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ABSTRACT 
 

This paper presents a novel application of nonlinear control 
theory to heartbeat models. Existing heartbeat models are 
investigated and modified by incorporating the control input as 
a pacemaker to provide the control channel. A nonlinear 
feedback linearization technique is applied to force the output of 
the systems to generate artificial electrocardiogram (ECG) 
signal using discrete data as the reference inputs. The synthetic 
ECG may serve as a flexible signal source to assess the 
effectiveness of a diagnostic ECG signal-processing device. 
 
Keywords: Heartbeat model, Electrocardiogram, Nonlinear 
control, Feedback linearization, Phase portrait analysis. 
 
 

1. INTRODUCTION 
 
The human heart is a complex and yet robust system. One of the 
most important signals that relates to human heart operation is 
the ECG signal. It is a time-varying signal representing the 
electrical potential generated by the electrical activity in the 
cardiac tissue. A single cycle of the ECG reflects the 
contraction and relaxation of the heart, leading to the heart’s 
pumping action. The ECG can be measured by recording the 
potential between two electrodes placed on the surface of the 
skin at some pre-determined points. Characteristic information 
extracted from the ECG signal can be used to indicate the state 
of cardiac health as well as a potential heart problem [1]. 
 
Much effort has been invested into the development of 
mathematical models that describe the operation of the human 
heart. One of the crucial developments is by Zeeman [2], where 
he developed a mathematical model that captured three 
important qualities of cardiac characteristics: (i) stable 
equilibrium; (ii) threshold for triggering an action potential; and 
(iii) return to equilibrium. The resulting models are a 2nd-order 
nonlinear differential equation representing the heartbeat 
system, and a 3rd-order nonlinear differential equation that can 
be applied to the nerve impulse. Other interesting and related 
models were presented in [3 - 6]. 
 
Research that focuses on generating the ECG signal is also very 
active. In [7], the 3-dimensional nonlinear model from [2] was 
modified by adding a control variable in order to control the 
heart rate variability and to produce the ECG using a neural 

network. In [8], the authors modified the 2nd-order nonlinear 
heartbeat system in [2] by adding an on-off type control variable 
representing the pacemaker for fulfilling the mechanism of 
contraction-relaxation of the heart. In [9], a dynamical model 
that generates a synthetic ECG signal by specifying the mean 
and the standard deviation of the heart rate and the power 
spectrum of the RR tachogram was proposed. The model does 
not address how the heart works but rather utilizes the statistical 
information of the ECG as a priori data to generate a signal. 
 
This paper presents a novel application of nonlinear control 
system theory – feedback linearization – to the heartbeat 
systems originated from [2]. The systems were modified by 
adding a pacemaker to provide the control channel. One of the 
objectives is to create a synthetic ECG signal based on existing 
ECG data, where the data is used as the reference signal for a 
tracking control problem. The synthetic ECG signal can be used 
as a flexible signal source to assess the effectiveness of a 
diagnostic ECG signal-processing device [7]. The paper is 
organized as follows. In Section 2, the model dynamics and its 
characteristics are investigated. Phase portrait and stability 
analysis are conducted. The nonlinear feedback linearization 
control theory is developed in Section 3, and applied to the 
heartbeat systems to create a synthetic ECG in Section 4. Lastly, 
the conclusion is presented in Section 5. 
 
 

2. HEARTBEAT MATHEMATICAL MODELS 
 
There are two states of the heart in a cycle of the heartbeat: 
diastole which is the relaxed state, and systole which is the 
contracted state. The cycle starts when the heart is in the 
diastolic state. The pacemaker which is located at the top of the 
right atrium – one of the upper chambers of the heart – triggers 
an electrochemical wave that spreads slowly over the atrium. 
This electrochemical wave causes the muscle fibers to contract 
and push the blood into the ventricles – the lower chambers of 
the heart. The same electrochemical wave then spreads rapidly 
over the ventricles causing the whole ventricle to contract into 
the systolic state, and pumping the blood into the lung and the 
arteries. Immediately following the systolic state, the muscle 
fibers quickly relax and return the heart to the diastolic state to 
complete one cycle of the heartbeat [8]. 
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Second-Order Nonlinear Heartbeat Model 
A mathematical model that describes the behavior of the 
heartbeat was developed in [2], where it was suggested that 
such a model should contain three basic features: 
(i) a stable equilibrium state representing diastole; 
(ii) the threshold for triggering the electrochemical wave 

causing the heart to go into systole; and 
(iii) the return of the heart into the diastolic state. 
 
The resulting model is given by 
 
 ( )3

1 11 2 , 0,T Tx xx xε = − − >+  (1) 

   2 1 dx x x= − , (2) 
 
where 1( )x t  represents the length of the muscle fiber, 2 ( )x t  is a 
variable related to electrochemical activity; the parameter ε  is 
a small positive constant associated with the fast eigenvalue of 
the system, dx  is a scalar quantity representing a typical length 
of muscle fiber in the diastolic state, and T  represents tension in 
the muscle fiber. Fig. 1 illustrates the phase portrait of Eqs. (1) 
and (2) with the initial conditions along the left and right 
diagonals across the 1 2x x−  plane. The parameter values used to 
produce the phase portrait are 0.2,ε =  1,T =  and 0dx = . 
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Figure 1. Phase portrait of the 2nd-order heartbeat system. 

 
 
In Fig. 1, the cubic line (dashed curve) represents the steady-
state of Eq. (1). When 0dx =  in Eq. (2), the equilibrium point 
of the system is at the origin. All trajectories initiated above the 
cubic line, that is, 1

3
1 2 0x Tx x− + > , direct downward toward 

the origin along the cubic line. Likewise, all trajectories started 
below the cubic line, i.e., 1

3
1 2 0x Tx x− + < , direct upward 

toward the origin along the cubic line. All trajectories end up at 
the limit cycle around the equilibrium point. It is obvious that 
the equilibrium point is unstable as the vector field inside the 
limit cycle directs away from the point. This conclusion can be 
confirmed by analyzing the stability of the equilibrium point 
using the well-known Lyapunov indirect stability theorem [10]. 
For this purpose, let A be the constant Jacobian matrix of Eqs. 
(1) and (2) at the origin, it follows that 

 ( )2
1

1 1 13( )

1 0 1 0

Tx T
ε ε ε ε

⎡ ⎤ ⎡ ⎤− − − −∂ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥∂
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦x=0

x=0

f xA
x

, (3) 

 

where ( )3
1 1 2 1

1( )
T

dx Tx x x x
ε
−⎡ ⎤= − + −⎢ ⎥⎣ ⎦

f x .  

 
The eigenvalues of A are given by 1 3.62λ =  and 2 1.38λ =  for 

1T =  and 0.2ε = . Therefore, the origin is unstable since both 
eigenvalues are real and positive. 
 
In Fig. 1, since the vector field around the segment AB and CD 
always points toward the cubic line, and away from the cubic 
line in the BC portion, any point along the cubic line in the AB 
and CD segments is considered to be stable whereas points 
along the BC section are unstable. The points B and C are 
important as they specify the threshold – the second basic 
feature (ii) of the heartbeat model mentioned earlier. These 
points can be obtained easily by considering the eigenvalue of 
the matrix A in Eq. (3) 
 

 ( ) ( )2 22
 1,2 1 1

1 3 3 4
2

x T x T ελ
ε
⎛ ⎞= − − ± −⎜
⎝

− ⎟
⎠

. (4) 

 
The condition that the real part of the eigenvalues is negative is 

2
13 0x T− > . Therefore, the system is stable if 1 / 3x T≥  

which refers to the section AB, and 1 / 3x T≤ −   which 
describes the section CD. In other words, the thresholds for 
switching between the diastolic and the systolic states at point B 
is 1 / 3x T= , and 1 / 3x T= −  at point C. 

 
The stable equilibrium point that represents the state of diastole 
can be determined by changing the value of dx  in Eq. (2) such 
that it satisfies the stability condition above. Fig. 2 displays the 
phase portrait of the system with dx =  1.024. The equilibrium 
point is stable at (1.024, -0.0497), and qualifies to be the 
diastolic equilibrium state, that is, satisfies the first feature (i): a 
stable equilibrium. 

 

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Electrochemical activity, x2(t)

H
ea

rt 
m

us
cl

e 
fib

er
 le

ng
th

, x 1(t)

 

 

↓

Diastole
Equilibrium

x1
3 - x1 + x2 = 0

 
Figure 2. Phase portrait of the 2nd-order heartbeat system during 

diastole. 
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In Fig. 2, all of the trajectories, regardless of their initial 
conditions, end up at the diastolic equilibrium point. Since the 
equilibrium point is stable, the system will stay at this point 
forever unless there is an external excitation that forces the 
system to a new equilibrium point. In [8], the authors suggest 
modifying the system by adding a control input u(t) as 
 
 ( )3

1 11 2 , 0,T Tx xx xε = − − >+  (5) 

   ( ) ( )2 1 ,d d sx x x x ux+= − −  (6) 
 
where the additional parameter sx  represents a typical fiber 
length when the heart is in the systolic state, and u(t) represents 
cardiac pacemaker control mechanism that directs the heart into 
the diastolic and the systolic states. By proposing the cardiac 
pacemaker control signal u(t) in the form of 0 and 1 (on-off 
control), the equilibrium point of the system can be changed 
between the diastolic and the systolic states. 
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Figure 3. Phase portrait of the 2nd-order heartbeat system during systole. 
 
 
Fig. 3 displays the phase portrait of Eqs. (5) and (6) with 

( ) 1,u t =  and 1.3804sx = − . The stable equilibrium point is 
located at  (-1.3804, 1.25). Therefore, the on-off control scheme 
is successful in modeling the state changes from diastole to 
systole depending on the control signal. 

 
Third-Order Nonlinear Heartbeat Model 
The 3rd-order nonlinear heartbeat model is given by [2] 
 
 ( )3

1 1 1 2 3 ,x x xx xε = − + +  (7) 

   2 1 22 ,2x x x= − −  (8) 
   3 2 1 ,x x u= − − +  (9) 
 
where 1( )x t  represents the length of the muscle fiber, 2 ( )x t  
represents tension in the muscle fiber, 3( )x t  is related to 
electrochemical activity, ε  is a small positive constant, and u(t) 
represents cardiac pacemaker control signal which directs the 
heart into the diastolic and the systolic states.  
 
The dynamics of the 3rd-order system is similar to that of the 
2nd-order system except that the dynamics of the muscle fiber 
tension is taken into consideration. In the 2nd-order system, this 
quantity is considered as a constant parameter. 

In this paper, we will attempt to generate artificial or synthetic 
ECG signals by using the nonlinear feedback control strategy – 
input-output feedback linearization technique and methodology, 
to control the 2nd-order heartbeat model given by Eqs. (5) - (6), 
and the 3rd-order heartbeat model given by Eqs. (7) - (9). 

 
 
3. NONLINEAR FEEDBACK LINEARIZATION 

 
Consider a control-affine single-input single-output (SISO) 
nonlinear system described by 
 

 ( ) ( )u= +x f x g x ,      , : n nD ⊂ →f g , (10)  
 ( )y h= x ,                  : nh D ⊂ → , (11)  
 

where n∈x  is the state vector, ,u y∈  are the control and 
output signals, respectively; f, g are smooth vector fields in a 
domain D and h a smooth function in D, where D is an open set 
in n . 
 
Given the nonlinear system of Eq. (10) and the measurement of   
Eq. (11), our goal is to find a diffeomorphism or nonlinear 
transformation of the form ( )=z T x  with ( ) =T 0 0  that 
transforms the nonlinear system in the x-coordinates to a linear 
system in the z-coordinates. One of the most important reasons 
for finding the transformation is that the powerful linear system 
theory and methodologies can be applied once a nonlinear 
system has been linearized.  
 
Differentiating the output y(t) with respect to t yields 
 
 ( ) ( )y L h L h u= + gf x x ,    (12) 
 

where ( )L hf x  and ( )L hg x  denote the Lie derivatives of ( )h x  

with respect to ( )f x  and ( )g x , respectively. If ( ) 0L h =g x , 

then ( )y t  is independent of u(t). Continuing successive 
differentiation ρ  times until u(t) appears explicitly, we obtain 
 
 ( ) 1

( ) ( )

( ) ( )  
b D

y L h L L h uρ ρ ρ −= + gf f

x x

x x .     (13) 

 
The smallest integer ρ  for which u(t) appears is referred to as 
the relative degree. The nonlinear system in Eqs. (10) - (11) is 
said to have a well-defined relative degree ρ  in a region 

0D D⊂  if  
 

   ( ) 0   ,  0 1;kL L h k k ρ= ∀ ≤ < −g f x  and 1 ( ) 0,L L hρ − ≠g f x  (14) 
 

for all 0D∈x . Note that nρ ≤ . From Eq. (13), define 
 
 ( ) ( ) ( ) v y b D uρ = +x x , (15) 
  
where v(t) is a one-dimensional transformed input created by 
the feedback linearization process; b(x) is called the 
nonlinearity cancellation factor, and D(x) the decoupling matrix 
(a scalar in the present SISO system). Equation (15) yields the 
linearizing feedback control law [10 – 12]: 

 
 ( )1( ) ( )u D b v−= − +x x , (16) 
 

provided ( )D x  is nonsingular (invertible).  
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To develop an overall representation of the system for the case 
with relative degree nρ < , the diffeomorphism ( )=z T x  can 
be expressed as 
 

 
1

1

( )

    ( )
( )

( )

( )n

h

L hρ

ρ

φ

φ

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤

= = ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

f

x

ξ x
z T x η x

x

, (17) 

 

where ρ∈ξ , n ρ−∈η ; and ( ),  1,...,i i nφ ρ= −x  are chosen 
such that ( )T x  is a diffeomorphism on a domain 0D D⊂ , that 
is, the Jacobian matrix associated with ( )T x  is nonsingular, and  
 

  ( ) ( ) 0,     1 ,i
i i nL φφ ρ∂

−= ≤= ≤
∂g x g x
x

 (18) 

 

for all 0D∈x . 
 
The diffeomorphism in Eq. (17) leads to the normal form 
 
 vξ ξ+ξ = A ξ B , (19) 

 , )oη = f (ξ η ,  (20) 
 1( )y h ξ= =x .  (21) 
 
Setting ( ) 0t =ξ  in Eq. (20) for all 0t ≥  yields 

 
 0, )oη = f ( η ,  (22) 
 
which represents the zero dynamics for Eqs. (10) and (11). The 
stability of the zero dynamics in Eq. (22) is an important issue 
in designing a controller. The system whose zero dynamics are 
asymptotically stable in the domain of interest is called a 
minimum phase system. The local asymptotic stability of the 
zero dynamics is, clearly, the necessary and sufficient 
conditions for the local asymptotic stability of the feedback 
linearized system in Eqs. (19) - (21) [12, 13]. In the case that the 
zero dynamics are unstable in the region of interest, the system 
is known as a non-minimum phase system. Generally, a system 
of this type cannot be used for state-feedback control system 
design because some of the state variables will diverge to 
infinity. In this case, the stabilization of the unstable zero 
dynamics need to be considered, if possible. 
 
Asymptotic Output Tracking 
Let the control objective be steering the output y(t) to a desired 
reference ( )ry t . This gives rise to an output tracking control 
problem. Define the output tracking error as 
 

 re y y− . (23) 
 

The main objective is to force ( ) 0e t →  such that (( )) ry t y t→  
as t →∞ . It follows that 
 

 
( ) ( ) ( ) ( )

,

.r r

ry

e y y v

ye

yρ ρ ρ ρ

⎫=
⎪
⎬
⎪= − = − ⎭

−
 (24) 

A suitable tracking control law for the transformed input v(t) is 
given by 
 
   )(

rv y ρ
ξ= − +K e , (25) 

 

where ( 1) T
e e e e ρ −⎡ ⎤= ⎣ ⎦e , and the constant feedback 

gain 1 ρ
ξ

×∈K  is determined such that cl ξ ξ ξ= −A A B K  is 

Hurwitz, that is, all eigenvalues of clA  lie in the open left-haft 
complex plane. Finally, the overall closed-loop nonlinear 
system in the x-coordinates is given by 
 
 [ ]1( ) ( ) ( ) ( )D b v−= + − +x f x g x x x , (26) 
 
where v(t) is given by Eq. (25). 
 
 

4. APPLICATION TO HEARTBEAT MODELS 
 
Controlling the Second-Order Nonlinear Heartbeat System 
Consider the 2nd-order nonlinear heartbeat model given by Eqs. 
(5) - (6). First, we consider choosing the output measurement to 
be 2( ) ( )y t x t= . This selection is reasonable in the physical 
viewpoint since the electrochemical activity can be measured as 
the potential across the membrane of the muscle fiber [2]. 
Differentiating ( )y t with respect to t yields 

 
 ( )1 d d sy x x x x u= − + − , (27) 
 
where u(t) appears which shows that the relative degree is 

1ρ = . Thus, the heartbeat system has both external and internal 
dynamics. The diffeomorphism is given by 
 

 2

1

   
( )  
( )  

( )  
xh
x

ξ
φ η
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x
z xT x . (28) 

 
The Jacobian matrix associated with ( )T x  is given by 
 

 
0 1( )
1 0
⎡ ⎤∂

= ⎢ ⎥∂ ⎣ ⎦

T x
x

, (29) 

 
which is nonsingular for all 2∈x ; therefore ( )T x  is a global 
diffeomorphism for Eqs. (5) and (6). Equation (28) shows that 
the original system is already in a normal form when the output 
is chosen as 2( ) ( )y t x t= . However, one of the benefits of 
deriving (28) is that it reveals 1( )x t  as the internal dynamics 
and 2 ( )x t as the external dynamics of the system. The resulting 
system in normal form is obtained as 
 
 ( ) ,d d sx x x uξ η − + −=  (30) 

 ( )31 ,Tη η η ξ
ε

− −= +  (31) 

 .y ξ=  (32) 
 

Next, consider the stability of the internal dynamics in Eq. (31). 
The zero dynamics satisfy 
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 ( )3
0 0
( 1, )f T

ξ
ξ η η η

ε
η

=
−== − . (33) 

 
There are three equilibrium points for Eq. (33): 0η = , T± . 
We applied the Lyapunov indirect stability theorem [10] to 
analyze the stability of the equilibrium points. First, at the origin 
 

 ( )2
1

0

1 3 TT
η

λ η
ε ε=

= − − = . (34) 

 
Since T and ε  are positive constants, it follows that 1 0λ > ; 
hence the equilibrium at the origin is unstable. Consider the 
other equilibrium points 
 

  ( )2
2,3

1 23
T

T T

η

λ η
ε ε=±

= − − = − . (35) 

 
It is clear that 2 0λ <  and 3 0λ < for all 0T >  and 0ε > , thus 

the equilibrium points at Tη = ±  are asymptotically stable. In 
other words, regardless of the unstable equilibrium at the origin, 
the steady-state of the zero dynamics will end up at either the 
point Tη =  or Tη = −  depending on the initial condition. 
As a result, the zero dynamics are asymptotically stable. We 
conclude that the system is a minimum-phase system.  
 
To proceed to the output tracking control design task, define the 
tracking error as re y y− , where ( )ry t  is the reference input. 
It follows that 

 
 ( )1 rrd d sx x x xe y v yu= − + − − − . (36) 
 
where v(t) is the transformed input. Let the tracking control law 
for the transformed input v(t) be given by 
 

 ( )2r rrv Ke y K yx y= − + = − +− , (37) 
 
where 100K =  is obtained by placing the real pole at -100 of 
the complex plane. We obtain the resulting linearizing feedback 
control law 
 

 ( ) ( )12
1

r dr
d s

K yu x xx y
x x

⎡− + − −− ⎦= ⎤⎣−
. (38) 

 
Finally, substituting Eq. (38) into Eqs. (5) - (6), and using Eq. 
(26) yields the overall feedback control system in the x-
coordinates 

 

 ( )3
1 1 1 2 , 0,x x Tx x Tε = − − + >  (39) 

   ( )2 2 rrx K yx y= − +− , (40) 
    2.y x=  (41) 
 
Fig. 4 to 6 show the results of tracking real discrete ECG data 
obtained from the PhysioNet database [14]. In Fig. 4, the initial 
condition of 1(0)x  is 0.01 and the steady state converges to 

1T =  as expected. The output 2 ( )x t  tracks the discrete ECG 
data very nicely as shown in Fig. 5. The control signal or 
pacemaker in Eq. (38) which is used to generate and to track the 
ECG signal is shown in Fig. 6.   
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Figure 4. Simulation result of 1( )x t of the 2nd-order heartbeat system. 
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Figure 5. Simulation result of 2 ( )x t of the 2nd-order heartbeat system. 
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Figure 6. Simulation result of ( )u t of the 2nd-order heartbeat system. 

 

Controlling the Third-Order Nonlinear Heartbeat System 
Consider the 3rd-order heartbeat system given by Eqs. (7) - (9), 
and choosing the output as 3( ) ( )y t x t= . Differentiating the 
output with respect to t yields 

 
 2 1y x u= − − + , (42) 
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which shows that the relative degree is 1ρ = . The 
diffeomorphism is obtained as 
 

 
3

1 1

22

1

2

   
( )
( )

( )  
( )

h

x

x
x

ξ
φ η
φ η

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x
z T x x

x
. (43) 

 
It can be shown easily that the Jacobian matrix associated with 

( )T x  is nonsingular for all 3∈x ; thus ( )T x  is a global 
diffeomorphism for Eqs. (7) - (9). The resulting system in 
normal form is described by 
 

  2 1 ,uξ η −= +−  (44) 

 ( )3
1 1 1 2

1 ,η η ηη ξ
ε

= − + +  (45) 

 2 1 22 2 ,η η η= − −  (46) 
  .y ξ=  (47) 
 
The zero dynamics are given by 
 

 ( )3
1 1 1 2

2 1 22

1 ,

2 .

η

η

η ηη
ε
η η

⎫= − + ⎪
⎬
⎪= − − ⎭

 (48) 

 
There are two equilibrium points associated with Eq. (48): the 
origin and ( ) ( )1 2, 1, 1η η = − . Applying the Lyapunov indirect 
stability theorem [10] to analyze the stability of each 
equilibrium point yields 
 

     ( )2
1 2 1

1

(1, 1)2 2 2 2

1 1 2 13η η η
ε ε ε ε

−

⎡ ⎤ ⎡ ⎤− − − −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥

− − − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+
A . (49) 

 
It follows that ( )Re 0,  1,2i iλ < ∀ = ; where λ  represents the 

eigenvalue. Therefore, the matrix 1A  is Hurwitz and the 
equilibrium point at (1,-1) is asymptotically stable.  
 
Next, consider the equilibrium point at the origin 
 

     ( )2
1 2 1

2

(0,0)

1 1 0 0
2 22 2

3η η η
ε ε

⎡ ⎤− − ⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ − −⎣ ⎦− −⎢ ⎥⎣

+

⎦

A . (50) 

 
The eigenvalues of 2A  are 0 and -2. Since one of the 
eigenvalue is zero, we cannot draw the stability conclusion by 
the Lyapunov indirect theorem. However, using the reduced 
system theorem [10], it can be shown that the zero dynamics in 
Eq. (48) are asymptotically stable. This conclusion is illustrated 
by the phase portrait of the zero dynamics itself as shown in 
Fig. 7. All trajectories with initial conditions 1 0η ≥  converge to 
the origin. With the stability analysis results, we conclude that 
the normal form system in Eqs. (44) - (47) is a minimum-phase 
system. 

 
To proceed on the output tracking control design task, define 
the tracking error as re y y−  where ( )ry t  is the reference 
input. It follows that 
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Figure 7. Phase portrait of zero dynamics. 

 
 
 

 3 2 1r r re x y u yx y v− = − − −= + − , (51) 
 
where v(t) is the transformed input. Let the tracking control law 
for the transformed input v(t) be given by 
 
 ( )3r r rv Ke y K x y y= − + = − − + , (52) 
 
where 100K =  is obtained by placing the real pole at -100. The 
resulting linearizing feedback control law is obtained as 
 
 ( )3 2 1.r ru K x y y x= − − + + +  (53) 
 
The simulation results for the final feedback control system in 
the x-coordinates are shown in Fig. 8-11. The state trajectories 
of the muscle fiber length 1( )x t  and the muscle fiber tension 

2 ( )x t  are displayed in Fig. 8 and 9, respectively. Fig. 10 
demonstrates the result of the output 3( ) ( )y t x t=  that tracks the 
ECG data obtained from the William Beaumont Hospitals. Fig. 
11 illustrates the pacemaker of Eq. (53) used to generate the 
results of the 3rd-order heartbeat control system. 
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Figure 8. Simulation result of 1( )x t of the 3rd-order heartbeat system. 
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Figure 9. Simulation result of 2 ( )x t of the 3rd-order heartbeat system. 
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Figure 9. Simulation result of 3( )x t of the 3rd-order heartbeat system. 
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Figure 11. Simulation result of ( )u t of the 3rd-order heartbeat system. 

 
 

5. CONCLUSION 
 
We presented the application of nonlinear control system theory 
based on input-output feedback linearization to biological 
heartbeat systems. Several cardiac related mathematical models 
have been investigated and two models developed by Zeeman 
were chosen in this study. The models were modified by adding 

a control input into the system, thereby creating two interesting 
control-affine SISO nonlinear systems. We showed that the 
resulting heartbeat models are minimum-phase systems suitable 
for the design of output tracking control laws; these output 
tracking control laws were used to generate synthetic ECG 
signals. The simulation results show that the systems can be 
forced to track the ECG data obtained from the William 
Beaumont Hospitals and the PhysioNet database [14] 
satisfactorily. Other biomedical applications of Zeeman's 
models using the nonlinear control technique developed in this 
paper are under consideration. 
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