premises hold. This defines the maximal
context, where the truthfulness of the conclusion is the
highest with respect to that rule.

• NetworkingU: (Data-Structures, Web-Technologies)
(Computer-Architecture) (<namei>), i.e. the T-premise and
one of the P-premises hold (either Web-Technologies, or
Computer-Architecture). The T-premise and the satisfied
P-premises define the context in which the conclusion
holds, and the truthfulness of the conclusion is evaluated
with respect to this context.

4. PROCESSING OF INCOMPLETE QUERIES

Definition A set of context-dependents rules describing
minimal contexts for their respective conclusions is called the
R-set (rule set).

Definition A set of statements with their associated
justifications describing individual objects in the domain of
interest is called the B-set (belief set).

It is important to note that the B-set may contain inconsistent
statements such as AT : (T1,...,Ti) () (namei) and ¬AT :
(Tj,...,Tk) () (namej). As stated above, some inconsistencies
may be impossible to resolve or ignore, in which case they must
be defined as part of ontological knowledge. They are recorded
as new statements of the form CA

U: (A, ¬A) (CA) (namei,
namej), which results in the following revision of both B- and
R-sets required to ensure the soundness of ontological
knowledge.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 2 - YEAR 2013 37

Revision of the R-set

For each CX

U: (X, ¬X) (CX) (namei, namej) ∈ B-set, the
following transformations take place:

<namei> (X, T1,...,Ti)() AT ⇒
 <namei-rev> (X, T1,...,Ti)(CX) AU
<namej> (¬X, Tj,...,Tn)() AT ⇒
 <namej-rev> (¬X, Tj,...,Tn)(CX) AU
<namei> (X, T1,...,Ti)(P1,...,Pm) AU ⇒
 <namei-rev> (X, T1,...,Ti)(P1,...,Pm, CX) AU
<namej> (¬X, Tj,...,Tn)(P1,...,Pm) AU ⇒
 <namej-rev> (¬X, Tj,...,Tn)(P1,...,Pm, CX) AU

Notice that uncertainty associated with the conclusions of the
revised rules increases. Moreover, these conclusions cannot be
further matched to T-premises of other rules, thus efficiently
blocking the propagation of the inconsistency.

Revision of the B-set

For each CX

U: (X, ¬X) (CX) (namei, namej) ∈ B-set, the
following transformations take place:

AT : (X, T1,...,Ti) () (namei) ⇒
 AU : (X, T1,...,Ti) (CX) (namei, namej)
AT : (¬X, Tj,...,Tn) () (namei) ⇒
 AU : (¬X, Tj,...,Tn) (CX) (namei, namej)
AU : (X, T1,...,Ti) (P1,...,Pm) (namei) ⇒
 AU: (X, T1,..,Ti)(P1,...,Pm, CX) (namei, namej)
AU: (¬X, Tj,...,Tn) (P1,...,Pm) (namei) ⇒
 AU: (¬X,Tj,..,Tn)(P1,..,Pm, CX)(namei, namej)

Reasoning with context-dependent rules can be carried out in
forward or backward chaining manner depending on the
specific task. The forward chaining algorithm is the main
reasoning tool in the described framework and it is discussed in
[9]. Here we present a backward chaining algorithm which
kicks off when forward chaining halts as a result of potential
incompleteness in the B-set.

Backward chaining algorithm for finding the maximal
support for a statement

Given domain description Σ = <B-set, R-set>, query δ, such that
Σ |≠ δ and Σ |≠ ¬δ, δU: (T1,...,Ti) (P1,...,Pm) (namei) ∈ B-set
or/and ¬δU: (Tj,...,Tp) (Pn,...,Ps) (namej) ∈ B-set, and |P1,...,Pm|
∩ |Pn,...,Ps| = ∅, for each Pi ∈ |P1,...,Pm| ∩ |Pn,...,Ps| do:

1. Find the minimum support for Pi to make it evidentially true.
This may require the following revisions of B- and R-sets:

 Pi
U : (T1,...,Ti) (P1,...,Pm) (namei) ⇒

 ⇒Pi
T* : (T1,...,Ti, P1,...,Pm) () (namei-rev), where

 < namei-rev> (T1,..,Ti, P1,..,Pm) () Pi
T*

2. Apply forward chaining with the revised R-set to gather
additional evidence for either δ or ¬δ.

3. Repeat steps 1 and 2 until either δ or ¬δ is justified as
evidentially true.

4. Return justifications for both δ and ¬δ to the user for
evaluation.

An extended example is shown next to illustrate the presented
algorithm in the context of the overall search for an answer.

5. EXAMPLE

This is a modified version of the domain description presented
in [9] (the original example was inspired by the well-known
“koala” ontology [15]).

“Most people are not nocturnal species, unless they are party
lovers or live in the rain forest. People who leave in the rain
forest are lemur researchers. Nocturnals are not hardworking
unless they are lemur researchers. Students are people, and PhD
students are students with BS degrees. Most people are
hardworking, especially those living in the rain forest. Lemur
researchers who live in the rain forest are nocturnal, so are party
lovers. People who live in the rain forest typically are not party
lovers. Most students who live at universities are party lovers.
PhD students are typically hardworking, especially those who
are lemur researchers. Hardworking people are successful. Most
party lovers are not successful, especially those who are not
hardworking.”

Most of the concepts in this description are not precisely
defined. This is why the domain as described cannot be
translated exactly in OWL. However, the following is a
semantically acceptable approximation of it.

1a. Person ⊆ ¬Nocturnal
1b. Person ∩ PartyLover ⊆ Nocturnal
1c. Person ∩ ∃hasHabitat.RF ⊆ Nocturnal
2. Person ∩ ∃hasHabitat.RF ⊆ LemurReseracher
3. Nocturnal ∩ ¬LemurResearcher ⊆ ¬ Hardworking
4. Student ⊆ Person
5. PhDStudent ⊆ Student ∩ ∃hasDegree.BS
6. Person ∩ ∃hasHabitat.RF ⊆ Hardworking
7. LemurResearcher ∩ ∃hasHabitat.RF ⊆ Nocturnal
8. PartyLover ⊆ Nocturnal
9. Person ∩ ∃hasHabitat.RF ⊆ ¬PartyLover
10. ∃hasHabitat.University ∩ Student ⊆ PartyLover
11. PhDStudent ∩ LemurResearcher ⊆ Hardworking
12. Hardworking ⊆ Successful
13. PartyLover ∩ ¬Hardworking ⊆ ¬Successful

A DL reasoner such as RACER will find this set of concept
definitions inconsistent and no queries will be answered until all
inconsistencies are repaired. An obvious inconsistency here is
that party lovers are both nocturnal and not nocturnal. The
problem is due to the fact that statement 1b defines an exception
to statement 1a. We can repair this inconsistency by
specializing 1a as follows:

1a*. Person ∩ ¬PartyLover ⊆ ¬Nocturnal

If ¬PartyLover were the only exception to 1a. this would be an
easy fix. However, in case of multiple exceptions (1c. here is

38 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 2 - YEAR 2013 ISSN: 1690-4524

yet another exception to 1a. and many other exceptions, some
of which not known in advance, are possible) we need a more
flexible representation to represent and process defaults and
some types of inconsistencies that may follow from there.

Here is the set of context-dependent rules that matches the
concept inclusion axioms above, but is semantically more
accurate description of the example domain.

<1> (Person) (¬PartyLover, ¬hasHabitat.RF)
 ¬NocturnalU
<2> (Person, hasHabitat.RF) () LemurResearcherT
<3> (Nocturnal) (¬LemurResearcher)
 ¬HardworkingU
<4> (Student) () PersonT
<5a> (PhDStudent) () StudentT
<5b> (PhDStudent) () hasDegree.BST
<6> (Person) (hasHabitat.RF) HardworkingU
<7> (LemurResearcher) (hasHabitat.RainForest)
 NocturnalU
<8> (PartyLover) () NocturnalT
<9> (Person) (hasHabitat.RF) ¬ PartyLoverU
<10> (Student) (hasHabitat.University) PartyLoverU
<11> (PhDStudent) (LemurResearcher) HardworkingU
<12> (Hardworking) () SuccessfulT
<13> (PartyLover) (¬Hardworking) ¬SuccessfulU

Consider the following query (notice that it cannot be answered
in a DL-based framework because it does not fully describe the
instance we are trying to derive):

PhDStudent ∩ hasHabitat.RF ⊆ Successful

Processing of this query in the presented framework is carried
out as follows:

Step 0: Define initial, possibly incomplete B-set.

PhDStudentT: () () (), hasHabitat.RFT: () () (),
SuccessfulU: () () (), ¬SuccessfulU: () () ()

Apply rules whose T-premises match necessarily or evidentially
true statements from the B-set and augment the later with newly
derived conclusions, i.e. B-set = B-set ∪ Cons(B-set, R-set).

Step 1:
StudentT: (PhDStudent) () (5a)
hasDegree.BST: (PhDStudent) () (5b)
HardworkingU: (PhDStudent)(LemurResearcher) (11)

Step 2:
PersonT: (Student) () (4)
PartyLoverU : (Student)(hasHabitat.University) (10)

Step 3
¬NocturnalU: (Person) (¬PartyLover, ¬hasHabitat.RF) (1)
LemurResearcherT: (Person, hasHabitat.RF) () (2)
HardworkingT* : (Person, hasHabitat.RF) () (6)
¬PartyLoverT*: (Person, hasHabitat.RF) () (9)

Notice that LemurResearcher was derived as a true statement,
which causes rule 11 to be revised. Because rule 11 has already
been applied in a different context, its conclusion must be
updated to reflect the new evidence as follows:

HardworkingT*: (PhDStudent, LemurResearcher)() (11rev)

Hardworking is now supported as a true statement by two
independent justifications, namely rules 6 and 11rev. Notice
that ¬PartyLover was derived as a true statement which
overrides PartyLover derived as a plausible statement by rule
10, and also causes rule 1 to be revised as well as its conclusion
which now becomes:

¬NocturnalU: (Person,¬PartyLover)(¬hasHabit.RF) (1rev)

Step 4
NocturnalT*: (LemurResearcher, hasHabitat.RF)() (7-rev)

Step 5
SuccessfulT*: (Hardworking) () (12)
¬HardworkingU:(Nocturnal)(¬LemurResearch) (3)

Here Successful is supported as evidentially true by the
following two justifications:

SuccessfulT*: (PhDStudent, LemurResearcher,

 Hardworking) () (12, 11rev)
SuccessfulT*: (Person,hasHabitat.RF, Hardworking)() (12,6)

We were not able to derive any support for ¬Successful, and
therefore the initial query is answered “Yes”.

Consider now the following query:

 PhDStudent ∩ hasHabitat.University ⊆ Successful

Step 0 (initial B-set)
PhDStudentT: () () (), hasHabitat.UniversityT: () () (),
SuccessfulU: () () (), ¬SuccessfulU: () () ()

Step 1
StudentT: (PhDStudent) () (5a)
hasDegree.BST: (PhDStudent) () (5b)
HardworkingU : (PhDStudent) (LemurResearcher) (11)

Step 2
PersonT: (Student) () (4)
¬PartyLoverU : (Person) (hasHabitat.RF) (9)
PartyLoverT* : (Student, hasHabitat.University) () (10)

Step 3
¬NocturnalU:(Person)(¬PartyLover, ¬hasHabitat.RF) (1)
HardworkingU: (Person) (hasHabitat.RF) () (6)
NocturnalT: (PartyLover) () (8)
¬SuccessfulU: (PartyLover) (¬Hardworking) (13)

Step 4
¬HardworkingU: (Nocturnal) (¬LemurResearcher) (3)

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 2 - YEAR 2013 39

No further evidence for Successful or ¬Successful can be
derived. To complete the evidence for one of them, the
backward chaining algorithm presented in the previous section
must identify a stronger justification for ¬Hardworking or find
a justification of Hardworking. Currently, ¬Hardworking is
weakly supported by rules 6 and 11. If ¬LemurResearcher can
be derived or supported as a true statement, it will provide
additional evidence for ¬Hardworking. Context specific
question about LemurResearcher will confirm or reject
¬Hardworking. Let the answer be LemurResearcher. Then,
rules 7 and 11 must be revised to reflect this new evidence
resulting in the following changes in the B-set:

HardworkingT*: (PhDStudent, LemurResearcher) () (11rev)
NocturnalU: (LemurResearcher) (hasHabitat.RF) (7rev)

Thus, SuccessfulT*: (Hardworking) () (12)

Notice that although there is evidence supporting ¬Successful,
the evidence for Successful overrides it, because the later is
justified as evidentially true (vs. plausible for ¬Successful).

Assume now that the answer to the question was
¬LemurResearcher. Then, rules 3 and 13, respectively, will be
revised to reflect the new evidence resulting in the following
justifications:

¬HardworkingT*: (Nocturnal, ¬LemurResearcher) () (3rev)
¬SuccessfulT*: (PartyLover, ¬Hardworking) () (13rev)

Thus, ¬Successful will now be justified as a true statement
with respect to the given context.

6. CONCLUSION

We advocated in this paper that many Semantic Web
applications will have to deal with complex conjunctive queries,
and that such queries should not be expected to be completely
and accurately specified. We discussed why conjunctive queries
are hard for Description Logic reasoners and how the context-
dependent reasoning framework utilizing context-dependent
rules can be extended to handle them. An example was
presented to illustrate how the proposed framework identifies,
maintains and interprets contexts to answer incomplete query
specifications.

Acknowledgement. This work was partially supported by a
CSU-AAUP research grant.

7. REFERENCES

[1] http://www.w3.org/TR/owl2-overview/
[2] F. Baader, F., D. Calvanese, D. McGuinness, D. Nardi,
 and P. Patel-Schneider (eds). The Description Logic
 Handbook – Theory, Implementation and Applications.
 Cambridge University Press, 2003.
[3] http://www.racer-systems.com
[4] http://owl.man.ac.uk/factplusplus/
[5] X. Deng, Explanation and Diagnosis Services for

 Unsatisfiability and Inconsistency in Description Logics.
 Ph.D. Thesis, Concordia University, Montreal, 2010.
[6] M. Horridge, B. Parsia, and U. Sattler -- Laconic and
 Precise Justifications in OWL. In Proc. ISWC '08
 Proceedings of the 7th International Conference on The
 Semantic Web (ISWC’08), 2008.
[7] S.Gomez, I. Chesnevar, and G. Simari – An Argumentative
 Approach to Reasoning with Inconsistent Ontologies. In
 Proc. Knowledge Representation Ontology Workshop
 KROW’2008, Sydney, Australia.
[8] N. Zlatareva – Context - dependent Reasoning for the
 Semantic Web. Journal of Systemics, Cybernetics and
 Informatics, vol.9, number 4, 2011, IIIS Press.
[9] N. Zlatareva – Managing Exceptions, Defaults, and
 Inconsistencies in Semantic Web Ontologies. In Proc.14th
 International Conference on Artificial Intelligence and
 Soft Computing, Crete, Greece, June, 2011.
[10] Liu, B., J. Li, and Y.Zhao – A Query-specific Reasoning
 Method for Inconsistent and Uncertain Ontology, In Proc.
 International Multi Conference of Engineers and
 Computer Scientists (IMECS’2011), vol.1, March 16-18,
 2011, Hong Kong.
[11] Z. Huang, van Harmelen, F., and ten Teije, A. Reasoning
 with Inconsistent Ontologies: Framework, Prototype, and
 Experiment. Semantic Web Technologies: Trends and
 Research in Ontology-Based Systems (eds. J. Davies, R.
 Studer, P. Warren), John Wiley & Sons, 2006.
[12] G. Stoilos‚ B. C. Grau and I. Horrocks -- How Incomplete
 is your Semantic Web Reasoner? In Proc. 24th AAAI,
 2010.
[13] P. Bonatti, C. Lutz and F. Walter – Description Logics
 with Circumscription, In Proc. Principles of Knowledge
 Representation and Reasoning KR’2006.
[14] L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato–
 Reasoning about Typicality in Preferential Description
 Logics. In Proc. 11th European Conference on Logics
 in Artificial Intelligence JELIA’2008, 2008.
[15] http://protege.stanford.edu/plugins/owl/owl-library/
 koala.owl

40 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 2 - YEAR 2013 ISSN: 1690-4524

http://www.w3.org/TR/owl2-overview/
http://www.racer-systems.com/
http://owl.man.ac.uk/factplusplus/
http://protege.stanford.edu/plugins/owl/owl-library/

	IPP103IP

