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ABSTRACT 

 

An algorithm featuring multiple local search operators and 

multiple neighborhood structures is applied to the uncapacitated 

exam proximity problem. The use of multiplicity is to enable 

effective interplay between intensification and diversification 

during the search process. The algorithmic design is inspired by 

Hansen and Mladenovic’s Variable Neighborhood Descent 

algorithm and the “one operator, one landscape” point of view. 

Its performance was evaluated using publicly available datasets. 

For the uncapacitated exam proximity problem, the multi-

neighborhood and multi-operator algorithm compared favorably 

against other search techniques. These results should encourage 

further research on the application of multiple operator 

approach as solution techniques to the uncapacitated exam 

proximity problem. 

 

Keywords: exam proximity problem, uncapacitated, multiple 

neighborhood, multiple operator, local search. 

 

 

1.  INTRODUCTION 

 

The Uncapacitated Exam Proximity Problem (UEPP) is a 

simplified variant of the general Exam Timetabling Problem. In 

the UEPP, the main objective is to provide to the students as 

much free time as possible between successive exams without 

taking into account the total sitting capacity. Usually, there 

exists a set of requirements that determine the timetable 

characteristics. For example, a timetable must avoid assigning 

students to more than one exam per timeslot. Also, it is 

desirable for a timetable to have prescribed length. Thus, the 

timetable construction is a process that maximizes the temporal 

separation of the exams while satisfying the given constraints. 

 

In this work, an algorithm is conceived by integrating several 

local search operators to explore and exploit the search space. 

Each local search operator is associated with a different 

neighborhood structure so that the search effort is enhanced. 

The result is a multi-operator search algorithm that is simple in 

terms of implementation and effective in terms of solution 

quality. 

 

This paper is organized as follows. Section 2 defines the UEPP 

using graph-theoretic approach. Section 3 presents the datasets 

used in the benchmarking and a brief survey on other solution 

methods. The survey is restricted to previously published 

methods related to the datasets provided by Carter et al. [1], 

Burke et al. [2] and Merlot et al. [3]. Section 4 explains the 

design of the Multi-neighborhood Multi-Operator algorithm, 

Section 5 provides benchmarking results followed by the 

conclusions in Section 6. 

 

2.  PROBLEM DESCRIPTION 

 

The goal of exam timetabling is to obtain a schedule where each 

exam is allocated to an available timeslot such that the schedule 

satisfies all required constraints. An exam timetabling problem 

can be modeled by a labeled graph  = (V, E, , ) where the 

vertices V = {v1, v2, …, v||V||} represents the set of exams and 

the set of edges E represents the enrolment pattern of the 

students. An edge (vi, vj) exists if there is at least one student 

enrolled in exams vi and vj. The function  : V  V   returns 

the label of an edge. The label of an edge (vi, vj)  E is a non-

negative integer indicating the total number of students enrolled 

in the exams vi and vj. If (vi, vj)  E then (vi, vj) = 0. It is 

assumed that the edge labeling is a known problem parameter. 

The function  : V  + computes the label of a vertex. A 

vertex’s label (v) is the timeslot number assigned to the exam v 

and is not known a priori. The timeslot numbering is assumed to 

be realized by a sequence of positive integers starting from 

unity. An exam timetabling is thus the labeling of the vertices 

such that a given criterion is optimized and the required 

constraints are satisfied. The resulting labeled graph is called a 

timetable graph.  A timetable H is called feasible if it satisfies 

all constraints. Otherwise H is identified as unfeasible. Only 

feasible timetables are considered in this work. 

 

A fundamental requirement in exam timetabling is to prohibit 

clashing or exam conflicts (a student having to take 2 or more 

exams in a given timeslot). Clashing is usually a hard constraint 

and can be expressed as 

𝑐1: ϕ(𝑣𝑖) ≠ ϕ(𝑣𝑗), ∀(𝑣𝑖 , 𝑣𝑗) ∈ 𝐄. (1) 

For practical reasons, a timetable must have a finite length. 

Since the timeslots are numbered contiguously, the constraint 

on the timetable length is,  

𝑐2: max𝑣∈𝐕 ϕ(𝑣) ≤ ρ, (2) 

where  is the largest allowable timeslot number, and is usually 

a problem parameter. Equations (1) and (2) are to be considered 

as hard constraints. 

 

An exam proximity problem arises when the objective is to 

label the vertices of  such that the exams are as spread out as 

possible for all students. If the problem constraints exclude the 

maximum sitting capacity requirement then the resulting 

optimization problem is called the Uncapacitated Exam 

Proximity Problem (UEPP). For the UEPP, an often used 

objective function is the one proposed by Carter et al. [1]. In 

their proposal, penalties are given to timetable according to the 

number of timeslots between successive exams of each student. 

The overall penalty of the timetable is then averaged by the 

number of students taking part in the exams. More concisely, 

the UEPP minimization problem can be expressed as 

min 𝑓 =
1

𝑅
∑ 𝑢(𝑣𝑖 , 𝑣𝑗)∀(𝑣𝑖,𝑣𝑗)∈𝐄 , (3) 
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subject to constraints c1 (Eq. (1)) and c2 (Eq. (2)). In Eq. (3), R 

is the total student enrolment, and u : V  V  is a piece-wise 

penalty function, called proximity costs in [1], defined by  

𝑢(𝑠, 𝑡) = {
25−|ϕ(𝑠)−ϕ(𝑡)|, if 1 ≤ |ϕ(𝑠) − ϕ(𝑡)| ≤ 5;

0, otherwise.
 (4) 

Recall that (v) is the timeslot number assigned to the exam v. 

In summary, the spread of the exams is profitable from a 

student-centric point of view. It gives the students more time to 

prepare for their exams in a less stressful atmosphere. The next 

section details the enrolment datasets used in this work and 

surveys some previously published solution methods. 

 

 

3.  DATASETS AND PREVIOUS METHODS 

 

There exists a collection of datasets that are available for 

benchmarking purposes. The datasets identified in Table 1 are 

the ones used by many researchers. They are actual enrolment 

data taken from several faculties and academic institutions.  

 

Table 1: Dataset characteristics. 
 

Dataset 
Nb. of exams, 

||V|| 
Nb. of 

students, R 
Exam 

enrolment 

YOR-F-83 181 941 6034 

TRE-S-92 261 4360 14901 

KFU-S-93 461 5349 25113 

MEL-F-01 521 20656 62247 

MEL-S-01 562 19816 60637 

NOT-F-94 800 7896 33997 

PUR-S-93 2419 30032 120681 

 

Datasets NOT-F-94 is by Burke et al. [2], MEL-F-01 and MEL-

S-01 are from Merlot et al. [3]. The other datasets are from 

Carter et al. [1]. The number of exams, the number of students 

and the problem graph vary from one dataset to another and are 

not necessarily correlated. The challenge is to devise a 

timetabling algorithm that is uniformly effective for all datasets. 

 

Early solution techniques were derived from sequential graph 

coloring heuristics. They were designed to assign each exam to 

a timeslot according to some ordering schemes. Carter et al. [1] 

successfully applied a backtracking sequential assignment 

algorithm to produce feasible UEPP timetables. Note that 

backtracking sequential assignment is a deterministic algorithm. 

It means that for a given dataset and ordering scheme, it will 

always produce the same timetable. In Burke et al. [2] an initial 

pool of timetable was generated by grouping together exams 

with similar sets of conflicting exams via a decomposition 

procedure. Then timetables were randomly selected from the 

pool, weighted by their objective value, and mutated by 

rescheduling randomly chosen exams. Hill climbing was then 

applied to the mutated timetable to improve its quality. Caramia 

et al. [4] developed a set of heuristics to tackle the UEPP with 

interesting results. First a solution was obtained by a greedy 

assignment procedure. This assignment procedure selects exams 

based on a priority scheme that gives high priority to exams 

with high clashing potential. Next, a spreading heuristic was 

applied to decrease the solution’s proximity penalty without 

extending the timetable length. However, if the spreading 

heuristic failed to provide any penalty decrease then another 

heuristic is applied to decrease the proximity penalty by adding 

one extra timeslot to the solution. A perturbation technique was 

also described in which the search process was restarted by 

resetting the assigned priority. 

A three-stage approach using constraint programming, 

simulated annealing and hill climbing was proposed by Merlot 

et al. [3] where an initial timetable was generated by constraint 

programming. The resulting timetable was then improved by a 

simulated annealing algorithm using the Kempe chain 

interchange neighborhood [5, 6] and a slow cooling scheme. In 

the last stage, a hill climbing search was applied to further 

improve the final timetable. Burke and Newall [7] investigated 

the effectiveness of local search approach to improve timetable 

quality. In their work, an adaptive technique was used to modify 

a given heuristic ordering for the sequential construction of an 

initial solution. They then compared the average and peak 

improvement obtained by three different search algorithms: Hill 

Climbing, Simulated Annealing and an implementation of the 

Great Deluge algorithm [8]. The reported results indicated that 

the combined adaptive heuristics and Great Deluge provided 

significant enhancement to the initial solution. 

 

 

4.  MULTI-NEIGHBORHOOD MULTI-OPERATOR 

ALGORITHM 

 

In their review of metaheuristics for combinatorial optimization, 

Blum and Roli stated that every heuristic approach should be 

designed with the aim of effectively and efficiently exploring a 

search space [9]. A metaheuristic should both explore areas of 

the search space with high quality solutions, and to search 

unexplored areas when necessary. Blum and Roli also defined a 

general search method comparison framework based on the 

intensification and diversification concepts. According to this 

framework, intensification and diversification are search 

strategies that rely on randomness and the usage of memory. In 

an intensification strategy, the search should focus on exploring 

neighbors of good solutions. In a diversification strategy, the 

search should generate new solutions by visiting unexplored 

areas of the search space. Thus, to achieve an effective and 

efficient exploration of the search space, metaheuristic 

algorithms should be designed so that intensification and 

diversification play balanced roles [10]. 

 

The multi-neighborhood and multi-operator algorithm 

(MNMO) is an attempt to realize effective interplay between 

intensification and diversification during the search process. It 

is inspired by Hansen and Mladenović’s Variable 

Neighborhood Descent (VND) algorithm [11] and the “one 

operator, one landscape” point of view advocated by Jones [12]. 

In the VND, a set of neighborhood structures is used 

sequentially. A solution is randomly selected in the kth 

neighborhood structure using the current solution and becomes 

the starting point of a local search procedure. If an improvement 

is found, the algorithm starts again with k = 1 and the improved 

solution as the current solution. If there is no improvement, the 

algorithm proceeds to the k + 1th neighborhood structure using 

the previously recorded best solution as the current solution. 

The VND algorithm terminates when all neighborhood 

structures are visited and no improvement can be found by the 

local search procedure. 

 

On the other hand, the “one operator, one landscape” view 

emerges from the observation that a search landscape is largely 

determined by the neighborhood structure. Thus, different 

neighborhood structures induce different search landscapes. In 

other words, a locally optimal solution in one neighborhood 

structure may not be so in another neighborhood structure. This 

idea is embedded in the VND metaheuristic as a diversification 
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strategy. However, the VND intensification strategy relies 

solely on a single local search operator and the intensification 

effort is somewhat imbalanced relative to the diversification 

effort. In order to correct this imbalance, multiple local search 

operators should be used. In the MNMO, each neighborhood 

structure is associated with one local search operator. The 

degree of intensification is thus increased by searching each 

neighborhood structure instead of randomly selecting a solution. 

Similar to most metaheuristic algorithms, the MNMO is 

iterative in nature. To avoid possible ambiguity the term 

“passes” will be used to indicate MNMO iterations. Figure 1 

details the MNMO in pseudo-code form. 

 

Algorithm MNMO 

k() : k
th neighborhood structure 

LSk() : k
th local search operator 

f() : objective function 

Inputs 

: problem graph; H : current timetable  

zmax : maximum non improving MNMO pass 

kmax : last local search and neighborhood structure index 

Output 

B : current best timetable 

H  swo() 

B  H 

z  0 

while z < zmax { 

k  0 

while k < kmax { 

H’  LSk(k(H)) 

if f(H’) < f(H) 

H  H’ 

k  k + 1 

} 

if f(H) < f(B) { 

B  H 

z  0 

} else 

z  z + 1 

} 

Figure 1: Multi-neighborhood Multi-Operator algorithm. 

 

As shown in Figure 1, the starting point of a local search 

operator is the best timetable obtained by the previous local 

search operator. This is a simplified implementation of Glover 

and Laguna’s Elite Restart Intensification strategy [13]. Here, a 

MNMO pass is the sequential execution of the kmax local search 

operators. The stopping criterion of the algorithm is based on 

the number of non-improving MNMO passes zmax. Finally, the 

search algorithm also memorizes the best timetable found in 

order to accommodate non greedy local search operators. 

 

 

4.1 Initial timetables 

 

The starting point of the MNMO algorithm is the generation of 

an initial feasible timetable. This is accomplished by an 

application of the so-called Squeaky Wheel Optimization 

(SWO) metaheuristic of Joslin and Clements [14]. In essence, 

the SWO is a parameterless three-phase iterative procedure. It 

begins with the construction of a timetable by labeling the 

exams in random order. Then it computes a priority, for each 

exam, based on the amount of constraint violations. Finally, the 

exams are reordered according to their priority. The 

construction – prioritization – reordering cycle continues until a 

stopping criterion is satisfied. The idea behind SWO is to 

discover an ordering of the exams by analyzing the 

appropriateness of the previous construction. 

 

Algorithm SWO 

L : exam priority list 

Input 

 : problem graph 

Output 

H : feasible timetable  

H   

L  random({v1, …, v||V||}) 

i  true 

while (i == true) { 

H  construction(H, L) 

L  prioritization(H) 

L  sort(L, >) 

if (violations(H) == 0) 

i  false 

} 

Figure 2: Squeaky Wheel Optimization algorithm. 

 

In this algorithm the construction is realized by a simple 

sequential labeling of the exams in H. The priority list L 

determines the order in which the exams are selected for 

labeling. Initially, the ordering is random and an exam is 

labeled by selecting a timeslot number 1  p   with the 

smallest constraint violations. The sequential labeling may 

produce an unfeasible timetable and a new ordering will be 

required. To obtain a reordering, a prioritization routine is used 

to compute the amount of constraint violations of each exam. 

The priority (vi) of exam vi is the number of exam conflicts 

(constraint c1, section 2) produced by its labeling. That is 

𝜏(𝑣𝑖)= 

{

‖{𝑣|𝜙(𝑣) = 𝜙(𝑣𝑖) ∧ (𝑣𝑖 , 𝑣) ∈ 𝐄}‖

‖{𝑣|(𝑣𝑖 , 𝑣) ∈ 𝐄}‖
, if ‖{𝑣|(𝑣𝑖 , 𝑣) ∈ 𝐄}‖ > 0;

0, otherwise.

 
(5) 

 

Exams with constraint violations should be label earlier than the 

ones without constraint violation. To achieve this, the exams are 

sorted according to their priority in decreasing order and the 

algorithm cycles through its phases until a feasible timetable is 

found. 

 

 

4.2 Neighborhood Structures 

 

Given a search space  consisting of all feasible timetables, a 

neighborhood structure is a function  :   2 that assigns to 

every H   a set of neighbors (H)  . Three neighborhood 

structures are used in the MNMO algorithm. Their definitions 

are given below. 

 

Kempe Chain Interchange Neighborhood 

 

The Kempe chain interchange neighborhood is defined by an 

ordered triple (v, p0, p1) where exam v is assigned to timeslot p0 

in the current timetable H and p0  p1 [5, 6]. A Kempe chain (v, 

p0, p1) is a connected subgraph of H induced by the exams 

having timeslots p0 and p1. In other words, it is the set of exams 

reachable from v in the digraph  given by 

𝑉(Δ) = {𝑉𝑝0
} ∪ {𝑉𝑝1

}, (6) 
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𝐸(Δ) = 

{(𝑢, 𝑤)|(𝑢, 𝑤) ∈ 𝐸(H), 𝑢 ∈ 𝑉𝑝𝑖
∧ 𝑤 ∈ 𝑉𝑝(𝑖+1) mod 2

}, 

where E(H) represents the set of edges in the timetable graph 

and 𝑉𝑝𝑖
 is the subset of exams labelled with the timeslot number pi that 

are reachable from exam v in the current timetable. Thus, a Kempe 

chain interchange is the relabeling of exams in  from timeslot p0 to the 

timeslot p1 and vice versa. Using the definition of  in Eq. (6) and 

denoting the relabelling operation by 𝑉(Δ)𝑝0
⇄ 𝑉(Δ)𝑝1

, the Kempe 

chain interchange neighborhood structure is the set of timeslots defined 

by 

𝑁1(H) = 

{
𝑉({𝑉(𝐻)\𝑉(Δ)} ∪ {𝑉(Δ)𝑝0

⇄ 𝑉(Δ)𝑝1
}),

∀𝑣𝑖 , 𝑣𝑖 ∈ H,

ϕ(𝑣𝑖) ≠ ϕ(𝑣𝑗),

𝐸(H).

 
(7) 

 

2-exchange Neighborhood 

 

The 2-exchange neighborhood is a commonly used structure. It 

is induced by exchanging the timeslot numbers of two exams in 

the current timetable. 

𝑁2(H) = 

{
𝑉 ({𝑉(𝐻)\{𝑣𝑖 ∪ 𝑣𝑗}} ∪ {𝑣𝑖 ⇄ 𝑣𝑗}) ,

∀𝑣𝑖 , 𝑣𝑖 ∈ H,

ϕ(𝑣𝑖) ≠ ϕ(𝑣𝑗),

𝐸(H).

 
(8) 

In Eq. (7), 𝑣𝑖 ⇄ 𝑣𝑗  signifies the exchange of (vi) with (vj). 

 

1-interchange Neighborhood 

 

This neighborhood structure is the simplest of the three. It is the 

assignment of a timeslot number p to an exam in the current 

timetable. The 1-interchange neighborhood is defined as 

𝑁3(H) = 

{
𝑉({𝑉(𝐻)\{𝑣}} ∪ {𝑣 ← 𝑝}),

∀𝑣 ∈ H, 1 ≤ 𝑝 ≤ ρ,

ϕ(𝑣) ≠ 𝑝,

𝐸(H),

 
(9) 

where v  p denotes the timeslot assignment of exam v. 

 

 

4.3 Local Search Operators 

 

Each of the neighborhood structures described in section 4.2 has 

a corresponding local search operator. They are: i) Threshold 

Accepting algorithm (TA); ii) Record-to-Record Travel 

algorithm (RRT); iii) Tabu Search algorithm (TS). The TA and 

RRT algorithms proposed by Ducek and Scheuer are annealing-

based general purpose optimization heuristics [8, 15]. In fact, 

TA and RRT are simplified variants of the Simulation 

Annealing (SA) metaheuristic. Pepper et al. compared several 

annealing-based optimization heuristics including the TA and 

RRT algorithms using the TSP problems [16]. Their findings 

indicate acceptable performance for both the TA and RRT. The 

well-known TS algorithm by Glover [13] is an often used 

metaheuristic for combinatorial problems. Its application and 

effectiveness in solving exam timetabling problems are already 

demonstrated by numerous technical publications. 

 

 

5.  EXPERIMENTAL RESULTS 

 

The MNMO algorithm was evaluated using the datasets 

described in section 3. Table 2 presents the algorithmic 

parameters and computing environment used in the 

experiments. The algorithmic parameters were determined by 

applying the uncapacitated cobjective function f (Eq. 3) to the 

MEL-S-01 dataset (562 exams, 19816 students and 60637 exam 

enrolments). The parameter set tuning was performed by 

seeking a compromise between the quality of the solutions and 

the overall computation time. To simplify the choice of the 

neighborhood sampling size  of the local search algorithms,  

was made to increase after a number of consecutive non 

improving iterations. Starting from an initial sampling size min 

it will increase by an amount equal to min up to a maximum 

sampling size of max. For the neighborhood structures, the local 

search – neighborhood structure pairings of Table 2 appeared to 

produce the best timetable proximity costs. The same MNMO 

parameters were used on all datasets. 

 

Table 2: MNMO parameters and environment settings. 

Local search – Neighborhood pairings 
LS1: Threshold Accepting 

(TA) 
Kempe chain interchange, 1(H) 

LS2: Record-to-Record 
Travel (RRT) 

2-exchange, 2(H) 

LS3: Tabu Search (TS) 1-interchange, 3(H) 

Local search parameters 
Maximum iterations, imax 40 000 

Initial neighborhood 

sampling size, min 

10 

Final neighborhood sampling 

size, max 

200 

TA schedule T0 = 0.5, Tf = 10-5 

Tabu tenure tmin = 10, tmax = 35 

RRT deviation fraction df = 0.0075 

MNMO parameters 
Number of runs 5 per dataset 

Number of non-improving 
passes 

1 

Computing environment 
Processor, RAM Intel Core i7, 3.4 GHz, 8 GB 
OS Windows 7 Enterprise 

Compiler and optimization 

level 

VC++, Release Mode 

 

 

5.1 UEPP Results 

 

The results for the UEPP are summarized in Table 3. Feasible 

timetables were obtained in all cases for all runs. On average, 

the computation time varied from 2 minutes to 9 hours per run. 

 

 
Figure 3: Minimization of f (MEL-S-01 dataset) 

MNMO passes
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Fig. 3 depicts the optimization effort produced by the MNMO 

algorithm on the MEL-S-01 dataset during one MNMO run. A 

“relaying” effect among the local search operators is observed 

during the optimization process. An improved timetable 

generated by one local search operator is further improved by 

another search operator in a way that is analogous to a track and 

field relay team. However, the optimization process continues 

even if a local search operator failed to improve a given 

timetable. The timetable is simply passed on to the next search 

operator. This effect can be discerned in pass 2, 3 and 4 of Fig. 

3. 

 

Table 3: Results for the UEPP. 

Dataset Timeslots,   f1 Run time 

YOR-F-83 21 best 
avg. 

36,2 
36,7 

 
2 min. 

TRE-S-92 23 best 

avg. 

8,1 

8,3 

 

4 min. 

KFU-S-93 20 best 
avg. 

13,0 
13,3 

 
60 min 

MEL-F-01 28 best 

avg. 

2,7 

2,8 

 

27 min 

MEL-S-01 31 best 
avg. 

2,2 
2,3 

 
30 min 

NOT-F-94 23 best 

avg. 

6,4 

6,5 

 

120 min 

PUR-S-93 42 best 
avg. 

4.7 
5.0 

 
9 h 

 

Table 4 compares the performance of the MNMO algorithm 

against other solution methods. It is observed that, for small size 

datasets, Caramia, Burke, Merlot and MNMO produced the best 

results. For the largest dataset (PUR-S-93) in the collection, 

only Carter and Caramia were able to produce acceptable 

results. The MNMO algorithm performed quite well for all 

datasets, obtaining the best proximity costs for 6 datasets of 

different sizes. 

 
 

Dataset 
  

MNMO 
Carter 

[1] 
Caram 

[4] 
Burke 

[7] 
Merlot 

[3] 

YOR-F-83 

 

Best 

Avg 
36.2 

36.7 

36.4 

45.6 
36.2 

- 

36.8 

37.3 

37.4 

37.9 

TRE-S-92 
 

Best 
Avg 

8.1 

8.3 
9.6 

10.8 
9.4 
- 

8.2 
8.4 

8.4 
8.6 

KFU-S-93 

 

Best 

Avg 
13.0 

13.3 

14.0 

18.8 

13.8 

- 

13.7 

13.9 

13.5 

14.0 

MEL-F-01 

 

Best 

Avg 
2.7 

2.8 

- 

- 

- 

- 

- 

- 

2.9 

3.0 

MEL-S-01 

 

Best 

Avg 
2.2 

2.3 

- 

- 

- 

- 

- 

- 

2.5 

2.5 

NOT-F-94 
 

Best 
Avg 

6.4 

6.5 
- 
- 

- 
- 

- 
- 

7.0 
7.1 

PUR-S-93 
 

Best 
Avg 

4.7 
5.0 

3.9 
4.4 

3.7 

- 
- 
- 

- 
- 

 

 

6.  CONCLUSIONS 

 

The MNMO algorithm performed well in comparison to several 

other solution methods. For the UEPP it was able to match the 

best proximity costs for 7 datasets. These results should 

encourage further research on the application of multi-search 

paradigm as solution methods to the exam timetabling problem. 

However, the cost of such methods is rather expensive. As 

shown in this research, the main drawback of the multi-

neighborhood multi-search technique is the high computation 

load involved in the optimization process. It is possible to lower 

the temporal complexity by pruning the search space as 

suggested by Prestwich [17]. Another complexity reducing 

technique is to distribute the workload to multiple processing 

units. By decomposing the timetabling problem into several 

smaller subproblems as in [2], it is possible to solve the problem 

instances in parallel. However, more research is needed to 

access the effectiveness of these auxiliary techniques. 
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