
A Discrete, Deterministic Model for Understanding
Software Project Development Contingency Profiles

Bruce R. Barkstrom
15 Josie Lane

Asheville, NC 28804, USA

and

Paula L. Sidell
119 Sandpiper Lane

League City, TX, USA

ABSTRACT

This paper describes a simple, discrete deterministic model for
the allocation of project contingency as a function of project
phase. When a project starts, there is always some uncertainty
regarding the resources it will require. As the project proceeds,
the participants discover this uncertainty and remove it through
the expenditure of resources. In addition, the project may
encounter unexpected changes in its environment that force the
project to change. The model assumes that the project will
eventually discover a (relatively small) number of
contingencies, each of which requires the same workforce and
duration to resolve. Because the time of appearance and
resolution time for each contingency is independent of other
contingencies, there may be several overlapping contingencies
the project will work on at the same time. Because the model
assumes that contingencies suddenly add and subtract staff,
managing staff becomes much more complex than is the case
with a more uniform staffing plan. In particular, if there are
appreciable hiring and firing costs, a project may find it
desirable to simply retain staff that can be assigned to
contingencies, even though there may be periods with no
contingency work.

Keywords: Project Contingency, Management Style

1. INTRODUCTION

Projects everywhere feel the effects of the stringency with
which managers must adhere to initially negotiated spending
plans and schedules. If a project were never to experience
unexpected changes, this could be a reasonable policy.
However, projects rarely have enough initial knowledge to be
able to provide a deterministic budget and schedule. For
software projects, the number of source lines of code is usually
not known exactly. The Cost Estimation Relations (CERs) used
to estimate costs have their own uncertainty. In addition, the
project's environment is subject to perturbations in its plans
because that environment evolves. Sometimes, the project's
funders or users change their minds about requirements.
Technology the project planners assumed would be available
isn't or completely new technology is so much better that a
project is forced to accept it.

In this paper, we explore a rather simple model for the project's
contingency budget (or “management reserve”). The model
assumes that contingencies appear suddenly with an average

time interval. Each contingency requires a fixed workforce
[person-months] to resolve. Thus, the project assigns staff to
work on a contingency until it is resolved. While real
contingencies appear at non-deterministic time intervals and
require variable staff levels and completion times to resolve,
this simple model provides a useful start at thinking about how
to manage these unexpected changes. After describing out
simple model, we provide some examples of the phenomena
using numerical calculations. We are particularly interested in
how to estimate the work required to monitor and control
contingency expenditures. In the final section of the paper, we
suggest some strategies for dealing with contingencies.

2. THE MODEL

Initial Sources of Project Uncertainty
In this paper, we concentrate on software development projects.
Cost and schedule estimation for such projects usually uses an
estimate of the number of “source lines of code” (SLOC) as the
fundamental parameters entering the Cost Estimation
Relationships (CERs) [1, 2]. There has been some
dissatisfaction with this basic parameterization [3, 4], but for
our purposes, SLOC is a satisfactory basis.

One source of uncertainty in the estimated cost and schedule
lies in the input values for SLOC. For this paper, we assume
that the project can provide a lower bound, SLOCL , and upper
bound, SLOCU .

The second source of uncertainty lies in the CERs that provide a
recipe for calculating the required project workforce, MMDEV,
in [person-months], and development time, TDEV in [months].
[1] and [2] suggest

MMDEV = A (SLOC)B; TDEV = C (MMDEV)D

where A, B, C, and D are parameters derived by taking a large
database of projects with recorded values of SLOC, MMDEV,
and TDEV and then running statistical regressions between the
independent variables and the dependent ones. Naturally, the
data do not fall exactly on the regression surface. This means
that the CER has uncertainty above and beyond the uncertainty
in the project's input.

Although we might be tempted to assume a Gaussian
probability distribution for SLOC, it is difficult to find the
calculated standard deviation for the CERs. Accordingly, we

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 6 - YEAR 2010 61ISSN: 1690-4524

use Boehm's COCOMO II [2] regression coefficients and
estimate the maximum uncertainty by using the twelve
regression coefficients for effort quoted in Table 6-6 on page
86 of [1] and the seven regression coefficients for development
time in Table 6-7 on page 89 of that reference.

In the numerical examples that illustrate the model's
calculations, we take SLOCL = 80,000 and SLOCU = 100,000.
The resulting minimum MMDEV is about 124 person-months
and the minimum TDEV is about 11 months. The equivalent
maximum MMDEV is 904 person-months and the maximum
TDEV is about 35 months. We could use the range in these
values as representing an “objective” estimate of the maximum
uncertainty in project workforce and development schedule.

This range of workforce and development time is rather large
compared with the uncertainty most project managers would be
willing to quote. Accordingly, model users should provide
their own estimate of the appropriate range of workforce
contingency, ∆MMDEV. This quantity represents the initial
uncertainty in the planned work at the start of the project. It
does not include changes in requirements or in the project
environment. For our numerical examples, we take ∆MMDEV
= 100 Person-Months, representing a development workforce
uncertainty of about 30%.

In addition to providing an estimate of uncertainty, we use the
CERs to estimate the basement workforce, MMDEVB and
basement development time, TDEVB. These are the minimum
workforce and minimum time for the project. We regard these
as values such that acceptance of a lower workforce or shorter
development time guarantees project failure. Based on these
two values, the model gives us an estimate of the appropriate
staffing level as

SB = MMDEVB / TDEVB

For the numerical values we have presented, the basement staff
level, SB, for the standard example is about 12.

Contingency Discoveries From Initial Uncertainties
It would be an unusual project in which the uncertainty
associated with the initial estimates of workforce and schedule
would be uniformly dispersed over the entire development
duration. Most projects with which the authors are familiar
experience the work required to remove this initial uncertainty
as coming in discrete contingencies. Perhaps the most visible
sign of this discrete character comes when the project feels
compelled to form a “tiger team” to deal with a problem.
Regardless of contingency size, “action items” that arise from
recognition of an initial uncertainty should be labeled so that
they can be resolved or worked off.

To keep the model as simple as possible, we assume that the
project will encounter a finite number, N0, of discrete
contingencies. We assume that each contingency will require
∆W of effort to resolve. This means that the expected number
of contingencies will be

N0 = ∆MMDEV / ∆W

For our standard numerical examples, we assume that ∆W = 20
Person-Months. This means that the example project will
encounter 5 contingencies over its development period.

Contingencies are not discovered on schedule. Rather, they
arise as the project exerts development effort. If we were
dealing with a continuum of contingencies, we might use a
differential model in which the number of old contingencies,
∆N, discovered in a time period ∆t is proportional to the
number of undiscovered contingencies remaining at time t,
N(t), times a rate that is proportional to the staffing level for the
basement level of effort and a “contingency discovery
efficiency”, r. In the form of an equation

∆N = - r SB N(t) ∆t

When the time interval is taken to the limit of 0, the solution to
the resulting differential equation is

N(t) = N0 exp(- r SB t)

In other words, if we assume that the initial uncertainty is
removed when it appears, the number of remaining
contingencies declines exponentially with time at a rate
determined by the time constant τD = 1/(r SB). We might call
τD the time scale for contingency discovery. In our numerical
examples, we will take r = 0.1 Contingencies per Person-
Month. With a basement staff level of 11.9 persons, τD = 2.73
Months.

This analytic result suggests that we can provide a
“deterministic” start time for N'th contingency:

tN = τD ln[N / (N0 + 1 – N)]; N = 1, 2, ... N0

which keeps the basic exponential form of the continuous
approximation, but avoids division by zero for the final
contingency.

When there are only a “smallish” number of “largish” discrete
contingencies, the continuous model is inappropriate.
However, we still expect the project to discover fewer
contingencies per unit time interval as time goes on. Basically,
unexpected items become harder to find. We can approximate
this effect in a completely deterministic model by allowing the
time between contingency discoveries to expand by a constant
factor. For numerical examples, we take this factor to be 1.2.
This means that contingency discoveries in our basic numerical
example will occur at 2.7 months, 6.0 months, 9.9 months, 14.6
months, and 20.3 months.

Treatment of Contingency Resolution Work Off
We have already identified the workforce required to work off
a contingency, ∆W. In order to complete the model, we need to
specify an expected duration, τC, of the work on each
contingency. The staff assigned to each contingency will
clearly be

SC = ∆W/ τC

For the numerical examples, we take τC = 6 months (or about
180 days). With ∆W = 20 Person-Months, we find SC = 3.4
persons.

Summary of the Contingency Workforce Model
The model we have described is quite simple. The user first
finds the expected project workforce and development time.
Then, he or she estimates the uncertainty in the workforce.

62 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 6 - YEAR 2010 ISSN: 1690-4524

Next, the user inputs the workforce required to work off each
contingency. This input allows the model to calculate the
likely number of contingencies that will be found as a result of
the initial uncertainty. It also provides the staffing level for the
“basement” level of effort over the project duration.

After these inputs, the user needs to input the contingency
discovery efficiency and the expected workforce required to
work off each contingency. Based on this input, as well as the
factor by which the time interval between contingency
discoveries expands and the average duration for working off
each contingency, the model provides the contingency staffing
level. At the end of the project, all of the initial contingencies
should be worked off, ensuring that the model's apportionment
of contingencies conserves the estimated total as input.

3. EXAMPLE NUMERICAL RESULTS

Introducing the Numerical Results
There are two primary kinds of results we can create from this
type of simulation:
1) Time histories of project staffing for the planned work and

for the contingency work
2) Time histories of project expended workforce for the

planned work and for the contingencies

In the subsections that follow, we use the previous numerical
values to create plots of each kind of time history. The most
immediate phenomenon is the discrete jumps in staffing as the
project discovers and resolves contingencies. If the manager
could hire and fire staff instantaneously and without cost, the
actual project staffing could follow these jagged time histories.
However, in the real world, hiring and firing are expensive. In
addition, staff need training after being hired. We will not treat
these complications here, but will consider a simple metric for
evaluating the efficiency of managing contingency work.

Time History of Project Staffing
Figure 1 shows the staffing profile for both the planned work
and the initial contingenciesas well as a Gantt chart of the
planned work and the five contingencies. Each major “bump”
in the contingency staffing occurs when work starts to resolve a
particular contingency. Each contingency's completion
produces a “cliff” as the staffing reduces when the contingency
is resolved. In the Gantt chart, the planned work appears as the
green bar; the five contingencies as red rectangles. The
increasing interval between internal contingencies is visible, in
accord with the logarithmic model above.

Because the discovery times and the completion times are
incommensurate with each other, the project clearly is not able
to keep a constant staffing level fully occupied. To put it
another way, there will be times when a staff hired to deal with
contingencies has no work to do. This contingency-induced
staffing variability creates a “managerial challenge.” If the
project manager cannot offload staff handling contingencies
when they are not dealing with this unplanned work, there are
two dangers. On the one hand, the manager may need so many
staff that he or she exceeds the budget and is fired. On the
other hand, if he or she is able to arrange the contingency
budget so there is enough staff to cover all the contingencies,
that staff will not be “completely efficient.”

Time History of Expended Workforce
Based on the staffing profiles for the planned work and for the

Figure 1. Staffing Profile and Corresponding Gantt Chart
for Planned Work and Internally Generated Contingencies.

contingencies, it is straightforward to calculate the expended
workforce as a function of time, since that is the integral of
staffing over time. Figure 2 shows the expended effort for the
planned work (lowest line) and for the contingencies (line with
slope breaks).

Figure 2. Expended Workforce for Planned Work (lowest
line), for Internally Generated Contingencies (line with
slope changes), and for a lower and upper bound on
workforce.

In addition to the calculated values for the time history of
expended effort, fig. 2 shows an upper bound for the time
history of expended effort assuming the project hires about
18.7 people at the project start and keeps them until theproject
ends. The total budget would need to accommodate about 657
person-months covering the cost of contingencies due to initial
uncertainty. The project manager would need to cover 238
Person-Months, although the total workforce for contingency is
only 100 Person-Months. This means that the budget including
both planned work and contingencies would have to be about
58% larger than one with just planned work. On the other

 0

 1 0 0

 2 0 0

 3 0 0

 4 0 0

 5 0 0

 6 0 0

 7 0 0

 8 0 0

 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

E
xp

e
n

d
ed

 E
ff

o
rt

 [P
e

rs
o

n
-M

o
n

th
s]

T i m e [M o n t h s]

M a x E f f o r t
M a t c h E x p e c t e d C o n t i n g e n c y

I n t e r n a l C o n t i n g e n c y
P l a n n e d

 0

 5

 1 0

 1 5

 2 0

 2 5

 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

S
ta

ff

T im e [M o n t h s]

C o n t in g e n c y a n d P la n n e d E f f o r t
P la n n e d E f f o r t

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 6 - YEAR 2010 63ISSN: 1690-4524

hand, if the project manager could create a budget with exactly
the correct coverage in this scenario, he would only need to
cover about 520 Person-Months, only 24% more than the 420
Person-Months in the planned budget.

The green line in fig. 2 shows expended workforce assuming a
constant contingency staffing. The manager could hire about
2.8 persons to handle contingencies and keep them on the
project from start to finish. As fig. 2 shows, during the first
couple of months there are no contingencies. After six months,
the contingency load has increased enough so that the project
needs more staff to resolve the unexpected work. As a result,
the contingency workforce starts out costing more than the
straight line budget. By design, this budget would just cover
the contingency expenditure by the end of the project, but the
timing of the budget is off. There is more need for contingency
staff in the middle part of the project. Usually this additional
attention also increases the work the project staff must do,
leading to the “regenerative schedule disaster” described in [5].

4. INCORPORATING EXTERNALLY
CREATED CONTINGENCIES

Why External Sources Create Contingencies
There is no doubt that projects experience changes in their
environment that force them to work on activities that were not
included in the original, planned work. In the early 1990's, the
NASA Earth Observing System Data and Information System
(EOSDIS) project planning assumed that users would need a
Motif graphical user interface to access and use NASA's Earth
science data. When the Internet era began in 1994, the project
needed to work on the early version of what is now the familiar
Web environment. The development of Web 2.0, the adoption
of Geographic Information Systems with Web Mapping
Services, and the development of high-powered Semantic Web
software provide additional examples of changes that arise
external to a software development project. Project funders and
other stakeholders may also force a project to do unplanned
work. For example, government projects may have new
security or reporting requirements forced upon them by agency
managers.

Further evidence of the force of such changes appears in the
maintenance costs of software projects. In [1, p. 71], such
changes are characterized by the Annual Change Traffic
(ACT), which is “the fraction of the software product's source
instructions which undergo change during a typical year, either
through addition or modification.” Typical values for ACT lie
between 8% to 15%. This kind of change also underlies the
customer cost of software product maintenance. [6] notes that
these costs are currently running between 17% and 25% for
such large scale products as enterprise databases or business
management software.

Formulating a Model for Externally Created Contingencies
If we were dealing with a continuous stream of project
contingencies, we could modify the original equation for
discovering contingencies to incorporate a source term

∆N = - r SB N(t) ∆t + Source(t) ∆t

The question then is “what is an appropriate model for the time
dependence of externally caused contingencies?”

If there were a known change in the external environment that

arose when the project was planning, that would already be
taken into account in the project planning process. A simple
hypothesis is that the number of contingencies arising from
external causes should be 0 when the project starts. At the end
of the project's development phase, the rate at which
contingencies appear should settle in to a relatively constant
value. To be consistent with the ACT model, the number of
changes would be proportional to the total development effort.
The simplest assumption that satisfies these two end conditions
is a source term that is proportional to the project's expended
effort. For the simple “level of effort” model we have used in
sections 2 and 3, this means that the contingency source term
expands linearly with time. When a project starts, it has no
product to change. The further along it goes, the more
produced items it has that might need to be changed.

Quantitatively,

Source(t) = rExt SB t

This quantification means that the number of externally forced
contingencies will increase quadratically with time. In other
words, we expect

NE(t) = ½ rExt SB t2

where NE(t) is the number of externally forced contingencies
disclosed by time t. rExt is the external contingency generation
rate.

While it would be more realistic to create a statistical model for
the appearance of these externally-driven contingencies, this
paper uses a “deterministic” one. At the end of planned project
development, when t = TDEVB, the number of these
contingencies will be NEnd = NE(TDEVB). It follows that

tN = TDEVB √ (N / NEnd)

where tN is the time at which the N ' th external contingency
appears. This function “end loads” the appearance of
externally-driven contingencies. Thus, if we want the
appearance time for the contingency that is halfway through
the full number, that will be at about 70% of the planned
development duration, rather than 50%.

We also assume that resolving externally created contingencies
requires as much workforce as it does to resolve the
contingencies created by the initial uncertainty in planning.

A Numerical Example with External Contingencies
Figure 3 shows the planned and contingency staffing levels.
The figure includes both the contingencies generated by the
initial uncertainties (as the green line) and those generated by
the externally generated ones (as the red one). In this example,
the work on the final contingency starts before the end of the
planned development work, but continues for about two
months after the nominal completion. The original
contingencies that arise from the initial uncertainties in the
project's plan appear in green. The contingencies that arise
from the externally-generated contingencies appear in green.
The original, planned staffing appears in blue.

Because the externally-generated contingencies appear based
on the amount of completed work, the square root dependence
“bunches” the work required to resolve them nearer to the end

64 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 6 - YEAR 2010 ISSN: 1690-4524

of the project.

Figure 3. Staffing Levels and Corresponding Gantt Chart
for Planned Activities and External Contingencies.

Limiting Form of Contingency Staffing
The algorithm for computing the contingency staffing effort
works even if we let the number of internal or external
contingencies become very large. Figure 4 shows the planned
work, the additional staff required to handle 500 internal
contingencies, 400 external contingencies, and the combined
contingency work.

Figure 4. Limiting Form of Staffing Levels for Planned
Work and Contingencies.

When the number of contingencies becomes large, we can keep
the total contingency effort finite by decreasing the workforce
required to close each contingency even the time to close each
contingency remains constant. The contingencies generated by
the initial project uncertainty increase as 1 - exp(- r SB t). This
factor produces the rise on the left side of the green curve in
fig. 4. Thus, the initial discovery of contingencies accumulates
work to be done. As the contingencies are worked off, the work
in progress declines exponentially with a time constant τC . In
other words, the internal contingencies act like a queue that is
filled by discovery of problems and emptied by the work that

resolves them.
On the other hand, externally generated contingencies appear
as problems are discovered in the planned work that is already
completed. By assumption, the completed work is the result of
a “level of effort” expenditure, which leads to a linear increase
in the backlog of unresolved problems. As these problems are
resolved, they are removed from the external stack. Where
work starts before the end of the planned work, but is not
finished until after it was supposed to be done, the backlog
declines linearly with time after the planned end of
development. In normal circumstances, this work would be
regarded as development “maintenance.”

5. IMPLICATIONS AND
RECOMMENDATIONS

Summary of the Hypothesis of This Work
In this paper, we assume that uncertainty is always present in
the budget and schedule of a project. There are two different
sources of uncertainty:
1) Uncertainty from the initial assumptions in the project's

schedule and budget
2) Uncertainty from changes in the project's environment as

the work progresses
For both sources, the project must find staff to resolve the
discovered contingencies. In reality, the required workforce,
duration, and staffing are stochastic; they are not predictable in
advance. In this paper, we simplify the stochastic process of
discovering contingencies by a deterministic algorithm that
bunches the discoveries of contingencies arising from initial
uncertainty near the beginning of the project, while those
arising from changes in the project's environment are bunched
near the end.

Contingency Management Strategies
In the case of initial uncertainty, one reduction strategy is to try
to remove development novelty. This strategy is at the root of
such approaches as the Capability Maturity Model [7]. This
kind of approach systematizes software development
processes, emphasizing development of a reliable statistical
basis for making estimations of the cost and schedule of
projects. In project accounting, we would include Earned
Value Analysis (EVA) [8] as a tool designed to reduce project
uncertainty arising from initial assumptions. EVA emphasizes
identifying concrete measures of progress, as well as careful
monitoring of the project's progress against these measures.

Where uncertainty cannot be avoided, experts recommend
moving to risk management. In simple forms, this strategy
attempts to categorize risks, i.e. sources of uncertainty, based
on the kind of threat to the schedule or budget, the probability
of the threat occurring, and the probable cost of an increase in
budget or delay [9]. In more complex forms, this approach
leads to probabilistic risk analysis.

From the perspective of the model presented in this paper, a
key strategic decision for the project manager lies in matching
the development lifecycle to the ratio between the total budget
uncertainty and the budget for planned work. If that ratio is
low, the project has only a small amount of uncertainty – and it
might adopt a waterfall lifecycle. This approach is likely to
work best on projects that contain almost no novelty – and for
which the project organization already has a substantial track
record. This approach emphasizes having the project spend a
significant amount of effort on ensuring clear requirements that

 0

 5

 1 0

 1 5

 2 0

 2 5

 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

St
af

f

T im e [M o n t h s]

E x t e r n a l a n d In t e r n a l C o n t in g e n c y E f f o r t
In t e r n a l C o n t in g e n c y E f f o r t

P la n n e d E f f o r t

 0

 5

 1 0

 1 5

 2 0

 2 5

 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5

S
ta

ff

T i m e [M o n t h s]

E x t e r n a l a n d I n t e r n a l C o n t i n g e n c y
O n l y I n t e r n a l C o n t i n g e n c y

O n l y E x t e r n a l C o n t i n g e n c y
P l a n n e d

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 6 - YEAR 2010 65ISSN: 1690-4524

will not be changed after they are developed.

Projects with a moderate amount of novelty (and those
undertaken within a stable IT environment) might be better
served by a spiral development approach [10]. This strategy
seeks to reduce uncertainty bystarting with the portions of the
development that have the largest risk.

When the initial project analysis suggests that the contingency
effort is likely to be large in comparison with the planned
workforce, the distinction between plannable work and
contingency work probably doesn't make sense. In this case,
the project manager should probably adopt an agile lifecycle
[11]. In essence, this lifecycle emphasizes selection of project
activities to gain experience with the real problem. From the
perspective of this paper, agile methods concentrate on “buying
down” the uncertainty as rapidly as possible.

In this paper's model, there are two parameters that a manager
may influence: the diligence of initial uncertainty search effort
(as reflected in the mean time between discoveries, τD) and the
speed with which contingencies are resolved (as reflected in
τC). If the manager succeeds in reducing τD, then the initial
uncertainties will be discovered more rapidly. If the manager
succeeds in reducing τC , then the pool of active contingency
work will be reduced. Rapid contingency resolution would
appear to be the more effective strategy, although that needs to
be confirmed with more extensive data than we have been able
to find.

We also note that this paper does not allow the manager to
choose between reducing the planned work in return for
dealing with newly discovered contingencies. In practice, such
choices are an intrinsic part of the manager's job. Our work in
this paper also does not deal with the overhead arising from
project control mechanisms. It should be clear that if a project's
funders introduce more stringent controls than those originally
planned, then the overhead of that new work acts as a
contingency created by a change in the environment. The cost
of this increased effort will have to be paid for – whether by
slowing the planned work, increasing the contingency reserve,
reducing the scope of the project, or by incurring the cost of
project termination.

Implications of the “Lumpy” Nature of Contingency Work
It should be clear that project managers must deal with the fact
that only very large organizations can suddenly change
personnel assignments. If an organization is large enough to
have individuals with pecialized skills, it may also be able to
assign these individuals to solve problems without a “hiring
and firing” penalty or significant training. Smaller
organizations may not be able to afford to keep stables of
specialists.

From a strategic point of view, a project manager can adopt
two approaches.
1) First, he or she could budget for a pool of resources that

are available on demand to deal with contingencies. The
manager must now accept the fact that some portion of the
contingency pool will not be working on contingency
resolution all the time. This pool introduces an intrinsic

overhead into the project budget.
2) Second, he or she might hire and fire workers as

contingencies come and go. The intent is to reduce the
idle-time overhead, although this strategy may suffer as
well as the costs of hiring and firing plus unplanned
training.

Regardless of the strategy the project manager adopts, it is
clear that the stochastic nature of contingency resolution
creates an “uncertainty premium” that does not exist for
projects that have no uncertainty. In a very real sense, the
project must pay to reduce uncertainty.

On Monitoring and Managing Contingency Responses
This paper suggests that project managers could improve their
understanding of their project's progress by keeping a history
of contingencies and their resolution tasks:
1) The project manager should categorize each contingency

as arising either from initial uncertainty or from changes
in the project's environment.

2) The project manager should keep a record of the workers
assigned to resolve the contingency and the time they
devote to this resolution. This record might be a list of
action items that are reviewed at staff meetings.

3) On a routine basis, the project manager should create a
statistical summary of planned and contingency work to
track whether the project is following the initial
assumptions regarding contingencies or is deviating
significantly from them.

4. REFERENCES

[1] B. W. Boehm, Software Engineering Economics, Upper
Saddle River: Prentice-Hall PTR. Pub. 1981.

[2] B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K.
Clark, E. Horowitz, R. Madachy, D. Reifer, B. Steece,
Software Cost Estimation with COCOMO II, Upper
Saddle River, NJ: Prentice Hall PTR, Pub. 2000.

[3] T. C. Jones, The SPR Feature Point Method, Software
Productivity Research, Inc., Pub. 1986.

[4] C. R. Symons, Software Sizing and Estimating: Mk II
FPA (Function Point Analysis), New York, NY: John
Wiley & Sons, Inc., Pub. 1991.

[5] F. P. Brooks, The Mythical Man-month: Essays on
Software Engineering, 2nd ed., Reading, MA, Addison-
Wesley, Pub. 1995.

[6] M. H. Weier, “Numbers Crunch”, InformationWeek, Issue
1,218, Jan. 26, 2009, pp. 25-29.

[7] D. M. Ahern, A. Clouse, R. Turner, CMMI Distilled: A
Practical Introduction to Integrated Process
Improvement, 2nd ed., Boston: Addison-Wesley, Pub.
2001.

[8] Q. W. Fleming and J. M. Koppelman, Earned Value
Project Management, 3rd ed., Washington: PMI, Pub.
2006.

[9] B. W. Boehm, “Software Risk Management: Principles and
Practices”, IEEE Software, Jan., 1991, pp. 32-41.

[10] B. W. Boehm, “A Spiral Model of Software Development
and Enhancement”, Computer, May, 1988, pp. 61-72.

[11] A. Cockburn, Agile Software Development, Boston:
Addison-Wesley, Pub. 2002..

66 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 6 - YEAR 2010 ISSN: 1690-4524

	MJ667MW

