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ABSTRACT 

Gasification is a well-known technology that allows for a 
combustible gas to be obtained from a carbonaceous fuel by a 
partial oxidation process (POX). The resulting gas (synthesis 
gas or syngas) can be used either as a fuel or as a feedstock for 
chemical production. Recently, gasification has also received a 
great deal of attention concerning power production possibilities 
through IGCC process (Integrated Gasification Combined 
Cycle), which is currently the most environmentally friendly 
and efficient method for the production of electricity. 
Gasification allows for low grade fuels, or dirty fuels, to be used 
in an environmental acceptable way. Amongst these fuels are 
wastes from the petrochemical and other industries, which vary 
in composition from shipment to shipment, and from lot to lot. 
If operating conditions are kept constant this could result in lose 
of efficiency. This paper presents an application of Genetic 
Algorithms to optimize the operating parameters of a gasifier 
processing a given fuel, so that the system achieves maximum 
efficiency for each particular fuel composition. A Pareto 
multiobjective optimization method, combined with a Genetic 
Algorithm, is applied to the simultaneous maximization of two 
different objective functions: Cold Gas Efficiency and 
Hydrogen Contents of the syngas. Results show that the 
optimization method developed is fast and simple enough to be 
used for on-line adjustment of the gasification operating 
parameters for each fuel composition and aim of gasification, 
thus improving overall performance of the industrial process. 
 
Keywords: Gasification, Pareto Genetic Algorithms, 
Multicriteria Optimization 

1. INTRODUCTION 

This paper presents an application of Pareto Genetic 
Algorithms to optimize the operating parameters of a gasifier 
processing a given fuel. 

Gasification is a well-known technology that allows for a 
combustible gas to be obtained from a carbonaceous fuel by a 
partial oxidation process (POX). The resulting gas (synthesis 
gas or syngas) can be used either as a fuel or as a feedstock for 
chemical production. The major constituents of syngas are CO, 
H2, CO2 and H2O. From these, only H2 and CO are combustible 
and only H2 is interesting as chemical feedstock. 

Formally defined, gasification is the conversion of solid and 
liquid materials into a gas through reaction with oxygen, steam 
and carbon dioxide, or a mixture of these gases at a temperature 
exceeding 700 ºC. In industrial applications, a solid or liquid 
fuel is conveyed to a vessel (the gasifier) and mixed with 
oxygen and steam. The CO2 and H2O resulting from the 
combustion of a fraction of the fuel will also be an agent of 
gasification of the remaining fuel. There will also be some N2 
present in the gasifier because the oxygen stream is not 100% 
pure and also, possibly, because N2 can be used as a conveying 
gas for the transportation of the fuel. Some heat can be 
recovered from the gasification chamber (gasification is an 
overall exothermic reaction, which will generate heat) to 
produce steam. 

Traditionally, gasification has been used as a means of 
producing heating gas for domestic and industrial needs (town 
gas) and as a source of hydrogen for the heavy chemical 
industry. Recently, gasification has received a great deal of 
attention concerning power production possibilities, since it is 
the core of the IGCC process (Integrated Gasification Combined 
Cycle). IGCC is the most environmentally friendly method for 
the production of electricity since it allows for all the pollutants 
to be removed in a pre-combustion stage, at the gas cleanup [1]. 
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In the present paper, a simplified gasification model was 

used. It is an equilibrium model that assumes a homogenous 
temperature throughout the reaction zone and neglects chemical 
kinetics effects. Therefore, all the reactions are assumed to 
attain their equilibrium concentrations at the reaction 
temperature. This model is based on mass balances for each 
atomic species (C, H, O, N and S), an energy balance in order to 
compute the gasification’s final temperature, and on the 
equilibrium between the species using reactions (1) to (5). 

It also allows for any fuel to be used in a combined cycle, thus 
greatly increasing electricity production efficiency. 

One of the major advantages of gasification is that it allows 
for less noble fuels, or dirty fuels, to be used for the above 
mentioned purposes. Amongst these are wastes from the 
petrochemical and other industries. In the latter case, each 
shipment of wastes supplied to be gasified usually presents a 
different composition. This is quite understandable since the 
waste supplier industry will deal with different feedstocks of 
prime matter or will produce different products in a given time 
span. So, naturally, the waste produced will present a different 
composition from case to case. 222 HCOOHCO ++ →  (1) 

In the present work we determine the optimum operational 
parameters for the gasification of a given fuel, as characterized 
by its elementary composition and Lower Heating Value 
(LHV). The parameters to be optimized are the oxygen to fuel 
ratio, steam to fuel ratio, operating pressure and heat recovered. 

OHCOSCOSH 222 ++ →

→

→

→

 (2) 

OHCHHCO 2423 ++  (3) Different goals are to be reached if the gasification process 
is intended to produce a hydrogen rich gas for chemical 
feedstock or a combustible gas for power/heat production. In the 
former case, the syngas Hydrogen Percentage will be 
maximized, while in the latter the gasification Cold Gas 
Efficiency is the parameter to be maximized (cold gas 
efficiency is the quotient between the heating capacity of the 
syngas and the original fuel heating capacity; the heating 
capacity is the product of the lower heating value and the mass 
flow). In order to investigate the interrelation between these two 
goals, maximization procedures were carried out for these two 
different objective functions and a Pareto optimization scheme 
was set up to investigate the existence of eventual trade offs 
between them. 

322 23 NHNH +  (4) 

4323 CHNHHHCN ++  (5) 

Notice that in the present model no chemical kinetic effect is 
considered and no heat transfer is modeled. But, although this 
model is much simpler than the full numerical approach 
presented, e.g., in [2], [3] or [4], it retains the major effects of 
the influence of the parameters that are being manipulated in the 
objective functions under analysis, being therefore perfectly 
suited for the purpose at hand. Also, being much simpler, this 
model is much more manageable and better suited for linking 
with Genetic Algorithms. 

The optimization method developed could be used for on-
line adjustment of the gasification operating parameters for 
different fuel compositions and gas final purpose, thus 
improving the overall performance of the industrial process. 

3. SEARCH AND OPTIMIZATION PROCESS 2. GASIFICATION MODELLING 

The search and optimization method used is a Genetic 
Algorithm [5,6]. The use of a GA was suitable for the problem 
under study due to its non-linearity, and to the possible 
existence of local minima, where a conventional optimization 
procedure might become trapped. Genetic Algorithms have 
been used to determine optimal operational parameters for 
several industrial processes and other practical applications, 
such as building operation parameters [7,8,9]. As mentioned 
above, the problem under study can be optimized according to 
two objective functions: hydrogen percentage, and cold gas 
efficiency. The method used was to first optimize individually 
for each of the objective functions, using a standard GA, and 
then use a multicriteria Pareto GA to perform the optimization 
for the two objectives simultaneously, and look for the trade-
offs among them.  

Gasification is a complex chemical process that involves a 
multitude of phenomena, like devolatization, pyrolysis, 
heterogeneous gas-solid reactions and homogeneous gas-gas 
reactions – see [2], [3] or [4]. Each phenomenon has its own 
rate and a full CFD, heat transfer and chemical kinetic 
simulation is required to perform a detailed simulation of the 
process. See Benyon’s work [4] for an excellent dissertation on 
the subject. A brief description of the process follows. 

The first part of the gasification process is the pyrolysis of 
the fuel. When solid fuels are concerned, the term 
devolatilization is usually utilized. During pyrolysis, some 
gaseous constituents are released from the fuel. These include 
CO, CO2, H2, H2O, H2S, COS, HCN, NH3, CH4, C2H2 and some 
other heavier hydrocarbons in lesser quantities. 

After pyrolysis a char residue containing fixed carbon and 
ash will remain and will undergo further oxidation. The 
volatiles released will react in the gaseous phase. 

The most common multicriteria optimization methods are 
plain aggregating approaches, which provide a single figure of 
merit that aims at characterizing the quality of a solution, by 
combining the several criteria using weighting factors. The 
problem with this approach is twofold: the final result is heavily 
dependent on the weights attributed to each factor, and it 
provides little insight into performance according to each 
criteria.  

The main char heterogeneous reactions are reactions 
between the char’s fixed carbon and O2, H2, H2O and CO2 
producing CO, H2, CO2 and CH4. Reactions with O2 and H2 are 
exothermic and those with H2O and CO2 are endothermic. See 
[4] for details. 

In the gaseous phase there will be combustion reactions that 
will tend to convert all of the hydrocarbons into CO2 and H2O, 
and some equilibrium reactions, noticeably the water-gas shift 
and the methanation reactions, to be described below – Eqs. (1) 
and (3). 

Pareto optimization is based on the work of Italian 
economist Vilfredo Pareto (1848-1923). It moves away from the 
search for single, optimal solutions, and avoids artificial 
aggregations using weighting factors. Instead, it supplies 
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decision-makers with information on the best trade-offs 
achievable within a specific problem formulation and 
constraints. This information is provided under the form of 
Pareto fronts. The decision maker will then chose where in the 
front will the final solution be located, that is, what 
compromises will be made in the final choice. This seems a 
particularly suitable approach to handle multicriteria problems 
since there is usually no single solution that performs best in 
terms of all the criteria, meaning there is no ‘best’ or ‘optimal’ 
solution. Optimal performance according to one objective often 
implies a lower performance in one or more of the other 
objective dimensions, creating the need for a compromise to be 
reached. Nevertheless, there are solutions that represent better 
trade-offs than others, and it is this valuable information that 
Pareto fronts can provide. 

Pareto optimality makes use of the concept of dominated 
and non-dominated solutions: x dominates y if x is better than y 
for at least one objective function, and is at least as good on all 
the others [10]. A solution is Pareto optimal if it is not 
dominated by any other solution. A Pareto front is formed only 
by Pareto solutions. Another way of understanding Pareto 
optimality is that it describes a solution for multiple objectives 
where no part of the solution can be improved without making 
some other part worse. Hence the Pareto-optimal set is a family 
of points that is optimal in the sense that no improvement can 
be achieved in any objective without degradation in others. 

 
4. PARETO GENETIC ALGORITHMS 

 
Genetic Algorithms are methods for approximate 

optimization which have been successfully applied to several 
problems difficult to solve exactly by conventional optimization 
methods. Although GAs are most commonly used in single-
criterion problems, their implicit parallelism makes them 
particularly suitable for multicriteria problems, since a GA 
searches a population of solutions in parallel instead of 
departing from a single point, as most optimization procedures 
do. As Pareto fronts are populations of optimal solutions, GAs 
prove to be very adequate procedures to locate them.  

The Pareto algorithm used in this study uses a ranking 
method that assigns to each individual a ‘dummy fitness’ based 
on his Pareto optimality in the overall population [11, 12]. A 
rank (or dummy fitness) of 1 is assigned to non-dominated 
individuals in the population and these individuals are 
subsequently removed from the current population. A new set of 
non-dominated individuals is identified in the modified 
population (i.e. the original population without the rank 1 
individuals), assigned a rank of 2, and then removed from the 
population. This process continues until all individuals in the 
population have been ranked. The usual genetic operators of 
reproduction and crossover are then applied using this ‘dummy 
fitness’ ranking, instead of the usual fitness values used in 
standard GAs.  

Pareto-based ranking only does not guarantee that the Pareto 
set will be uniformly sampled.  Finite populations tend to 
converge to only some of these solutions, due to stochastic 
errors in the selection process. Additionally, recombination and 
mutation may be less likely to produce individuals in certain 
regions of the trade-off surface (for example, the extremes) than 
in others, causing the population to cover only a small part of 
the surface. Using niching induction techniques to solve 
multiobjective GA improves over the previous method by 
promoting the sampling of the entire Pareto set. The 
maintenance of diversity is important since diversity along the 
non-dominated frontier helps in the search for new and 
improved trade-offs, thus extending the frontier. The clustering 

of solutions around small areas of the Pareto front, leaving 
much of the remaining front unexplored, is a phenomenon 
known as genetic drift, which has been observed in natural as 
well as in artificial evolution. Niching techniques avoid it by 
degrading the fitness of a given individual if many other similar 
individuals share the same niche. This exerts a spreading 
pressure over the population, making the final population 
become more diverse, composed of individuals that have 
different characteristics and thus exploiting different niches, 
which spread along the entire Pareto front. This final method 
incorporating the niche induction technique is known as a 
Nondominated Sorting Genetic Algorithm (NSGA) [13]. There 
are different possible implementations of niching described in 
the literature. The one used in this study is known as sharing, 
and works in the following way: solutions ranked 1 are given an 
initial fitness value F1, and then their niche counts n are 
calculated, that is, the number of individuals that are within a 
predetermined distance of that solution (meaning they are 
similar individuals to the one being evaluated). The shared 
fitness of each individual is then calculated using the expression 
Fshared,= F1/n. Solutions ranked 2 are then assigned an initial 
fitness value F2, less than the lowest shared objective function 
value of those ranked 1, and then undergo sharing themselves. 
This process is repeated until all members of the population are 
assigned a fitness value, and then the usual genetic operators are 
used to create the next population. This niche induction 
technique is more complex to implement computationally, but it 
effectively finds optimal solutions along all the Pareto front, 
maintaining high diversity in the population and providing the 
most options to the decision-maker. 

5. RESULTS AND DISCUSSION 

Four different fuels for gasification were studied: Vacuum 
Residue, Visbreaker Tar, Asphalt and Petcoke. All of these are 
refinery residues and a common fuel for gasification. Their 
typical elementary analysis and Lower Heating Value can be 
seen in Table 1. 
 

 Vac. 
Res. 

Vis. 
Tar Asph. Pet 

coke 
C (% wt, dry) 84.9 86.1 85.0 88.6
H (% wt, dry) 10.4 10.4 9.1 2.8
N (% wt, dry) 0.5 0.6 0.7 1.1
S (% wt, dry) 4.2 2.4 5.1 7.3
O (% wt, dry) 0.0 0.5 0.0 0.0
Ash (% wt, dry) 0.0 0.0 0.1 0.2
LHV (kJ/kg, 
dry) 

39,00
7 

40,93
8 

38,26
3

33,68
0

Table 1 – Properties of the fuels under study. 
 

For both the standard Genetic Algorithm and the Pareto GA, 
a total population of 30 individuals per generation was used, 
evolution being carried out through 100 generations in the 
standard GA and through 200 generations for the Pareto case. 
This means that for each standard GA run, 3000 possible 
solutions are evaluated, while 6000 solutions are evaluated for 
each Pareto GA run. The probability of crossover used through 
all the experiments was 0.5, and the probability of mutation was 
0.04.  

Lower and upper bounds are shown in table 2. In this table 
TFHC means Total Fuel Heat Capacity and is equal to the 
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product of the fuel load and the fuel LHV. In every case 
considered, the fuel load was equal to 1 kg/s, which means that 
the upper bound of the heat recovered changed from case to 
case, according to the fuel’s LHV. 

If, conversely, we maximize the Hydrogen Percentage of 
the gas, a value of 44% is reached for this parameter. The 
operating conditions are (20 bar, 1.02, 0.29, 0 kW) and the CGE 
is 87%. 

 Finally, a multi-objective Pareto analysis was performed. It 
was curious to find out that the Pareto optimization scheme 
managed to locate better solutions, even if only marginally, than 
the standard GA did. A plot of the syngas’ Hydrogen wet 
percentage against the CGE (for Visbreaker Tar) is presented in 
Fig.3. It can be seen clearly that three Pareto solutions were 
found (highlighted in Fig.3), even though presenting very 
similar fitness values. 

 Press. 
(bar) 

Oxigen
/ Fuel 

Steam/ 
Fuel 

Heat Recov. 
(kW) 

Lower bound 20 0 0 0 

Upper bound 57.5 2 2 20%  TFHC 

Table 2 – Lower and upper bounds for each variable. 
  

Results converge independently of the starting population, 
which is random. This as can be seen in Fig.1, which depicts the 
Cold Gas Efficiency (CGE) – for Visbreaker Tar - of the 
population’s best individual solution plotted against the number 
of elapsed generations, for three different initial populations. 
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As can be seen from Fig.1, the best cold gas efficiency the 
standard GA was able to attain when gasifying Visbraker Tar 
was 89%. This value of CGE is reached when the pressure, 
Oxygen/Fuel ratio, Steam/Fuel ratio and Heat Recovered have 
the following values (37.5 bar, 0.86, 0.44, 0 kW). For this 
solution, the gas hydrogen percentage (% vol, wet) in the gas is 
40%. 
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Fig.3 – Pareto plot for Visbreaker Tar. Pareto solutions depicted 
in Table 3. 

 
A Pareto plot for Petcoke is shown in Fig.4. Notice that in 

spite of the differences in fuel composition (see Table1), the 
CGE is quite similar to the one concerning Visbreaker Tar – 
Fig.3, changing only the level of syngas’ Hydrogen contents, 
which is considerably lower in the case of Petcoke.  
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Fig.1 – Evolution of the best individual Cold Gas Efficiency for 
three random initial populations – Standard GA, Visbreaker Tar. 
 

In order to test whether 100 generations are sufficient to 
attain accurate results, a run of 500 generations was performed. 
Results can be seen in Fig.2 and confirm that after 100 
generations improvements in the solution are marginal. 
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Fig.4 – Pareto plot for Petcoke. Pareto solutions depicted in 
Table 3. 

 
Table 3 summarizes the Pareto solutions obtained for all 

fuels under consideration. The first four columns depict the 
solution’s operating conditions, the next two columns present 
the values of the objective functions to be maximized, i.e., the 
Cold Gas Efficiency and the syngas’ Hydrogen volume 
percentage (wet). The last column present the final gasification 
temperature attained when gasifying the considered fuel under 
those operating conditions. 

Observing Table 3, some features become evident and allow 
for some generalization. The first feature that calls the attention 
is that all Pareto solutions are attained at zero heat recovery. 
This clearly indicates that heat removal from the gasifier does 
not contribute for the increase of either parameter. This is not a 

Fig.2 – Evolution of the best individual Cold Gas Efficiency 
throughout 500 generations – Standard GA, Visbreaker Tar. 
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surprise, since the recovered heat is not accounted for in neither 
of the considered objective functions. However, an objective 
function that accounts for this recovered heat, like thermal 
efficiency, should be avoided since, if it was used, an excessive 
weight would be placed in the heat recovered, shaping the 
gasification process as a heat generating process, which is not 
the intention. 
 

 

Pr. 
(bar) 

Ox./ 
Fuel 

Stm/ 
Fuel 

Heat 
Rec. 
(kW) 

CGE H2 
(wet)

T 
(ºC) 

20 1.08 0.25 0 88% 42% 1132Vac. 
20 1.02 0.25 0 89% 41% 1047
20 0.98 0.32 0 88% 44% 1147
20 0.92 0.32 0 89% 43% 1072Vis. 

20 0.83 0.48 0 90% 40% 1186
20 0.98 0.25 0 89% 40% 1087Asph 
20 0.89 0.44 0 90% 37% 946
20 0.86 0.7 0 88% 31% 987
20 0.86 0.51 0 89% 30% 1038Pet 

20 0.79 0.6 0 90% 28% 936

Table 3 – Pareto solutions found for the different fuels. 
 

Another very clear feature of all the Pareto solutions is that 
the operating pressure always presents its minimum allowable 
value. The reason for this can be understand by inspection of 
equilibrium equations (3) to (5). These equations present 4 
moles in the left hand side (where H2 is present) and 2 moles in 
the right hand side. Therefore an increase in pressure would 
shift the equilibrium composition towards the right hand side, 
thus decreasing the hydrogen contents of the syngas. 

One other feature worth noticing is that the two objective 
functions (CGE and H2) are closely correlated and allow little 
room for trade offs at the Pareto border. Therefore all the Pareto 
solutions are very close to each other and a global optimum 
zone seams to be possible to define. However, a more 
significant variation occurs in what concerns the operating 
parameters that generate these optimum solutions. 

Lastly, all the optimum solutions appear to happen at 
moderate temperatures. 

6. CONCLUSIONS 

The optimization method developed is fast, simple and 
robust enough to be used for on-line adjustment of the 
gasification operating parameters for each fuel composition and 
aim of gasification, thus improving the overall performance of 
the industrial process. 

Genetic Algorithms proved to be a useful, efficient and 
appropriate toll for the purpose at hand, being able to locate 
high quality solutions in very little time. The Pareto GA showed 
slightly better results than the standard GA. Pareto solutions did 
not differ significantly among them, despite the niching 
strategies used, suggesting that an optimal area is clearly 
definable for this problem. 

Heat recovered should be marginal in order to attain optimal 
conditions. 

Results show that the two objective functions under study, 
i.e., Cold Gas efficiency and Hydrogen Contents, are closely 

correlated and allow little room for trade offs at the Pareto 
border. 

A high Cold Gas Efficiency (88%-90%) seems to be always 
attainable no matter what the fuel is, provided the operating 
parameters are the right ones. Conversely, the maximum 
Hydrogen content of the syngas is much more dependent on the 
fuel composition. 

Results show that optimum solutions (particularly in what 
concerns hydrogen contents) appear at the minimum allowable 
operating pressure. However, pressure is a fundamental 
parameter in the operational aspects of the gasification. Namely, 
in industrial applications, pressure is determinant for gas 
production capacity of the gasifier, i.e., by increasing operating 
pressure it is possible to produce more syngas in an equal 
volume gasifying vessel. Therefore, a trade off will exist 
between increased hydrogen contents of the syngas and 
increased syngas production. The existence of a point of 
maximum efficiency should be investigated in future work. 

Besides this last point, future work would ideally include 
the derivation of explicit formulae, i.e., correlations, to 
determine the optimum Oxygen to Fuel and Steam to Fuel ratios 
given the fuel’s composition and LHV. 
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