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ABSTRACT

This paper describes a simple, discrete deterministic model for 
the allocation of project contingency as a function of project 
phase.  When a project starts, there is always some uncertainty 
regarding the resources it will require.  As the project proceeds, 
the participants discover this uncertainty and remove it through 
the  expenditure  of  resources.   In  addition,  the  project  may 
encounter unexpected changes in its environment that force the 
project  to  change.   The  model  assumes  that  the  project  will 
eventually  discover  a  (relatively  small)  number  of 
contingencies, each of which requires the same workforce and 
duration  to  resolve.   Because  the  time  of  appearance  and 
resolution  time for  each  contingency is  independent  of  other 
contingencies, there may be several overlapping contingencies 
the project will work on at the same time.  Because the model 
assumes  that  contingencies  suddenly  add  and  subtract  staff, 
managing staff becomes much more complex than is the case 
with a more uniform staffing plan.  In particular, if there are 
appreciable  hiring  and  firing  costs,  a  project  may  find  it 
desirable  to  simply  retain  staff  that  can  be  assigned  to 
contingencies,  even  though  there  may  be  periods  with  no 
contingency work.

Keywords: Project Contingency, Management Style

1. INTRODUCTION

Projects  everywhere  feel  the  effects  of  the  stringency  with 
which  managers  must  adhere  to  initially  negotiated  spending 
plans  and  schedules.   If  a  project  were  never  to  experience 
unexpected  changes,  this  could  be  a  reasonable  policy. 
However, projects rarely have enough initial knowledge to be 
able  to  provide  a  deterministic  budget  and  schedule.   For 
software projects, the number of source lines of code is usually 
not known exactly. The Cost Estimation Relations (CERs) used 
to estimate costs have their own uncertainty.  In addition, the 
project's  environment  is  subject  to  perturbations  in  its  plans 
because  that  environment  evolves.   Sometimes,  the  project's 
funders  or  users  change  their  minds  about  requirements. 
Technology the  project  planners  assumed would be available 
isn't  or  completely  new technology  is  so  much better  that  a 
project is forced to accept it.

In this paper, we explore a rather simple model for the project's 
contingency  budget  (or  “management  reserve”).   The  model 
assumes  that  contingencies  appear  suddenly  with  an  average 

time  interval.   Each  contingency  requires  a  fixed  workforce 
[person-months] to resolve.  Thus, the project assigns staff to 
work  on  a  contingency  until  it  is  resolved.   While  real 
contingencies  appear  at  non-deterministic  time  intervals  and 
require  variable  staff  levels  and completion times to  resolve, 
this simple model provides a useful start at thinking about how 
to  manage  these  unexpected  changes.  After  describing  out 
simple  model,  we provide some examples  of  the  phenomena 
using numerical calculations.  We are particularly interested in 
how  to  estimate  the  work  required  to  monitor  and  control 
contingency expenditures.  In the final section of the paper, we 
suggest some strategies for dealing with contingencies.

2. THE MODEL

Initial Sources of Project Uncertainty
In this paper, we concentrate on software development projects. 
Cost and schedule estimation for such projects usually uses an 
estimate of the number of “source lines of code” (SLOC) as the 
fundamental  parameters  entering  the  Cost  Estimation 
Relationships  (CERs)  [1,  2].  There  has  been  some 
dissatisfaction with this basic parameterization [3,  4],  but for 
our purposes, SLOC is a satisfactory basis.

One source of uncertainty in the estimated cost and schedule 
lies in the input values for SLOC.  For this paper, we assume 
that the project can provide a lower bound,  SLOCL  , and upper 
bound, SLOCU . 

The second source of uncertainty lies in the CERs that provide a 
recipe for calculating the required project workforce, MMDEV, 
in [person-months], and development time,  TDEV in [months]. 
[1] and [2] suggest

MMDEV = A (SLOC)B;  TDEV = C (MMDEV)D

where A,  B,  C, and D are parameters derived by taking a large 
database of projects with recorded values of  SLOC,  MMDEV, 
and TDEV and then running statistical regressions between the 
independent variables and the dependent ones.  Naturally, the 
data do not fall exactly on the regression surface.  This means 
that the CER has uncertainty above and beyond the uncertainty 
in the project's input.

Although  we  might  be  tempted  to  assume  a  Gaussian 
probability  distribution  for  SLOC,  it  is  difficult  to  find  the 
calculated standard deviation for the CERs.  Accordingly, we 
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use  Boehm's  COCOMO  II  [2]  regression  coefficients  and 
estimate  the  maximum  uncertainty  by  using  the  twelve 
regression coefficients for effort quoted in Table 6-6 on page 
86 of [1] and the seven regression coefficients for development 
time in Table 6-7 on page 89 of that reference.

In  the  numerical  examples  that  illustrate  the  model's 
calculations, we take  SLOCL = 80,000 and  SLOCU = 100,000. 
The resulting minimum  MMDEV is about 124 person-months 
and the minimum TDEV is about 11 months.  The equivalent 
maximum  MMDEV is 904 person-months and the maximum 
TDEV is about 35 months.  We could use the range in these 
values as representing an “objective” estimate of the maximum 
uncertainty in project workforce and development schedule.

This range of workforce and development time is rather large 
compared with the uncertainty most project managers would be 
willing  to  quote.   Accordingly,  model  users  should  provide 
their  own  estimate  of  the  appropriate  range  of  workforce 
contingency,  ∆MMDEV.   This  quantity  represents  the  initial 
uncertainty in the planned work at the start of the project.  It 
does  not  include  changes  in  requirements  or  in  the  project 
environment. For our numerical examples, we take  ∆MMDEV 
= 100 Person-Months, representing a development workforce 
uncertainty of about 30%.

In addition to providing an estimate of uncertainty, we use the 
CERs  to  estimate  the  basement  workforce,  MMDEVB and 
basement development time,  TDEVB.  These are the minimum 
workforce and minimum time for the project.  We regard these 
as values such that acceptance of a lower workforce or shorter 
development time guarantees project failure.  Based on these 
two values, the model gives us an estimate of the appropriate 
staffing level as

SB =  MMDEVB /  TDEVB

For the numerical values we have presented, the basement staff 
level, SB, for the standard example is about 12.

Contingency Discoveries From Initial Uncertainties
It  would  be  an  unusual  project  in  which  the  uncertainty 
associated with the initial estimates of workforce and schedule 
would  be  uniformly  dispersed  over  the  entire  development 
duration.   Most projects with which the authors are familiar 
experience the work required to remove this initial uncertainty 
as coming in discrete contingencies.  Perhaps the most visible 
sign  of  this  discrete  character  comes when  the  project  feels 
compelled  to  form  a  “tiger  team”  to  deal  with  a  problem. 
Regardless of contingency size, “action items” that arise from 
recognition of an initial uncertainty should be labeled so that 
they can be resolved or worked off.

To keep the model as simple as possible, we assume that the 
project  will  encounter  a  finite  number,  N0,  of  discrete 
contingencies.  We assume that each contingency will require 
∆W of effort to resolve.  This means that the expected number 
of contingencies will be

N0  =  ∆MMDEV / ∆W

For our standard numerical examples, we assume that  ∆W = 20 
Person-Months.   This  means  that  the  example  project  will 
encounter 5 contingencies over its development period.

Contingencies  are not discovered on schedule.   Rather,  they 
arise  as  the  project  exerts  development  effort.  If  we  were 
dealing  with  a  continuum of  contingencies,  we  might  use  a 
differential model in which the number of old contingencies, 
∆N,  discovered  in  a  time  period  ∆t is  proportional  to  the 
number  of  undiscovered  contingencies  remaining  at  time  t, 
N(t), times a rate that is proportional to the staffing level for the 
basement  level  of  effort  and  a  “contingency  discovery 
efficiency”, r.  In the form of an equation

∆N  =  - r SB N(t)  ∆t

When the time interval is taken to the limit of 0, the solution to 
the resulting differential equation is

N(t)  =  N0 exp(-  r SB t)

In  other  words,  if  we  assume  that  the  initial  uncertainty  is 
removed  when  it  appears,  the  number  of  remaining 
contingencies  declines  exponentially  with  time  at  a  rate 
determined by the time constant τD = 1/( r SB ).  We might call 
τD the time scale for contingency discovery.  In our numerical 
examples, we will take  r  =  0.1 Contingencies per Person-
Month.  With a basement staff level of 11.9 persons, τD = 2.73 
Months.

This  analytic  result  suggests  that  we  can  provide  a 
“deterministic” start time for N'th  contingency:

tN  =   τD ln[N / (N0 + 1 – N)];        N  =  1, 2, ...  N0

which  keeps  the  basic  exponential  form  of  the  continuous 
approximation,  but  avoids  division  by  zero  for  the  final 
contingency.

When there are only a “smallish” number of “largish” discrete 
contingencies,  the  continuous  model  is  inappropriate. 
However,  we  still  expect  the  project  to  discover  fewer 
contingencies per unit time interval as time goes on.  Basically, 
unexpected items become harder to find.  We can approximate 
this effect in a completely deterministic model by allowing the 
time between contingency discoveries to expand by a constant 
factor.  For numerical examples, we take this factor to be 1.2. 
This means that contingency discoveries in our basic numerical 
example will occur at 2.7 months, 6.0 months, 9.9 months, 14.6 
months, and 20.3 months.

Treatment of Contingency Resolution Work Off
We have already identified the workforce required to work off 
a contingency, ∆W.  In order to complete the model, we need to 
specify  an  expected  duration,  τC,  of  the  work  on  each 
contingency.   The  staff  assigned  to  each  contingency  will 
clearly be

SC  =   ∆W/ τC

For the numerical examples, we take τC  = 6 months (or about 
180 days).  With  ∆W =  20 Person-Months, we find  SC = 3.4 
persons.

Summary of the Contingency Workforce Model
The model we have described is quite simple.  The user first 
finds  the  expected project  workforce and development  time. 
Then,  he  or  she  estimates  the  uncertainty  in  the  workforce. 
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Next, the user inputs the workforce required to work off each 
contingency.   This  input  allows  the  model  to  calculate  the 
likely number of contingencies that will be found as a result of 
the initial uncertainty.  It also provides the staffing level for the 
“basement” level of effort over the project duration.

After  these  inputs,  the  user  needs  to  input  the  contingency 
discovery efficiency and the  expected workforce required to 
work off each contingency.  Based on this input, as well as the 
factor  by  which  the  time  interval  between  contingency 
discoveries expands and the average duration for working off 
each contingency, the model provides the contingency staffing 
level.  At the end of the project, all of the initial contingencies 
should be worked off, ensuring that the model's apportionment 
of contingencies conserves the estimated total as input.

3. EXAMPLE NUMERICAL RESULTS

Introducing the Numerical Results
There are two primary kinds of results we can create from this 
type of simulation:
1) Time histories of project staffing for the planned work and 

for the contingency work
2) Time  histories  of  project  expended  workforce  for  the 

planned work and for the contingencies

In the subsections that follow, we use the previous numerical 
values to create plots of each kind of time history.  The most 
immediate phenomenon is the discrete jumps in staffing as the 
project discovers and resolves contingencies.  If the manager 
could hire and fire staff instantaneously and without cost, the 
actual project staffing could follow these jagged time histories. 
However, in the real world, hiring and firing are expensive.  In 
addition, staff need training after being hired.  We will not treat 
these complications here, but will consider a simple metric for 
evaluating the efficiency of managing contingency work.

Time History of Project Staffing
Figure 1 shows the staffing profile for both the planned work 
and  the  initial  contingenciesas  well  as  a  Gantt  chart  of  the 
planned work and the five contingencies.  Each major “bump” 
in the contingency staffing occurs when work starts to resolve a 
particular  contingency.   Each  contingency's  completion 
produces a “cliff” as the staffing reduces when the contingency 
is resolved.  In the Gantt chart, the planned work appears as the 
green  bar;  the  five  contingencies  as  red  rectangles.  The 
increasing interval between internal contingencies is visible, in 
accord with the logarithmic model above.

Because  the  discovery  times  and  the  completion  times  are 
incommensurate with each other, the project clearly is not able 
to  keep  a  constant  staffing  level  fully  occupied.   To  put  it 
another way, there will be times when a staff hired to deal with 
contingencies  has  no  work  to  do.  This  contingency-induced 
staffing  variability  creates  a  “managerial  challenge.”   If  the 
project  manager  cannot  offload  staff  handling  contingencies 
when they are not dealing with this unplanned work, there are 
two dangers.  On the one hand, the manager may need so many 
staff that he or she exceeds the budget and is fired.  On the 
other  hand,  if  he  or  she  is  able  to  arrange  the  contingency 
budget so there is enough staff to cover all the contingencies, 
that staff will not be “completely efficient.” 

Time History of Expended Workforce
Based on the staffing profiles for the planned work and for the

Figure 1.  Staffing Profile and Corresponding Gantt Chart 
for Planned Work and Internally Generated Contingencies. 

contingencies, it  is  straightforward to calculate the expended 
workforce as a function of time, since that is  the integral of 
staffing over time.  Figure 2 shows the expended effort for the 
planned work (lowest line) and for the contingencies (line with 
slope breaks).

Figure 2.  Expended Workforce for Planned Work (lowest 
line),  for  Internally  Generated  Contingencies  (line  with 
slope  changes),  and  for  a  lower  and  upper  bound  on 
workforce. 

In  addition  to  the  calculated  values  for  the  time  history  of 
expended  effort,  fig.  2  shows  an  upper  bound  for  the  time 
history  of  expended  effort  assuming  the  project  hires  about 
18.7 people at the project start and keeps them until theproject 
ends.  The total budget would need to accommodate about 657 
person-months covering the cost of contingencies due to initial 
uncertainty.  The  project  manager  would  need  to  cover  238 
Person-Months, although the total workforce for contingency is 
only 100 Person-Months. This means that the budget including 
both planned work and contingencies would have to be about 
58% larger  than one with  just  planned work.   On the  other 
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hand, if the project manager could create a budget with exactly 
the correct coverage in this scenario, he would only need to 
cover about 520 Person-Months, only 24% more than the 420 
Person-Months in the planned budget.

The green line in fig. 2 shows expended workforce assuming a 
constant contingency staffing. The manager could hire about 
2.8  persons  to  handle  contingencies  and  keep  them  on  the 
project from start to finish.  As fig. 2 shows, during the first 
couple of months there are no contingencies.  After six months, 
the contingency load has increased enough so that the project 
needs more staff to resolve the unexpected work.  As a result, 
the  contingency  workforce  starts  out  costing  more  than  the 
straight line budget.  By design, this budget would just cover 
the contingency expenditure by the end of the project, but the 
timing of the budget is off.  There is more need for contingency 
staff in the middle part of the project.  Usually this additional 
attention  also  increases  the  work  the  project  staff  must  do, 
leading to the “regenerative schedule disaster” described in [5]. 

4. INCORPORATING EXTERNALLY 
CREATED CONTINGENCIES

Why External Sources Create Contingencies
There  is  no  doubt  that  projects  experience  changes  in  their 
environment that force them to work on activities that were not 
included in the original, planned work.  In the early 1990's, the 
NASA Earth Observing System Data and Information System 
(EOSDIS) project planning assumed that users would need a 
Motif graphical user interface to access and use NASA's Earth 
science data.  When the Internet era began in 1994, the project 
needed to work on the early version of what is now the familiar 
Web environment.  The development of Web 2.0, the adoption 
of  Geographic  Information  Systems  with  Web  Mapping 
Services, and the development of high-powered Semantic Web 
software  provide  additional  examples  of  changes  that  arise 
external to a software development project. Project funders and 
other stakeholders may also force a project to do unplanned 
work.   For  example,  government  projects  may  have  new 
security or reporting requirements forced upon them by agency 
managers.

Further evidence of the force of such changes appears in the 
maintenance costs  of  software  projects.   In  [1,  p.  71],  such 
changes  are  characterized  by  the  Annual  Change  Traffic 
(ACT), which is “the fraction of the software product's source 
instructions which undergo change during a typical year, either 
through addition or modification.”  Typical values for ACT lie 
between 8% to 15%.  This kind of change also underlies the 
customer cost of software product maintenance.  [6] notes that 
these costs are currently running between 17% and 25% for 
such large scale products as enterprise databases or business 
management software.

Formulating a Model for Externally Created Contingencies
If  we  were  dealing  with  a  continuous  stream  of  project 
contingencies,  we  could  modify  the  original  equation  for 
discovering contingencies to incorporate a source term

∆N  =  - r SB N(t) ∆t  +  Source(t) ∆t

The question then is “what is an appropriate model for the time 
dependence of externally caused contingencies?”

If there were a known change in the external environment that 

arose  when the project was planning,  that  would already be 
taken into account in the project planning process. A simple 
hypothesis  is  that  the  number  of  contingencies  arising  from 
external causes  should be 0 when the project starts.  At the end 
of  the  project's  development  phase,  the  rate  at  which 
contingencies appear  should settle in to a relatively constant 
value. To be consistent with the ACT model, the number of 
changes would be proportional to the total development effort. 
The simplest assumption that satisfies these two end conditions 
is a source term that is proportional to the project's expended 
effort.  For the simple “level of effort” model we have used in 
sections 2 and 3, this means that the contingency source term 
expands linearly  with  time.  When a  project  starts,  it  has  no 
product  to  change.  The  further  along  it  goes,  the  more 
produced items it has that might need to be changed.

Quantitatively,

Source(t)  =  rExt SB t

This quantification means that the number of externally forced 
contingencies will increase quadratically with time.  In other 
words, we expect

NE(t)  =  ½ rExt SB t2

where  NE(t) is the number of externally forced contingencies 
disclosed by time t.   rExt is the external contingency generation 
rate.

While it would be more realistic to create a statistical model for 
the  appearance of  these  externally-driven  contingencies,  this 
paper uses a “deterministic” one.  At the end of planned project 
development,  when  t =  TDEVB,  the  number  of  these 
contingencies will be NEnd  = NE(TDEVB).  It follows that

tN  =  TDEVB √ (N / NEnd)

where  tN  is the time at which the  N ' th external contingency 
appears.   This  function  “end  loads”  the  appearance  of 
externally-driven  contingencies.  Thus,  if  we  want  the 
appearance time for the contingency that is  halfway through 
the  full  number,  that  will  be  at  about  70%  of  the  planned 
development duration, rather than 50%.

We also assume that resolving externally created contingencies 
requires  as  much  workforce  as  it  does  to  resolve  the 
contingencies created by the initial uncertainty in planning.

A Numerical Example with External Contingencies
Figure  3 shows the planned and contingency staffing levels. 
The figure  includes both the  contingencies  generated by the 
initial uncertainties (as the green line) and those generated by 
the externally generated ones (as the red one).  In this example, 
the work on the final contingency starts before the end of the 
planned  development  work,  but  continues  for  about  two 
months  after  the  nominal  completion.  The  original 
contingencies  that  arise  from the  initial  uncertainties  in  the 
project's  plan  appear  in  green.  The  contingencies  that  arise 
from the externally-generated contingencies  appear  in  green. 
The original, planned staffing appears in blue.

Because the  externally-generated contingencies  appear  based 
on the amount of completed work, the square root dependence 
“bunches” the work required to resolve them nearer to the end 
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of the project.

Figure 3.  Staffing Levels and Corresponding Gantt Chart 
for Planned Activities and External Contingencies.  

Limiting Form of Contingency Staffing
The  algorithm for  computing the  contingency  staffing effort 
works  even  if  we  let  the  number  of  internal  or  external 
contingencies become very large.  Figure 4 shows the planned 
work,  the  additional  staff  required  to  handle  500  internal 
contingencies,  400 external  contingencies,  and the  combined 
contingency work.

Figure 4.   Limiting Form of  Staffing Levels  for  Planned 
Work and Contingencies.

When the number of contingencies becomes large, we can keep 
the total contingency effort finite by decreasing the workforce 
required to close each contingency even the time to close each 
contingency remains constant.  The contingencies generated by 
the initial project uncertainty increase as  1 - exp(-  r SB t). This 
factor produces the rise on the left side of the green curve in 
fig. 4. Thus,  the initial discovery of contingencies accumulates 
work to be done. As the contingencies are worked off, the work 
in progress declines exponentially with a time constant τC .  In 
other words, the internal contingencies act like a queue that is 
filled by discovery of problems and emptied by the work that 

resolves them.
On the other hand, externally generated contingencies appear 
as problems are discovered in the planned work that is already 
completed.  By assumption, the completed work is the result of 
a “level of effort” expenditure, which leads to a linear increase 
in the backlog of unresolved problems.  As these problems are 
resolved,  they are  removed from the external  stack.   Where 
work  starts  before  the  end  of  the  planned  work,  but  is  not 
finished until  after  it  was supposed to be done,  the  backlog 
declines  linearly  with  time  after  the  planned  end  of 
development.   In normal  circumstances,  this work would be 
regarded as development “maintenance.”

5. IMPLICATIONS AND 
RECOMMENDATIONS

Summary of the Hypothesis of This Work
In this paper, we assume that uncertainty is always present in 
the budget and schedule of a project.  There are two different 
sources of uncertainty:
1) Uncertainty from the initial  assumptions in the project's 

schedule and budget
2) Uncertainty from changes in the project's environment as 

the work progresses
For  both  sources,  the  project  must  find  staff  to  resolve  the 
discovered contingencies.  In reality, the required workforce, 
duration, and staffing are stochastic; they are not predictable in 
advance.  In this paper, we simplify the stochastic process of 
discovering  contingencies  by  a  deterministic  algorithm  that 
bunches the  discoveries  of  contingencies  arising from initial 
uncertainty  near  the  beginning  of  the  project,  while  those 
arising from changes in the project's environment are bunched 
near the end.

Contingency Management Strategies
In the case of initial uncertainty, one reduction strategy is to try 
to remove development novelty.  This strategy is at the root of 
such approaches as the Capability Maturity Model [7].  This 
kind  of  approach  systematizes  software  development 
processes,  emphasizing  development  of  a  reliable  statistical 
basis  for  making  estimations  of  the  cost  and  schedule  of 
projects.   In  project  accounting,  we  would  include  Earned 
Value Analysis (EVA) [8] as a tool designed to reduce project 
uncertainty arising from initial assumptions.  EVA emphasizes 
identifying concrete measures of progress, as well as careful 
monitoring of the project's progress against these measures.

Where  uncertainty  cannot  be  avoided,  experts  recommend 
moving  to  risk  management.  In  simple  forms,  this  strategy 
attempts to categorize risks, i.e. sources of uncertainty, based 
on the kind of threat to the schedule or budget, the probability 
of the threat occurring, and the probable cost of an increase in 
budget  or  delay  [9].  In  more complex  forms,  this  approach 
leads to probabilistic risk analysis.

From the perspective of the model presented in this paper, a 
key strategic decision for the project manager lies in matching 
the development lifecycle to the ratio between the total budget 
uncertainty and the budget for planned work.  If that ratio is 
low, the project has only a small amount of uncertainty – and it 
might adopt a waterfall lifecycle.  This approach is likely to 
work best on projects that contain almost no novelty – and for 
which the project organization already has a substantial track 
record.  This approach emphasizes having the project spend a 
significant amount of effort on ensuring clear requirements that 
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will not be changed after they are developed. 

Projects  with  a  moderate  amount  of  novelty  (and  those 
undertaken  within  a  stable  IT  environment)  might  be  better 
served by a spiral development approach [10].  This strategy 
seeks to reduce uncertainty bystarting with the portions of the 
development that have the largest risk.  

When the initial project analysis suggests that the contingency 
effort  is  likely  to  be  large  in  comparison  with  the  planned 
workforce,  the  distinction  between  plannable  work  and 
contingency work probably doesn't make sense.  In this case, 
the project manager should probably adopt an agile lifecycle 
[11].  In essence, this lifecycle emphasizes selection of project 
activities to gain experience with the real problem.  From the 
perspective of this paper, agile methods concentrate on “buying 
down” the uncertainty as rapidly as possible.

In this paper's model, there are two parameters that a manager 
may influence: the diligence of initial uncertainty search effort 
(as reflected in the mean time between discoveries, τD) and the 
speed with which contingencies are resolved (as reflected in 
τC).   If the manager succeeds in reducing  τD,  then the initial 
uncertainties will be discovered more rapidly.  If the manager 
succeeds in reducing  τC , then the pool of active contingency 
work  will  be  reduced.   Rapid  contingency  resolution  would 
appear to be the more effective strategy, although that needs to 
be confirmed with more extensive data than we have been able 
to find.

We also note that  this paper  does not  allow the manager  to 
choose  between  reducing  the  planned  work  in  return  for 
dealing with newly discovered contingencies.  In practice, such 
choices are an intrinsic part of the manager's job.  Our work in 
this paper also does not deal with the overhead arising from 
project control mechanisms. It should be clear that if a project's 
funders introduce more stringent controls than those originally 
planned,  then  the  overhead  of  that  new  work  acts  as  a 
contingency created by a change in the environment.  The cost 
of this increased effort will have to be paid for – whether by 
slowing the planned work, increasing the contingency reserve, 
reducing the scope of the project, or by incurring the cost of 
project termination.

Implications of the “Lumpy” Nature of Contingency Work
It should be clear that project managers must deal with the fact 
that  only  very  large  organizations  can  suddenly  change 
personnel assignments. If  an organization is large enough to 
have individuals with pecialized skills, it may also be able to 
assign these  individuals to solve problems without a “hiring 
and  firing”  penalty  or  significant  training.   Smaller 
organizations  may  not  be  able  to  afford  to  keep  stables  of 
specialists.

From a strategic point of view, a project manager can adopt 
two approaches.  
1) First, he or she could budget for a pool of resources that 

are available on demand to deal with contingencies.  The 
manager must now accept the fact that some portion of the 
contingency  pool  will  not  be  working  on  contingency 
resolution all the time. This pool introduces an intrinsic 

overhead into the project budget.  
2) Second,  he  or  she  might  hire  and  fire  workers  as 

contingencies come and go.  The intent is to reduce the 
idle-time overhead, although this strategy may suffer as 
well  as   the  costs  of  hiring  and  firing  plus  unplanned 
training.

Regardless  of  the  strategy  the  project  manager  adopts,  it  is 
clear  that  the  stochastic  nature  of  contingency  resolution 
creates  an  “uncertainty  premium”  that  does  not  exist  for 
projects  that  have no uncertainty.   In  a  very real  sense,  the 
project must pay to reduce uncertainty.

On Monitoring and Managing Contingency Responses
This paper suggests that project managers could improve their 
understanding of their project's progress by keeping a history 
of contingencies and their resolution tasks:
1) The project manager should categorize each contingency 

as arising either from initial uncertainty or from changes 
in the project's environment.

2) The project manager should keep a record of the workers 
assigned  to  resolve  the  contingency  and  the  time  they 
devote to this resolution.  This record might be a list of 
action items that are reviewed at staff meetings.

3) On a routine basis,  the project manager should create a 
statistical summary of planned and contingency work to 
track  whether  the  project  is  following  the  initial 
assumptions  regarding  contingencies  or  is  deviating 
significantly from them.
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