

Denial of Service Attack Techniques: Analysis, Implementation and Comparison

Khaled M. Elleithy
Computer Science Department, University of Bridgeport

Bridgeport, CT 06604, USA

Drazen Blagovic, Wang Cheng, and Paul Sideleau
Computer Science Department, Sacred Heart University

Fairfield, CT 06825, USA

ABSTARCT

A denial of service attack (DOS) is any type of attack on a
networking structure to disable a server from servicing its
clients. Attacks range from sending millions of requests to a
server in an attempt to slow it down, flooding a server with
large packets of invalid data, to sending requests with an invalid
or spoofed IP address. In this paper we show the
implementation and analysis of three main types of attack: Ping
of Death, TCP SYN Flood, and Distributed DOS. The Ping of
Death attack will be simulated against a Microsoft Windows 95
computer. The TCP SYN Flood attack will be simulated
against a Microsoft Windows 2000 IIS FTP Server. Distributed
DOS will be demonstrated by simulating a distribution zombie
program that will carry the Ping of Death attack. This paper
will demonstrate the potential damage from DOS attacks and
analyze the ramifications of the damage.

Keywords: Communications systems security, Denial of
Service Attack (DOS), TCP SYN Flood, Ping of Death.

I. INTRODUCTION
Denial of services attacks (DOS) is a constant danger to web
sites. DOS has received increased attention as it can lead to a
severe lost of revenue if a site is taken offline for a substantial
amount of time; see [1-4]. There are many types of denial of
service attacks but two of the most common are Ping of Death
and TCP SYN Flood. We have chosen to implement these two
techniques and add Distributed DOS (DDOS) as well.

In a Ping of Death attack, a host sends hundreds of ping

requests (ICMP Echo Requests) with a large or illegal packet
size to another host in attempt to knock it offline or to keep it so
busy responding with ICMP Echo replies that it cannot service
its clients.

A TCP SYN Flood attack takes advantage of the standard

TCP three-way handshake by sending a request for connection
with an invalid return address.

In this paper we demonstrate DDOS by creating a worm like

program that installs programs on remote machines to attack a
particular server. These attackers listen in the background for a
message from a master program that will tell these attackers to
launch a DOS attack against a machine.
DDOS attacks are difficult to stop because they can be coming
from anywhere in the world. We will implement a DDOS
attack by launching the Ping of Death implementation against a
victim computer from several other workstations.

II. DISTRIBUTED DENIAL OF SERVICE WITH PING OF DEATH
PAYLOAD IMPLEMENTATION

To implement DDOS, a worm like program is created to

simulate self-propagation onto many hosts on a network.
However, creating an actual worm is beyond the scope of this
paper, therefore, we used a small Java program to simulate such
a worm. Though it carries the payload and waits to receive
orders from a master program, the worm does not self
propagate. We simply placed the application on each host
machine manually for simulation purposes.

The worm-like zombie program will launch a Ping of Death

attack from multiple hosts coordinated by a master program.
The applications handle all communication between each other.
When the master program orders the attack, a message is sent to
all the zombies that makes them release their Ping of Death
payload against a victim host that is specified by the master
program.

The Java implementation has been built using TCP sockets

and serializable Java objects. Serializable Java objects can be
transferred to remote servers and then executed with all of its
information intact. The serializable Java objects have all the
instructions needed to launch a particular type of attack. When
a user wishes to initiate an attack, he or she starts up the master
program and specifies which server to attack. The master
program then looks up the IP addresses of all known zombie
programs and what ports they are listening on by accessing a
configuration file. It then constructs a Java serializable object
based on the DOS attack type specified, and sends it to every
zombie listed in its configuration file over a TCP socket. The
zombie program recognizes that it has received a message and
reads from a TCP socket the serializable java object. It then
deserializes it and executes it, which in turn will launch the
DOS attack. Figures 1,2 show the scenario of this
implementation.

In figure 3, the DOSZombie class acts as a server that

services DOS attacks. It is created by specifying what port it
should listen on. It then creates a TCP socket and waits in the
background until a communication message is received. It is
multithreaded; therefore, it can receive multiple connections at
the same time.

The DOSAttackLauncher class acts as the client and can

communicate with a DOSZombie. It is created by specifying
the zombie’s IP address and the port that it is listening on. The
DOSAttackLauncher then creates a TCP connection to the

66 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 1 ISSN: 1690-4524

zombie specified. Its method, “launchAttack”, takes a
DOSAttack object. It will then send this object to the
DOSZombie and the DOSZobmie will then invoke the
DOSAttack’s attack method. The DosZombie also sends a
return message to the DOSAttackLauncher notifying if it
successfully began the attack or if an error occurred.

The DOSAttackManager is used by the master program that

launches the attack. It finds all the zombies that are running,
constructs a DOSAttackLauncher for each zombie, and then
instructs all DOSAttackLaunchers to send the type of
DOSAttack to the zombie.

The DOSAttacker class is an abstract class to support
polymorphic behavior and implements the Java Serializable
interface so that it can be sent through a TCP socket and
executed on a remote server.

The PingDOSAttacker and SYNFloodAttacker have the

implementations for the “Ping of Death” attacker and the TCP
SYN flood attack, respectively. The PingDOSAttacker makes
an external call to the C# Ping of Death implementation
program when their attack methods are called.

There are two Ping of Death implementations. The first and
most simple implementation is simply by calling a ping
application that comes with any modern network operating
system. The packet sizes are modified to be larger then the
default 32 bytes. The strength of this attack is not in the ping
application itself by rather in the fact that when used in a DDOS
scenario, the victim computer is simply overwhelmed by the
large quantity of ICMP Echo Request packets.

The second implementation uses a C# program and RAW

Sockets to increase the amount and speed of the ECHO Request
packets in addition to the size. RAW Sockets are a form of TCP
sockets that allow the programmer to build each packet from
scratch. The application therefore, must define all the
parameters in the header as well as allocate all necessary buffers
to contain the packet. All checksums and validations have to be
done by the application rather then handled by the operating
system. The advantage is speed: by removing checks and
safeguards that the standard TCP socket has in place and
allocating exact buffers, resource use is significantly reduced as
a whole when considered in volume. This also allows the
application to do things like ignore ECHO Reply packets and
concentrate solely on sending ECHO Request packets. The
implementation is extremely straightforward being small and
concise, perfect for use in a covert DOS attack.

The second implementation uses a C# program and RAW

Sockets to increase the amount and speed of the ECHO Request
packets in addition to the size. RAW Sockets are a form of TCP
sockets that allow the programmer to build each packet from
scratch. The application therefore, must define all the
parameters in the header as well as allocate all necessary buffers
to contain the packet. All checksums and validations have to be
done by the application rather then handled by the operating
system. The advantage is speed: by removing checks and
safeguards that the standard TCP socket has in place and
allocating exact buffers, resource use is significantly reduced as
a whole when considered in volume. This also allows the
application to do things like ignore ECHO Reply packets and
concentrate solely on sending ECHO Request packets. The
implementation is extremely straightforward being small and
concise, perfect for use in a covert DOS attack.

V I C T I M

Z O M B I E

D O S L A U N C H E R

J a v a S e r i a l i z a b l e
o b j e c t t r a n s f e r r e d
v i a T C P

D e s e r i a l i z e d J a v a O b j e c t
l a u n c h i n g T C P S Y N F l o o d

o r P I N G o f D E A T H

Fig. 1. Communication Framework

Victim

Router Router

Router

DosAttacker

Zombie Zombie

Zombie

Zombie Zombie

Zombie

TCP TC
P

Pi
ng

 o
f D

ea
th

 |
TC

P
SY

N
Fl

oo
d

Fig. 2. Overview of communication process.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 1 67ISSN: 1690-4524

+run()
+stop()
+DOSZombie(in port : int)

DOSZombie

+launchAttack(in DOSAttacker)
+DosAttackLauncher(in DestinationHost : string, in DestinationPort : string)

DOSAttackLauncher

+attack()
+getPropertiesBundle() : <unspecified>

DOSAttacker

SYNFloodDOSAttacker PingDOSAttacker

«uses»
«uses»

DOSAttackManager

«uses»

Figure 3. Class Diagram of Java DDOS

Figure 4. Data Flow Diagram

III. TCP SYN FLOOD IMPLEMENTATION

When hosts need to establish communications via the TCP

transport protocol, they must do a session initiation, which
consists of a three-way handshake:

1. The source host initiated the communication by sending a

TCP packet to the destination host the SYN flag (SYNchronize
sequence numbers) set to 1. In this packet reside the source IP
address and port number as well as the destination IP address
and port numbers (in addition to several other fields which are
inconsequential for this discussion).

2. The destination host responds by sending a TCP packet to

the source host with the flags SYN and ACK (ACKnowledge)
set to 1. The response is sent to the source IP address and port
of the initial packet in step 1.

3. The source host sends the destination host another TCP

packet with the ACK flag set to 1. This completes the 3-way
handshake and normal data communication can start.

In a TCP SYN Flood attack, the source (attacker) host

simply fails to complete step 3 leaving the destination (victim)
host with an unfinished communication session. When the
victim’s TCP socket receives the message in step one, it
allocates buffers, increments counters, initiates timers, and
increases communication stacks in preparation for the
communication that is to follow. In addition, processor time is
spent building the reply packet (step 2) and sending it back.
The attacker can overwhelm the victim’s computer resources by
sending a “flood” of packets with the SYN flag set to 1 (step 1)
and never bothering returning any response (step 3).

The TCP SYN Flood attack implemented is the Neptune

algorithm and implementation. In this algorithm, not only is
step 3 of the TCP handshake ignored, the source address in the
SYN packet of step 1 is set to an unreachable destination (for

68 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 1 ISSN: 1690-4524

example a non-routable IP address). IP spoofing is used in this
implementation therefore; it is virtually impossible to track the
origin of the packet since the return address is fake. The
victim’s computer now expends time to try to deliver a packet to
an inexistent destination.

The Neptune implementation also allows the attacker to

specify a specific service to deny. In a classical TCP SYN
Flood attack, the attacker generally tries to prevent the victim’s
computer from servicing any legitimate requests. The Neptune
implementation however, allows the attacker to choose a
specific TCP service port to overwhelm. In other words, the
attacker can choose to bring down only a web server for
example (port 80).

A simulation for an attack on a FTP server running

Windows 2000 IIS FTP has been tested. Figure 5 shows a
small TCP SYN Flood attack against an FTP server (IP address
148.166.161.115). Notice that the source IP address is spoofed
(part of the non-routable 10.x.x.x class B range). In this
particular attack, only three SYN flood packets were sent (Nos.
1, 3, 5) against an FTP server (port 21 destination). For each of
the packets, the server replies with and ACK-SYN packet which
in turn ends up nowhere (Nos. 2, 4, 6). The server then retries
to send replies a further two times before giving up (Nos. 7-12).

When looking closer at the actual packets we can see the

spoofed packet clearly with the SYN flag set to 1 (Figure 6) and
the spoofed source IP address of 10.10.1.1. Similarly, the
return packet (Figure 7) is destined for nowhere and has the
ACK and SYN flags set to 1. The application also takes care of
using different source port numbers and sequence numbers.
This prevents the victim’s computer from assuming that packets
all come from the same client in the same host. By changing
the return port and sequence numbers, a single computer can
force another host to allocate several connection resources.

IV. ANALYSIS

Figure 8 shows an excerpt from the source code. At this

point, the TCP header is being built. Notice the random source
port, sequence number, and SYN flag set to one in the bolded
sections. In this particular example three packets where sent,
however, when a true flood of invalid packets are sent, it will
overwhelm the computer and the more specifically the targeted
service. The packets are very small (since they contain no data)
so that even a slow computer with a slow dial-up connection
can overwhelm a server in a matter of seconds. As the server
spends time and resources trying to handle these fake
connections, it starts to drop packets as it becomes
overwhelmed, in doing so, it starts to also drop legitimate
packets from legitimate users. If such an attack were to be
delivered via DDOS, the results could be devastating for a
victim’s computer. One simple computer can already
overwhelm most TCP stacks; a distributed attack would most
likely crash those stacks and the operating systems with them.

The DDOS program is implemented in Java and can be used

in virtually any operating environment that supports a Java JIT
compiler making it cross-platform. Since every operating
system with a TCP socket support has a ping application, it
would be easy enough to launch a Ping of Death attack from a
wide range of hosts. The only part missing is the self-

propagation piece of the zomebie worm. The architecture is
also open to allow it to deploy almost any attack via serializable
objects. This is to say, it could deliver any attack as its payload,
even our TCP SYN Flood application that is written to take
command line parameters as well. The TCP SYN Flood
application however, has the draw back of only working in a
Linux environment. It can be ported to a UNIX environment
and with the advent of RAW sockets in Microsoft Windows
2000/XP, it could also be ported over to the Windows world.

V. CONCLUSION

All the implementations done in these simulations consist of

very simple and light loaded attacks, which can cause severe
amounts of damage. DOS attacks can be stealthy covert and
easily delivered. The Neptune implementation for example, is
only 10Kbytes in size and can cause devastation to a service.
When combined with the power of a DDOS attack, Denial of
Service is a truly powerful attack. Although our
implementations are not sophisticated, they serve as examples
of what such programs can do and the damage they can cause.

VI. REFERENCES
[1] Christoph L. Schuba, et. al., “Analysis of a Denial of

Service Attack on TCP,” 1997 IEEE Symposium on
Security and Privacy , May 1997, pp. 208.

[2] Frank Kargl, Joern Maier, Michael Weber, “Protecting
web servers from distributed denial of service attacks,”
Proceedings of the tenth international conference on
World Wide Web, April 2001, pp. 514.

[3] Errin Fulp et. al. “Preventing Denial of Service Attacks on
Quality of Service,” DARPA Information Survivability
Conference and Exposition (DISCEX II'01)Volume II-
Volume 2 , June 2001, pp. 1155.

[4] Gresty, Q. Shi, M. Merabti, “Requirements for a General
Framework for Response to Distributed Denial-of-
Service,” 17th Annual Computer Security Applications
Conference (ACSAC'01), December 2001, pp. 422.

VII. BIOGRAPHIES

Khaled M. Elleithy (M’1988) received
the B.Sc. degree in computer science
and automatic control from Alexandria
University in 1983, the M.Sc. Degree in
computer networks from the same
university in 1986, and the M.Sc. and
Ph.D. degrees in computer science from
The Center for Advanced Computer
Studies at the University of
Southwestern Louisiana in 1988 and
1990, respectively.

From 1983 to 1986 he was with the Computer Science
Department, Alexandria University, Egypt, as a lecturer. From
September 1990 to May 1995 he worked as an assistant
professor at the Department of Computer Engineering, King
Fahd University of Petroleum and Minerals, Dhahran, Saudi
Arabia. From May 1995 to December 2000 he has worked as an
Associate Professor in the same department. In January 2000
Professor Elleithy joined the Department of Computer Science
and Engineering in University of Bridgeport as an associate
professor. In May 2003 he was promoted to full professor.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 1 69ISSN: 1690-4524

Professor Elleithy published more than sixty research papers
in international journals and conferences. He has research
interests in the areas of network security, mobile / wireless

communications, computer arithmetic and formal approaches
for design and verification.

Figure 5. TCP SYN Flood run against an FTP server

Figure 6. SYN Flood packet with SYN flag set to 1

Figure 7. Response packet with ACK-SYN flags set to 1

70 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 1 ISSN: 1690-4524

 /* IP address information */
 struct sockaddr_in sin;
 register int i=0,j=0;
 int floodcontrol=0;
 unsigned short sport=161+getpid();

. . .
 /* Build TCP header */
 packet.tcp.source=sport; /* 16-bit Source port number */
 packet.tcp.dest=htons(dport); /* 16-bit Destination port */
 packet.tcp.seq=49358353+getpid(); /* 32-bit Sequence Number */
 packet.tcp.ack_seq=0; /* 32-bit Acknowledgement Number */
 packet.tcp.doff=5; /* Data offset */
 packet.tcp.res1=0; /* reserved */
 packet.tcp.urg=0; /* Urgent offset valid flag */
 packet.tcp.ack=0; /* ACK flag */
 packet.tcp.psh=0; /* Push flag */
 packet.tcp.rst=0; /* Reset flag */
 packet.tcp.syn=1; /* SYN flag */
 packet.tcp.fin=0; /* Finish sending flag */
 packet.tcp.window=htons(242); /* 16-bit Window size */
 packet.tcp.check=0; /* 16-bit checksum (to be filled in below) */
 packet.tcp.urg_ptr=0; /* 16-bit urgent offset */
 /* Build IP header */
 packet.ip.version=4; /* 4-bit Version */
 packet.ip.ihl=5; /* 4-bit Header Length */
 packet.ip.tos=0; /* 8-bit Type of service */
 packet.ip.tot_len=htons(40); /* 16-bit Total length */
 packet.ip.id=getpid(); /* 16-bit ID field */
 packet.ip.frag_off=0; /* 13-bit Fragment offset */
 packet.ip.ttl=255; /* 8-bit Time To Live */
 packet.ip.protocol=IPPROTO_TCP; /* 8-bit Protocol */
 packet.ip.check=0; /* 16-bit Header checksum (filled in below) */
 packet.ip.saddr=sadd; /* 32-bit Source Address */
 packet.ip.daddr=dadd; /* 32-bit Destination Address */

Figure 8. Excerpt from the source code

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 1 71ISSN: 1690-4524

	P129065

