
MELEC: Meta-Level Evolutionary Composer

Andres Calvo
Department of Computer Science, The University of Dayton

Dayton, OH 45469, U.S.A.

and

Jennifer Seitzer
Department of Computer Science, The University of Dayton

Dayton, OH 45469, U.S.A.

Abstract

Genetic algorithms (GA’s) are global search mechanisms
that have been applied to many disciplines including music
composition. Computer system MELEC composes music
using evolutionary computation on two levels: the object
and the meta. At the object-level, MELEC employs GAs to
compose melodic motifs and iteratively refine them through
evolving generations. At the meta-level, MELEC forms the
overall musical structure by concatenating the generated
motifs in an order that depends on the evolutionary process.
In other words, the structure of the music is determined
by a geneological traversal of the algorithm’s execution
sequence. In this implementation, we introduce a new
data structure that tracks the execution of the GA, the
Genetic Algorithm Traversal Tree, and uses its traversal
to define the musical structure. Moreover, we employ a
Fibonacci-based fitness function to shape the melodic
evolution.

Keywords: Artificial Intelligence, GATT, Genetic Al-
gorithms, MELEC, Music Composition

1 INTRODUCTION

Genetic algorithms (GA’s) emulate the mechanics of natural
selection to solve a specific problem by iteratively produc-
ing new generations of candidate solutions [3]. The general
algorithm of a GA system is a cycle of generate-measure-
select activities. First, a GA generates a certain quantity of
candidate solutions called chromosomes, the set of which
are known as a generation. Then, the merit of each chromo-
some is assessed by a fitness function. Last, the GA selects
candidate solutions based on their fitness values to form the
next generation. This process is repeated as many times as
necessary to achieve a near-optimal solution.

In this paper we present MELEC, a music composition
system that uses evolutionary computation on two levels:

the object and the meta. At the object level, we employ
genetic algorithms to compose melodic motifs and itera-
tively refine them through evolving generations. At the
meta level, we form the overall musical structure by con-
catenating each generation’s output. That is, the structure
of the music is formed by a geneological traversal of the
algorithm’s execution sequence. We introduce a new data
structure, The Genetic Algorithm Traversal Tree (GATT),
that tracks the execution of the GA and uses its traversal
to define the musical structure. Moreover, we employ a
Fibonacci fitness evaluation to shape the melodic evolution.

2 BACKGROUND
Generating musical phrases with GA’s has been studied and
implemented in several ways. Most commonly, a GA is
used to produce several musical phrases that must somehow
be concatenated or combined to produce a final composition.
The tree in Figure 1 depicts many musical composition
systems that have been created using GA’s. This taxonomy,
established in [3], is based on the type of fitness functions
employed. We provide a representative survey of these
systems.

• Deterministic evaluation methods utilize mathematical
functions to calculate a musical event’s fitness. For in-
stance, The autonomous evolutionary music composer
(AEMC) generates several motifs by using a GA with
a fitness function which favors successive notes that
have a difference of less than 7 half steps [4]. AEMC
then combines the resulting motifs and their transposi-
tions using a fitness function which considers the ratios
of notes witin the melody. This fitness function favors
an arbitrarily chosen note ratio of 60% tonal centers,
35% color notes, and 5% chromatic notes. These ratio
values were arbitrarily selected and serve as a starting
point to begin further research [4].

Another deterministic compositional system is pre-

1

45SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 1 - YEAR 2011ISSN: 1690-4524

Figure 1: Tree depicting a compositional compositional GA’s classification based on fitness function

sented in [5] and uses a GA with a formal grammar
evaluation function. A formal grammar is ‘a collection
of (...) descriptive or prescriptive rules for analyzing or
generating sequences of symbols’ and gives the fitness
function abilities ranging from checking for tonality to
encouraging certain fundamentals of music theory [5].
A last deterministic system example is described in [7],
where Oliwa considers a variety of parameters to gen-
erate music for several instruments commonly used
in rock music: guitar, drums, and piano/organ. Oliwa
uses separate fitness functions to customize each in-
strument’s role within the music. For instance, Oliwa
uses a fitness function that favors drum patterns that
are repeated up to four times and are suceeded by a
filling pattern.

• Formalistic rules encode stylistic features from previ-
ous music as the set of rules which form the fitness
function. For example, Gartland uses a GA with a
fitness function that favors music which contains com-
mon features with a predefined piece of sample music.

• Neural fitness functions use neural networks to favor
musical events which are similar to desired events in-
corporated in its training data. For instance, Sheikhol-
haram and Teshnehlab use a GA to compose music
and define its fitness function by using a recurrent neu-
ral network to determine desired characteristics from
existing music [8].

• User-determined evaluation methods require a user
to quantify a musical event’s fitness function. The
user’s subjective input stipulates the desired musical
style. For instance, the CFE framework allows a user
to hear and rate melodies to determine the value of
their fitness functions [2]. The user’s input is fed
back into the GA in order to continue the musical
evolution. Another user-determined system is GenJam,
which uses a GA to produce jazz music improvisation
on a single instrument [5]. GenJam allows a user to
quantify a musical phrase’s fitness and reduces the
number of phrases a user must evaluate by removing
measures that are characterized as unmusical through
the use of a neural network.

The system presented in this paper is called the meta-
level evolutionary composer (MELEC) and utilizes a GA

with a deterministic Fibonacci-based fitness function to
generate motifs. Unlike other deterministic compositional
GA’s, MELECs fitness function favors motifs in which
the number of half-steps between adjacent notes falls in
the Fibonacci sequence. Furthermore, MELEC utilizes
the meta-level information behind the GAs evolution to
concatenate motifs from different generations to form a
melody. In contrast to traditional GA’s, MELEC stores
all formed generations and incorporates the evolutionary
processs meta-level information into the formation of the
final melodys structure.

3 THE MELEC SYSTEM
The system generates motifs through the use of a GA and
combines them to form a melody. The meta-level informa-
tion from the evolutionary process determines the order in
which the motifs are combined. MELEC assumes that every
motif consists of 16 eighth notes. Notes are represented
through the Musical Instruments Digital Interface (MIDI)
protocol since it conveniently characterizes musical param-
eters such as pitch and duration. Furthermore, most media
players support MIDI for easy playback. A MIDI pitch is
represented by a number between 0 and 127 where middle
C is represented by 60 and where two consecutive numbers
are separated by a half-step. MELEC generates melodies
in which all notes are constrained to the two-octave range
of pitches between 48 and 71. MELEC divides the compo-
sitional process into two phases. The first phase generates
several melodic motifs and stores each one as a node in
the GATT data structure. The second phase traverses the
GATT and concatenates each nodes motif to form an overall
melody.

3.1 Phase 1: Generating motifs with a GA

The GA contains parameters that define the number of mo-
tifs N in each generation, as well as the total number of
generations G. The initial generation consists of N ran-
domly generated motifs. Algorithm 1 shows the steps by
which MELEC generates motifs.

The Genetic Algorithm Traversal Tree (GATT) is a data
structure which stores the motifs from every generation
and keeps track of every child node’s parents. The GATT

46 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 1 - YEAR 2011 ISSN: 1690-4524

Input: N, G
Output: GATT containing N*G motifs

1 for G generations do
2 generate N chromosomes (melodies) and attach

to the GATT in a breadth-first manner;
3 run each of the chromosomes through the

fitness function;
4 select parents for the next generation using

proportionate fitness selection;
5 end
Algorithm 1: Building the GATT Structure while
evolving the melodic stream.

therefore stores the generated motifs’ geneological history.
In typical GA systems, only the final generation of can-
didate solutions is considered relevant while the rest are
discarded. In contrast, MELEC stores and uses motifs from
all generations. Thus, the GATT differentiates MELEC
from other composition systems by allowing its output to
be a representation of the evolutionary process as opposed
to an optimized result.

MELEC generates new (motif) chromosomes in pairs.
To create two chromosomes in the next generation, MELEC
selects two motifs from the current generation and performs
the standard GA operations of single-point cross-over and
mutation. A fitness function then evaluates each motif to
assess its merit and to determine its probability ofgetting se-
lected as a parent for the next generation. The chromosome
is then encapsulated in a vertex and inserted into the GATT
as a child node of its parents. Although the generation size
of MELEC is a user-specified parameter, in our tests, we
chose generation sizes of 6 and 16.

3.2 Fitness function
MELEC’s fitness function evaluates the intervalic distance
between adjacent notes. If the interval (measured in half
steps) falls in the Fibonacci sequence, the fitness value is
increased by 2000, if not, it is ignored.

The Fibonacci sequence is defined by the recurrence
relation:

F0 = 0

F1 = 1

FN = FN−1 + FN−2

We chose to incorporate the Fibonacci Sequence as an
integral part of our fitness function because of its frequent
appearance in music [6]. The sequence appears as a melodic
underlying primitive as well as structural foundation in
many pieces of music. MELEC’s fitness function is outlined
in Algorithm 2.

In the next subsection, we illustrate the first phase of
composition with an in-depth example of MELEC’s imple-
mentation of the create-evaluate-select GA cycle.

Input: Motif M
Output: M’s fitness value

1 Fitness = 0;
2 for i = 0; i < 14;+ + i do
3 if |M [i+ 1]−M [i]| ∈ F then
4 Fitness = Fitness + 2000;
5 end
6 end
Algorithm 2: The Fibonacci fitness function

3.3 Example motif generation
Consider the following first generation of randomly gen-
erated motifs as shown in Figure 2. For this example, we
assume that a generation consists of three motifs.

(a) Motif 1 of Generation 1.

(b) Motif 2 of Generation 1.

(c) Motif 3 of Generation 1

Figure 2: The resulting first generation.

A Fibonacci interval is defined as an interval that belongs
to the Fibonacci sequence when measured in half-steps.
To calculate the fitness function for the first measure (i.e.,
Figure 2a), we count the number of Fibonacci intervals it
contains and multiply by 2000. The first measure in the
generation has eight Fibonacci intervals: between notes 3
and 4, notes 4 and 5, notes 6 and 7, notes 7 and 8, notes 9
and 10, notes 10 and 11, notes 11 and 12, and notes 13 and
14. Therefore, the first measure has a fitness value of 16000.
The fitness values for motifs 2, and 3 are 12000 and 14000,
respectively.

The GA then selects two parent nodes through fitness
proportionate selection. For this example, we assume that
the first (Figure 2a) and the third (Figure 2b) motif were
selected.

Two children are formed by recombining and mutating
the selected parents. Single-point crossover about a random
point (the seventh note in this example) obtains the motifs
shown in Figure 3.

We’ve arbitrarily chosen the probability of each note in a

47SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 1 - YEAR 2011ISSN: 1690-4524

(a) First motif resulting from crossover.

(b) Second motif resulting from crossover.

Figure 3: Recombining the selected parent motifs.

motif mutating to be 10%. after the crossover has occurred.
Mutating a note replaces its pitch by a random value within
the valid range. The resulting motifs, shown in Figure 4,
are the first two candidate solutions for the next generation.

(a) First motif.

(b) Second motif.

Figure 4: The second generation.

The child motifs in generation two are then related to
their parents in the GATT as illustrated by Figure 5.

Figure 5: Resulting GATT structure for the presented ex-
ample.

3.4 Phase 2: Traversing the GATT

The GA generates a large number of motifs which collec-
tively lack the musical arrangement required to form the
melody line of a complete piece of music. The meta-level
information established as the composition’s GATT is used
to remedy this problem. Concatenating the motifs based on
a GATT traversal results in a composition which reflects
the evolution of the random motifs into more ‘listenable
patterns’. The use of contiguous generations in the melody
stream provide a sense of similarity and repetition for the
listener. The similarities between a parent and its children
allow the composition to retain a characteristic sound which
stimulates a sense of familiarity in listeners. The meta-level
information permits the graph traversal to take the listener
through the process of the evolution and refinement of the
music, thereby providing both content and structure for the
music.

Section 3.3 illustrates how MELEC generates motifs and
attaches them to the GATT. At the end of phase 1, MELEC
has completed generating motifs and creating the GATT.
Phase 2 creates the musical composition by concatenat-
ing motifs in an order dictated by various traversals of the
GATT. Schemes such as as pre-, in-, and post-order GATT
traversals can be used to form the melody line of the overall
piece. Algorithm 3 describes this traversal process.

Input: The GATT
Output: A melody

1 Select the number of motifs which will form the
melody;

2 Using one of the traversal schemes, visit the nodes
in the GATT and concatenated into a melodic
stream until the desired motif length is reached;

Algorithm 3: Traversing the GATT structure to
form a melody.

4 SOFTWARE ARCHITECTURE

The MELEC system was programmed in C# following
a modular object-oriented approach. MELEC’s software
architecture is depicted in Figure 6. The Note class abstracts
a musical note and stores its pitch, duration, and velocity.
The Measure class abstracts motifs formed by instantiating
16 Note classes. The Measure class provides methods for
playing the entire motif and writing the measure to a MIDI
file. The MidiFile class contains the methods necessary to
specify a MIDI file’s tempo and time signature, and ensure
that it is formatted according to the MIDI standard.

The GA was encapsulated in the GeneticMidi class,
which calls methods from the Fitness, Crossover, and Mu-
tation classes. The GeneticMidi class generates the final
performance and stores it as a MIDI file. The MIDI file can
then be played with Windows Media Player.

48 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 1 - YEAR 2011 ISSN: 1690-4524

Figure 6: Diagram depicting MELEC’s class structure

5 MUSICAL QUALITY
Generating musical phrases that are pleasant to listen to
can be an arduous task. Work in psychology and music
[1] indicates that several factors come into play. Is the
next melody predictable from the first? Is the sequence
of notes pleasant? Does the structure of the music defy
predictability? Is there a pattern to rhythmic modulations?
Several scientist-musicians have investigated the brain as it
listens to ‘good’ music. In [6], Levitin presents the idea that
the human brain is hard-wired to understand music, possibly
as a result of evolution, since humans listened to music
(drumming) before speech. He claims that we are invoking
very ancient and primitive parts of the brain while listening
to music. Moreover, by rewarding melodies that exhibit
traces and intervals in the Fibonacci sequence, we appeal
to an aesthetic proclivity that seems to be ubiquitous in the
Arts: Fibonacci numbers are omnipresent in architecture,
literature, and music.

Forming a melody through a GATT traversal imposes a
musical structure by placing similar motifs together. The
generated melodies impose a sense of familiarity in lis-
teners because the musical arrangment reflects the GA’s
execution.The GATT enables us to provide melodies with
structure while allowing the GA to provide creativity at the
motif level.

6 CONCLUSIONS
MELEC approaches musical composition by capturing the
process of a GA’s evolution as opposed to its final gen-
eration of optimized candidate solutions. By using the
Fibonacci fitness fuction, MELEC generates musical motifs
that evolve from an initial generation of random notes to
a final generation of notes where Fibonacci intervals are

predominant. Through the use of the GATT, we are able to
arrange the motifs in an order that reflects their evolution.
Traversing the GATT generates melodies formed by motifs
that increase and decrease their number of Fibonacci inter-
vals in an ordered manner. The traversal imposes a sense
of familiarity and predictability in the generated melodies
which are perceived as musical.

7 FUTURE WORK

As we continue working with music composition with
MELEC, we expect to experiment with different traver-
sals of the GATT. We intend to try pre-order, post-order,
breadth-first, depth-first, and a best-first A* approach to mu-
sical structure definition. We also anticipate experimenting
with generation choice in forming the GATT. For exam-
ple, how does the music sound when only prime numbered
generations are included in the piece. We also expect to
augment the implementation of MELEC to provide musical
compositions with fully scored harmonies and instrumenta-
tion specifications.

References

[1] BALL, P. The Music Instinct: How Music Works and
Why We Can’t do Without it. Random House, London,
2010.

[2] CHEN, Y. Interactive music composition with the cfe
framework. SIGEVOlution 2, 1 (2007), 9–16.

[3] JRVELINEN, H. Algorithmic musical composition,
2000.

49SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 1 - YEAR 2011ISSN: 1690-4524

[4] KHALIFA, Y., AND AL-MOURAD, M. B. Autonomous
evolutionary music composer. In GECCO ’06: Pro-
ceedings of the 8th annual conference on Genetic and
evolutionary computation (New York, NY, USA, 2006),
ACM, pp. 1873–1874.

[5] KHALIFA, Y. M. A., KHAN, B. K., BEGOVIC, J.,
WISDOM, A., AND WHEELER, A. M. Evolution-
ary music composer integrating formal grammar. In
GECCO ’07: Proceedings of the 2007 GECCO confer-
ence companion on Genetic and evolutionary computa-
tion (2007), pp. 2519–2526.

[6] LEVITIN, D. This Is Your Brain on Music: The Science
of a Human Obsession. Dutton, Boston, 2007.

[7] OLIWA, T. M. Genetic algorithms and the abc mu-
sic notation language for rock music composition. In
GECCO ’08: Proceedings of the 10th annual confer-
ence on Genetic and evolutionary computation (2008),
pp. 1603–1610.

[8] SHEIKHOLHARAM, P., AND TESHNEHLAB, M. Music
composition using combination of genetic algorithms
and recurrent neural networks. In HIS ’08: Proceedings
of the 2008 8th International Conference on Hybrid In-
telligent Systems (Washington, DC, USA, 2008), IEEE
Computer Society, pp. 350–355.

50 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 1 - YEAR 2011 ISSN: 1690-4524

	NK045RX

