

A Multi-Neighborhood Multi-Operator Algorithm for the Uncapacitated Exam

Proximity Problem

Tony WONG, Salah ASSAL

 Automated Manufacturing Engineering, École de technologie supérieure

Montréal, H3C 1K3, Canada

ABSTRACT

An algorithm featuring multiple local search operators and

multiple neighborhood structures is applied to the uncapacitated

exam proximity problem. The use of multiplicity is to enable

effective interplay between intensification and diversification

during the search process. The algorithmic design is inspired by

Hansen and Mladenovic’s Variable Neighborhood Descent

algorithm and the “one operator, one landscape” point of view.

Its performance was evaluated using publicly available datasets.

For the uncapacitated exam proximity problem, the multi-

neighborhood and multi-operator algorithm compared favorably

against other search techniques. These results should encourage

further research on the application of multiple operator

approach as solution techniques to the uncapacitated exam

proximity problem.

Keywords: exam proximity problem, uncapacitated, multiple

neighborhood, multiple operator, local search.

1. INTRODUCTION

The Uncapacitated Exam Proximity Problem (UEPP) is a

simplified variant of the general Exam Timetabling Problem. In

the UEPP, the main objective is to provide to the students as

much free time as possible between successive exams without

taking into account the total sitting capacity. Usually, there

exists a set of requirements that determine the timetable

characteristics. For example, a timetable must avoid assigning

students to more than one exam per timeslot. Also, it is

desirable for a timetable to have prescribed length. Thus, the

timetable construction is a process that maximizes the temporal

separation of the exams while satisfying the given constraints.

In this work, an algorithm is conceived by integrating several

local search operators to explore and exploit the search space.

Each local search operator is associated with a different

neighborhood structure so that the search effort is enhanced.

The result is a multi-operator search algorithm that is simple in

terms of implementation and effective in terms of solution

quality.

This paper is organized as follows. Section 2 defines the UEPP

using graph-theoretic approach. Section 3 presents the datasets

used in the benchmarking and a brief survey on other solution

methods. The survey is restricted to previously published

methods related to the datasets provided by Carter et al. [1],

Burke et al. [2] and Merlot et al. [3]. Section 4 explains the

design of the Multi-neighborhood Multi-Operator algorithm,

Section 5 provides benchmarking results followed by the

conclusions in Section 6.

2. PROBLEM DESCRIPTION

The goal of exam timetabling is to obtain a schedule where each

exam is allocated to an available timeslot such that the schedule

satisfies all required constraints. An exam timetabling problem

can be modeled by a labeled graph  = (V, E, , ) where the

vertices V = {v1, v2, …, v||V||} represents the set of exams and

the set of edges E represents the enrolment pattern of the

students. An edge (vi, vj) exists if there is at least one student

enrolled in exams vi and vj. The function  : V  V   returns

the label of an edge. The label of an edge (vi, vj)  E is a non-

negative integer indicating the total number of students enrolled

in the exams vi and vj. If (vi, vj)  E then (vi, vj) = 0. It is

assumed that the edge labeling is a known problem parameter.

The function  : V  + computes the label of a vertex. A

vertex’s label (v) is the timeslot number assigned to the exam v

and is not known a priori. The timeslot numbering is assumed to

be realized by a sequence of positive integers starting from

unity. An exam timetabling is thus the labeling of the vertices

such that a given criterion is optimized and the required

constraints are satisfied. The resulting labeled graph is called a

timetable graph. A timetable H is called feasible if it satisfies

all constraints. Otherwise H is identified as unfeasible. Only

feasible timetables are considered in this work.

A fundamental requirement in exam timetabling is to prohibit

clashing or exam conflicts (a student having to take 2 or more

exams in a given timeslot). Clashing is usually a hard constraint

and can be expressed as

𝑐1: ϕ(𝑣𝑖) ≠ ϕ(𝑣𝑗), ∀(𝑣𝑖 , 𝑣𝑗) ∈ 𝐄. (1)

For practical reasons, a timetable must have a finite length.

Since the timeslots are numbered contiguously, the constraint

on the timetable length is,

𝑐2: max𝑣∈𝐕 ϕ(𝑣) ≤ ρ, (2)

where  is the largest allowable timeslot number, and is usually

a problem parameter. Equations (1) and (2) are to be considered

as hard constraints.

An exam proximity problem arises when the objective is to

label the vertices of  such that the exams are as spread out as

possible for all students. If the problem constraints exclude the

maximum sitting capacity requirement then the resulting

optimization problem is called the Uncapacitated Exam

Proximity Problem (UEPP). For the UEPP, an often used

objective function is the one proposed by Carter et al. [1]. In

their proposal, penalties are given to timetable according to the

number of timeslots between successive exams of each student.

The overall penalty of the timetable is then averaged by the

number of students taking part in the exams. More concisely,

the UEPP minimization problem can be expressed as

min 𝑓 =
1

𝑅
∑ 𝑢(𝑣𝑖 , 𝑣𝑗)∀(𝑣𝑖,𝑣𝑗)∈𝐄 , (3)

56 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 5 - YEAR 2015 ISSN: 1690-4524

subject to constraints c1 (Eq. (1)) and c2 (Eq. (2)). In Eq. (3), R

is the total student enrolment, and u : V  V  is a piece-wise

penalty function, called proximity costs in [1], defined by

𝑢(𝑠, 𝑡) = {
25−|ϕ(𝑠)−ϕ(𝑡)|, if 1 ≤ |ϕ(𝑠) − ϕ(𝑡)| ≤ 5;

0, otherwise.
 (4)

Recall that (v) is the timeslot number assigned to the exam v.

In summary, the spread of the exams is profitable from a

student-centric point of view. It gives the students more time to

prepare for their exams in a less stressful atmosphere. The next

section details the enrolment datasets used in this work and

surveys some previously published solution methods.

3. DATASETS AND PREVIOUS METHODS

There exists a collection of datasets that are available for

benchmarking purposes. The datasets identified in Table 1 are

the ones used by many researchers. They are actual enrolment

data taken from several faculties and academic institutions.

Table 1: Dataset characteristics.

Dataset
Nb. of exams,

||V||
Nb. of

students, R
Exam

enrolment

YOR-F-83 181 941 6034

TRE-S-92 261 4360 14901

KFU-S-93 461 5349 25113

MEL-F-01 521 20656 62247

MEL-S-01 562 19816 60637

NOT-F-94 800 7896 33997

PUR-S-93 2419 30032 120681

Datasets NOT-F-94 is by Burke et al. [2], MEL-F-01 and MEL-

S-01 are from Merlot et al. [3]. The other datasets are from

Carter et al. [1]. The number of exams, the number of students

and the problem graph vary from one dataset to another and are

not necessarily correlated. The challenge is to devise a

timetabling algorithm that is uniformly effective for all datasets.

Early solution techniques were derived from sequential graph

coloring heuristics. They were designed to assign each exam to

a timeslot according to some ordering schemes. Carter et al. [1]

successfully applied a backtracking sequential assignment

algorithm to produce feasible UEPP timetables. Note that

backtracking sequential assignment is a deterministic algorithm.

It means that for a given dataset and ordering scheme, it will

always produce the same timetable. In Burke et al. [2] an initial

pool of timetable was generated by grouping together exams

with similar sets of conflicting exams via a decomposition

procedure. Then timetables were randomly selected from the

pool, weighted by their objective value, and mutated by

rescheduling randomly chosen exams. Hill climbing was then

applied to the mutated timetable to improve its quality. Caramia

et al. [4] developed a set of heuristics to tackle the UEPP with

interesting results. First a solution was obtained by a greedy

assignment procedure. This assignment procedure selects exams

based on a priority scheme that gives high priority to exams

with high clashing potential. Next, a spreading heuristic was

applied to decrease the solution’s proximity penalty without

extending the timetable length. However, if the spreading

heuristic failed to provide any penalty decrease then another

heuristic is applied to decrease the proximity penalty by adding

one extra timeslot to the solution. A perturbation technique was

also described in which the search process was restarted by

resetting the assigned priority.

A three-stage approach using constraint programming,

simulated annealing and hill climbing was proposed by Merlot

et al. [3] where an initial timetable was generated by constraint

programming. The resulting timetable was then improved by a

simulated annealing algorithm using the Kempe chain

interchange neighborhood [5, 6] and a slow cooling scheme. In

the last stage, a hill climbing search was applied to further

improve the final timetable. Burke and Newall [7] investigated

the effectiveness of local search approach to improve timetable

quality. In their work, an adaptive technique was used to modify

a given heuristic ordering for the sequential construction of an

initial solution. They then compared the average and peak

improvement obtained by three different search algorithms: Hill

Climbing, Simulated Annealing and an implementation of the

Great Deluge algorithm [8]. The reported results indicated that

the combined adaptive heuristics and Great Deluge provided

significant enhancement to the initial solution.

4. MULTI-NEIGHBORHOOD MULTI-OPERATOR

ALGORITHM

In their review of metaheuristics for combinatorial optimization,

Blum and Roli stated that every heuristic approach should be

designed with the aim of effectively and efficiently exploring a

search space [9]. A metaheuristic should both explore areas of

the search space with high quality solutions, and to search

unexplored areas when necessary. Blum and Roli also defined a

general search method comparison framework based on the

intensification and diversification concepts. According to this

framework, intensification and diversification are search

strategies that rely on randomness and the usage of memory. In

an intensification strategy, the search should focus on exploring

neighbors of good solutions. In a diversification strategy, the

search should generate new solutions by visiting unexplored

areas of the search space. Thus, to achieve an effective and

efficient exploration of the search space, metaheuristic

algorithms should be designed so that intensification and

diversification play balanced roles [10].

The multi-neighborhood and multi-operator algorithm

(MNMO) is an attempt to realize effective interplay between

intensification and diversification during the search process. It

is inspired by Hansen and Mladenović’s Variable

Neighborhood Descent (VND) algorithm [11] and the “one

operator, one landscape” point of view advocated by Jones [12].

In the VND, a set of neighborhood structures is used

sequentially. A solution is randomly selected in the kth

neighborhood structure using the current solution and becomes

the starting point of a local search procedure. If an improvement

is found, the algorithm starts again with k = 1 and the improved

solution as the current solution. If there is no improvement, the

algorithm proceeds to the k + 1th neighborhood structure using

the previously recorded best solution as the current solution.

The VND algorithm terminates when all neighborhood

structures are visited and no improvement can be found by the

local search procedure.

On the other hand, the “one operator, one landscape” view

emerges from the observation that a search landscape is largely

determined by the neighborhood structure. Thus, different

neighborhood structures induce different search landscapes. In

other words, a locally optimal solution in one neighborhood

structure may not be so in another neighborhood structure. This

idea is embedded in the VND metaheuristic as a diversification

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 5 - YEAR 2015 57

strategy. However, the VND intensification strategy relies

solely on a single local search operator and the intensification

effort is somewhat imbalanced relative to the diversification

effort. In order to correct this imbalance, multiple local search

operators should be used. In the MNMO, each neighborhood

structure is associated with one local search operator. The

degree of intensification is thus increased by searching each

neighborhood structure instead of randomly selecting a solution.

Similar to most metaheuristic algorithms, the MNMO is

iterative in nature. To avoid possible ambiguity the term

“passes” will be used to indicate MNMO iterations. Figure 1

details the MNMO in pseudo-code form.

Algorithm MNMO

k() : k
th neighborhood structure

LSk() : k
th local search operator

f() : objective function

Inputs

: problem graph; H : current timetable

zmax : maximum non improving MNMO pass

kmax : last local search and neighborhood structure index

Output

B : current best timetable

H  swo()

B  H

z  0

while z < zmax {

k  0

while k < kmax {

H’  LSk(k(H))

if f(H’) < f(H)

H  H’

k  k + 1

}

if f(H) < f(B) {

B  H

z  0

} else

z  z + 1

}

Figure 1: Multi-neighborhood Multi-Operator algorithm.

As shown in Figure 1, the starting point of a local search

operator is the best timetable obtained by the previous local

search operator. This is a simplified implementation of Glover

and Laguna’s Elite Restart Intensification strategy [13]. Here, a

MNMO pass is the sequential execution of the kmax local search

operators. The stopping criterion of the algorithm is based on

the number of non-improving MNMO passes zmax. Finally, the

search algorithm also memorizes the best timetable found in

order to accommodate non greedy local search operators.

4.1 Initial timetables

The starting point of the MNMO algorithm is the generation of

an initial feasible timetable. This is accomplished by an

application of the so-called Squeaky Wheel Optimization

(SWO) metaheuristic of Joslin and Clements [14]. In essence,

the SWO is a parameterless three-phase iterative procedure. It

begins with the construction of a timetable by labeling the

exams in random order. Then it computes a priority, for each

exam, based on the amount of constraint violations. Finally, the

exams are reordered according to their priority. The

construction – prioritization – reordering cycle continues until a

stopping criterion is satisfied. The idea behind SWO is to

discover an ordering of the exams by analyzing the

appropriateness of the previous construction.

Algorithm SWO

L : exam priority list

Input

 : problem graph

Output

H : feasible timetable

H  

L  random({v1, …, v||V||})

i  true

while (i == true) {

H  construction(H, L)

L  prioritization(H)

L  sort(L, >)

if (violations(H) == 0)

i  false

}

Figure 2: Squeaky Wheel Optimization algorithm.

In this algorithm the construction is realized by a simple

sequential labeling of the exams in H. The priority list L

determines the order in which the exams are selected for

labeling. Initially, the ordering is random and an exam is

labeled by selecting a timeslot number 1  p   with the

smallest constraint violations. The sequential labeling may

produce an unfeasible timetable and a new ordering will be

required. To obtain a reordering, a prioritization routine is used

to compute the amount of constraint violations of each exam.

The priority (vi) of exam vi is the number of exam conflicts

(constraint c1, section 2) produced by its labeling. That is

𝜏(𝑣𝑖)=

{

‖{𝑣|𝜙(𝑣) = 𝜙(𝑣𝑖) ∧ (𝑣𝑖 , 𝑣) ∈ 𝐄}‖

‖{𝑣|(𝑣𝑖 , 𝑣) ∈ 𝐄}‖
, if ‖{𝑣|(𝑣𝑖 , 𝑣) ∈ 𝐄}‖ > 0;

0, otherwise.

(5)

Exams with constraint violations should be label earlier than the

ones without constraint violation. To achieve this, the exams are

sorted according to their priority in decreasing order and the

algorithm cycles through its phases until a feasible timetable is

found.

4.2 Neighborhood Structures

Given a search space  consisting of all feasible timetables, a

neighborhood structure is a function  :   2 that assigns to

every H   a set of neighbors (H)  . Three neighborhood

structures are used in the MNMO algorithm. Their definitions

are given below.

Kempe Chain Interchange Neighborhood

The Kempe chain interchange neighborhood is defined by an

ordered triple (v, p0, p1) where exam v is assigned to timeslot p0

in the current timetable H and p0  p1 [5, 6]. A Kempe chain (v,

p0, p1) is a connected subgraph of H induced by the exams

having timeslots p0 and p1. In other words, it is the set of exams

reachable from v in the digraph  given by

𝑉(Δ) = {𝑉𝑝0
} ∪ {𝑉𝑝1

}, (6)

58 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 5 - YEAR 2015 ISSN: 1690-4524

𝐸(Δ) =

{(𝑢, 𝑤)|(𝑢, 𝑤) ∈ 𝐸(H), 𝑢 ∈ 𝑉𝑝𝑖
∧ 𝑤 ∈ 𝑉𝑝(𝑖+1) mod 2

},

where E(H) represents the set of edges in the timetable graph

and 𝑉𝑝𝑖
 is the subset of exams labelled with the timeslot number pi that

are reachable from exam v in the current timetable. Thus, a Kempe

chain interchange is the relabeling of exams in  from timeslot p0 to the

timeslot p1 and vice versa. Using the definition of  in Eq. (6) and

denoting the relabelling operation by 𝑉(Δ)𝑝0
⇄ 𝑉(Δ)𝑝1

, the Kempe

chain interchange neighborhood structure is the set of timeslots defined

by

𝑁1(H) =

{
𝑉({𝑉(𝐻)\𝑉(Δ)} ∪ {𝑉(Δ)𝑝0

⇄ 𝑉(Δ)𝑝1
}),

∀𝑣𝑖 , 𝑣𝑖 ∈ H,

ϕ(𝑣𝑖) ≠ ϕ(𝑣𝑗),

𝐸(H).

(7)

2-exchange Neighborhood

The 2-exchange neighborhood is a commonly used structure. It

is induced by exchanging the timeslot numbers of two exams in

the current timetable.

𝑁2(H) =

{
𝑉 ({𝑉(𝐻)\{𝑣𝑖 ∪ 𝑣𝑗}} ∪ {𝑣𝑖 ⇄ 𝑣𝑗}) ,

∀𝑣𝑖 , 𝑣𝑖 ∈ H,

ϕ(𝑣𝑖) ≠ ϕ(𝑣𝑗),

𝐸(H).

(8)

In Eq. (7), 𝑣𝑖 ⇄ 𝑣𝑗 signifies the exchange of (vi) with (vj).

1-interchange Neighborhood

This neighborhood structure is the simplest of the three. It is the

assignment of a timeslot number p to an exam in the current

timetable. The 1-interchange neighborhood is defined as

𝑁3(H) =

{
𝑉({𝑉(𝐻)\{𝑣}} ∪ {𝑣 ← 𝑝}),

∀𝑣 ∈ H, 1 ≤ 𝑝 ≤ ρ,

ϕ(𝑣) ≠ 𝑝,

𝐸(H),

(9)

where v  p denotes the timeslot assignment of exam v.

4.3 Local Search Operators

Each of the neighborhood structures described in section 4.2 has

a corresponding local search operator. They are: i) Threshold

Accepting algorithm (TA); ii) Record-to-Record Travel

algorithm (RRT); iii) Tabu Search algorithm (TS). The TA and

RRT algorithms proposed by Ducek and Scheuer are annealing-

based general purpose optimization heuristics [8, 15]. In fact,

TA and RRT are simplified variants of the Simulation

Annealing (SA) metaheuristic. Pepper et al. compared several

annealing-based optimization heuristics including the TA and

RRT algorithms using the TSP problems [16]. Their findings

indicate acceptable performance for both the TA and RRT. The

well-known TS algorithm by Glover [13] is an often used

metaheuristic for combinatorial problems. Its application and

effectiveness in solving exam timetabling problems are already

demonstrated by numerous technical publications.

5. EXPERIMENTAL RESULTS

The MNMO algorithm was evaluated using the datasets

described in section 3. Table 2 presents the algorithmic

parameters and computing environment used in the

experiments. The algorithmic parameters were determined by

applying the uncapacitated cobjective function f (Eq. 3) to the

MEL-S-01 dataset (562 exams, 19816 students and 60637 exam

enrolments). The parameter set tuning was performed by

seeking a compromise between the quality of the solutions and

the overall computation time. To simplify the choice of the

neighborhood sampling size  of the local search algorithms, 

was made to increase after a number of consecutive non

improving iterations. Starting from an initial sampling size min

it will increase by an amount equal to min up to a maximum

sampling size of max. For the neighborhood structures, the local

search – neighborhood structure pairings of Table 2 appeared to

produce the best timetable proximity costs. The same MNMO

parameters were used on all datasets.

Table 2: MNMO parameters and environment settings.

Local search – Neighborhood pairings
LS1: Threshold Accepting

(TA)
Kempe chain interchange, 1(H)

LS2: Record-to-Record
Travel (RRT)

2-exchange, 2(H)

LS3: Tabu Search (TS) 1-interchange, 3(H)

Local search parameters
Maximum iterations, imax 40 000

Initial neighborhood

sampling size, min

10

Final neighborhood sampling

size, max

200

TA schedule T0 = 0.5, Tf = 10-5

Tabu tenure tmin = 10, tmax = 35

RRT deviation fraction df = 0.0075

MNMO parameters
Number of runs 5 per dataset

Number of non-improving
passes

1

Computing environment
Processor, RAM Intel Core i7, 3.4 GHz, 8 GB
OS Windows 7 Enterprise

Compiler and optimization

level

VC++, Release Mode

5.1 UEPP Results

The results for the UEPP are summarized in Table 3. Feasible

timetables were obtained in all cases for all runs. On average,

the computation time varied from 2 minutes to 9 hours per run.

Figure 3: Minimization of f (MEL-S-01 dataset)

MNMO passes

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 5 - YEAR 2015 59

Fig. 3 depicts the optimization effort produced by the MNMO

algorithm on the MEL-S-01 dataset during one MNMO run. A

“relaying” effect among the local search operators is observed

during the optimization process. An improved timetable

generated by one local search operator is further improved by

another search operator in a way that is analogous to a track and

field relay team. However, the optimization process continues

even if a local search operator failed to improve a given

timetable. The timetable is simply passed on to the next search

operator. This effect can be discerned in pass 2, 3 and 4 of Fig.

3.

Table 3: Results for the UEPP.

Dataset Timeslots,  f1 Run time

YOR-F-83 21 best
avg.

36,2
36,7

2 min.

TRE-S-92 23 best

avg.

8,1

8,3

4 min.

KFU-S-93 20 best
avg.

13,0
13,3

60 min

MEL-F-01 28 best

avg.

2,7

2,8

27 min

MEL-S-01 31 best
avg.

2,2
2,3

30 min

NOT-F-94 23 best

avg.

6,4

6,5

120 min

PUR-S-93 42 best
avg.

4.7
5.0

9 h

Table 4 compares the performance of the MNMO algorithm

against other solution methods. It is observed that, for small size

datasets, Caramia, Burke, Merlot and MNMO produced the best

results. For the largest dataset (PUR-S-93) in the collection,

only Carter and Caramia were able to produce acceptable

results. The MNMO algorithm performed quite well for all

datasets, obtaining the best proximity costs for 6 datasets of

different sizes.

Dataset

MNMO
Carter

[1]
Caram

[4]
Burke

[7]
Merlot

[3]

YOR-F-83

Best

Avg
36.2

36.7

36.4

45.6
36.2

-

36.8

37.3

37.4

37.9

TRE-S-92

Best
Avg

8.1

8.3
9.6

10.8
9.4
-

8.2
8.4

8.4
8.6

KFU-S-93

Best

Avg
13.0

13.3

14.0

18.8

13.8

-

13.7

13.9

13.5

14.0

MEL-F-01

Best

Avg
2.7

2.8

-

-

-

-

-

-

2.9

3.0

MEL-S-01

Best

Avg
2.2

2.3

-

-

-

-

-

-

2.5

2.5

NOT-F-94

Best
Avg

6.4

6.5
-
-

-
-

-
-

7.0
7.1

PUR-S-93

Best
Avg

4.7
5.0

3.9
4.4

3.7

-
-
-

-
-

6. CONCLUSIONS

The MNMO algorithm performed well in comparison to several

other solution methods. For the UEPP it was able to match the

best proximity costs for 7 datasets. These results should

encourage further research on the application of multi-search

paradigm as solution methods to the exam timetabling problem.

However, the cost of such methods is rather expensive. As

shown in this research, the main drawback of the multi-

neighborhood multi-search technique is the high computation

load involved in the optimization process. It is possible to lower

the temporal complexity by pruning the search space as

suggested by Prestwich [17]. Another complexity reducing

technique is to distribute the workload to multiple processing

units. By decomposing the timetabling problem into several

smaller subproblems as in [2], it is possible to solve the problem

instances in parallel. However, more research is needed to

access the effectiveness of these auxiliary techniques.

7. REFERENCES

[1] M. Carter, G. Laporte, and S.T. Lee, Examination

timetabling: algorithmic strategies and applications,

Journal of the Operational Research Society, Vol. 47,

1996, pp. 373-383.

[2] E.K. Burke, J. Newall, and R.F. Weare, A memetic

algorithm for university exam timetabling. In: Burke, E.;

Ross, P. (eds.): Practice and Theory of Automated

Timetabling, First International Conference, Edinburgh,

U.K., August/September 1995. Selected Papers. Lecture

Notes in Computer Science 1153, Springer-Verlag,

Heidelberg, 1996, pp. 241-250.

[3] L.T.G. Merlot, N. Boland, B.D. Hughes and P.J. Stuckey,

A Hybrid Algorithm for the Examination Timetabling

Problem. In: Burke, E.; De Causmaecker, P. (eds.):

Practice and Theory of Automated Timetabling, Fourth

International Conference, Gent, Belgium, August 2002.

Selected Papers. Lecture Notes in Computer Science

2740, Springer-Verlag, Heidelberg, 2003, pp. 207-231.

[4] M. Caramia, P. Dell'Olmo, and G.F. Italiano, New

algorithms for examination timetabling. In: Nher, S.;

Wagner, D., (eds.): Algorithm Engineering 4th

International Workshop, WAE 2000, Saarbrucken,

Germany, September 2000. Proceedings. Lecture Notes

in Computer Science 1982, Springer-Verlag,

Heidelberg, 2001, pp. 230-241.

[5] C. Morgenstern, H. Shapiro, Coloration neighborhood

structures for general graph coloring. In Proceedings of

the First Annual ACM-SIAM Symposium on Discrete

Algorithms, San Francisco, California, 1990, pp. 226-

235.

[6] J. Thompson, K. Dowsland, A robust simulated annealing

based examination timetabling system. Computers and

Operations Research, vol. 25, 1998, pp. 637-648.

[7] E.K. Burke, J. Newall, Enhancing Timetable Solutions

with Local Search Methods. In: Burke, E.; De

Causmaecker, P. (eds.): Practice and Theory of

Automated Timetabling, Fourth International

Conference, Gent, Belgium, August 2002. Selected

Papers. Lecture Notes in Computer Science 2740,

Springer-Verlag, Heidelberg, 1996, pp. 195-206.

[8] G. Dueck, New Optimization Heuristics. The Great

Deluge Algorithm and the Record-to-Record Travel.

Journal of Computational Physics, vol. 104, 1993, pp.

86-92.

[9] C. Blum, A. Roli., Metaheuristics in Combinatorial

Optimization: Overview and Conceptual Comparison.

ACM Computing Surveys, vol. 35, 2003, pp. 268-308.

[10] M. Yagiura, T. Ibaraki, On metaheuristic algorithms for

combinatorial optimization problems. Syst. Comput.

Japan 32, vol. 3, 2001, pp. 33-55.

[11] N. Mladenovic, P. Hansen. Variable Neighborhood

60 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 5 - YEAR 2015 ISSN: 1690-4524

Search, Computers and Operations Research, vol. 24,

1997, pp. 1097-1100.

[12] T. Jones, One operator, one landscape. Santa Fe Institute

Technical Report 95-02-025, Santa Fe Institute, 1995.

(Downloadable from

http://www.santafe.edu/media/workingpapers/95-02-

025.pdf)

[13] F. Glover, F. Laguna, Tabu Search, Kluwer Academic

Publishers, Norwell, 1997.

[14] D. E. Joslin, D. P. Clements, Squeaky Wheel

Optimization, Journal of Artificial Intelligence

Research, vol. 10, 1999, pp. 353-373.

[15] G. Dueck, T. Scheuer, Threshold accepting: a general

purpose optimization algorithm appearing superior to

simulated annealing, Journal of Computational

Physics, vol. 90, 1990, 161―175.

[16] J.W. Pepper, B. L. Golden, E. A. Wasil, Solving the

traveling salesman problem with annealing-based

heuristics: a computational study, IEEE Systems, Man

and Cybernetics, Part A, vol. 32, 2002, 72―77.

[17] S. Prestwich. Combining the scalability of local search

with the pruning techniques of systematic search. Annals

of Operations Research, vol. 115, 2002, pp. 51-72.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 5 - YEAR 2015 61

	MA242RG15

