
Efficient Spatial Data Structure for Multiversion Management
of Engineering Drawings

Yasuaki Nakamura
 Department of Computer and Media Technologies,

Hiroshima City University
Hiroshima, 731-3194, Japan

and

Hiroyuki Dekihara

Department of Information Technology,
Hiroshima International University

Kure, 737-0112, Japan

ABSTRACT

In the engineering database system, multiple versions of a
design including engineering drawings should be managed
efficiently. The paper proposes an extended spatial data
structure for efficient management of multiversion engineering
drawings. The R-tree is adapted as a basic data structure. The
efficient mechanism to manage the difference between
drawings is introduced to the R-tree to eliminate redundant
duplications and to reduce the amount of storage required for
the data structure. The extended data structures of the R-tree,
MVR and MVR* trees, are developed and the performances of
these trees are evaluated. A series of simulation tests shows that,
compared with the basic R-tree, the amounts of storage required
for the MVR and MVR* trees are reduced to 50% and 30%,
respectively. The search efficiencies of the R, MVR, and MVR*
trees are almost the same.

Keywords: Spatial Data Structure, R-tree, Version
Management, Design Database, CAD.

1. INTRODUCTION

A computer aided design system (CAD) is the collection of
software for creating or synthesizing a design, analyzing it for
design correctness, managing the storage and organization of
the design data, and managing the process of design flow, that
is, the controlled sequencing of design applications to yield a
correctly designed artifact. The engineering design data usually
consist of a set of documents and drawings or diagrams. In
CAD design management, a design database system deals with
the storage and retrieval of design data and its consistent update.
When the update process creates a new version of design from
an old version, the old version as well as the new one must be
kept in the database because they may be referenced from other

designs. Therefore, the management of updating processes and
versions of design is very important in the design database.

Several version modeling techniques for the engineering
database [1], and multi-version management structures for text
data or non-spatial data [2-5] have been also proposed.
However, the data structures for version management of
drawings have not been proposed in the version modeling.
Usually, a drawing contains a large number of spatial objects,
such as points, line segments, shapes, and so on. The update
process adds and deletes objects in a drawing. The drawing is
then saved as a new version. Spatial data structures such as the
R-tree [6] and the MD-tree [7] have been used in the CAD
database to manage the drawings and spatial objects efficiently.
As for the management of spatial temporal objects, several data
structures [8-10] for version management of spatial objects and
for moving objects have been proposed. In these data structures,
time stream is unique, that is, each object is managed based on
the absolute time and position. In design databases, multiple
versions are generated from a version. This can be considered
multiple time streams exist. Data structures managing multiple
versions of drawings have not been proposed. In the paper, the
version management model of the engineering drawings is
proposed. Our data structure, called the MVR-tree, is an
extension of the R-tree that can manage the multiple versions of
drawings. After evaluating the MVR-tree, we also propose an
improved data structure, called the MVR*-tree.

In the following sections, a version model of engineering
drawings and a spatial data structure, called the R-tree, are
described in Section 2. In section 3, our data structures, the
MVR and MVR* trees, are presented. A series of experimental
results is shown in 4. As a result, it is shown that the MVR*-tree
has much better performances than the MVR and the simple R-
tree based method.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 4 71

2. SPATIAL DATA STRUCTURE AND VERSION

MANAGEMENT

Suppose design data X and Y have their own version histories
and a version of X references some version of design data Y.
Fig.1 shows an example version histories and references.
Version 1 of Y, Y.1, is referenced from versions 1 and 2 of X;
X.1 and X.2. Y.2 and Y.3 are referenced from X.3 and X.3.1
respectively. Each version of design data has a drawing, for
example, a draft of a part or circuit diagram. A new version is
created by modifying a portion of the drawing. In the design
database, a hierarchical spatial data structure is usually used to
manage the spatial objects in drawings. Especially, the R-tree
[6] is one of the most popular data structure for spatial data
management. In the section, at first, the algorithm of the R-tree
is described briefly, because our proposed data structure is
developed by extending the R-tree.

2.1 The R-tree [6]
Fig.2 shows an example R-tree. In the R-tree, each node
corresponds to a rectangular region that encloses all regions of
the lower nodes. The root corresponds to a region enclosing all
data objects in the R-tree. Objects are only stored in leaf nodes.
An internal node has at most M child nodes, and a leaf has at
most M’ data. Both an internal node and a leaf manage a
rectangular region, called Minimum Bounding Box (MBB), that
encloses regions below that node and objects in the leaf,
respectively. M and M’ in an R-tree in Fig2 are set to 3. When
an object is inserted into full leaf L, a new leaf is created and at
least (C x M’) objects in L are moved to the new leaf, where C
is a constant. Usually, C is set to 0.4, because 0.4 gives better
performances. The new leaf is added as a child of the L’s parent

node. If the number of children of a node exceeds M, a new
node is created and at least (C x M) children of the node are
moved to the new node. The details of node splitting algorithm
is described in [6]. In the following examples, we assume M
and M’ are set to be 3 and C is equal to 2/3. Therefore nodes
and leaves contain at least 2 child nodes and objects.

2.2 Version Management of Engineering Drawings
A simple method to manage the multiple versions of a drawing
is to create an R-tree corresponding to each version of the
drawing, and to manage these R-trees in the database, as shown
in Fig.3. The amount of storage required for these R-trees is
proportional to the number of versions, when the number of
objects in each version is the same. Generally, an update
process modifies a small number of objects in a version or a
small portion of the drawing in general, and a large part of the
drawings and R-trees between versions are unchanged.
Therefore, sharing the unchanged part between versions, the
amount of the storage required can be reduced without the loss
of search performances. Based on this idea, we expand the R-
tree to share the unchanged objects and nodes with other R-
trees.

3. DATA STRUCTURE FOR VERSION MANAGEMENT:
THE MVR-TREE

3.1 The MVR-tree
In a simple version management by R-trees, to create a new
version of a design data, we create a entire copy of an old
version, and then modify and save it as a new version. Even if
we modify a small part of the design, the entire design data
including unchanged data in the version are saved in the new
version. To reduce the amount of storage, we propose a new
data structure, called the MVR-tree, in which the unchanged
objects and nodes are shared between several R-trees
corresponding to versions. In the MVR-tree, we introduce the
path copy method to manage the multiple version R-trees. The
path copy method is described with referring Fig.4. Each node
and leaf of the trees in Fig.4 can have at most 3 child nodes and
3 objects.

Assume new version V2 is created from version V1 of an R-tree.
First, new root R2 corresponding to V2 is created by copying
R1. R1 and R2 have the same child nodes as shown in Fig.4 (a).
When object O1 is inserted into leaf L1 through node N1, all
the nodes on the path from R2 to L1 are copied to the tree
rooted with R2; N1 and L1 are copied as N1’ and L1’ in V2.
O1 is then inserted in L1’, if L1’ is not full. The occupancy of a
leaf is indicated by gray color in a box. For examples, leaf L2 is

X .1 X .2 X .3

X .3.1

Y .1 Y .2 Y .3

X

Y

R eference R eference
R eference

V ersions

X .1 X .2 X .3

R - tre e 1 R - tr e e 2 R - tr e e 3

D ra w in g s c o r re s p o n d in g to v e r s io n s

S p a tia l D a ta S p a tia l D a ta S p a tia l D a ta

F ig .3 M a n a g e m e n t o f d ra w in g s b y R - tr e e s
c o r re s p o n d in g to v e r s io n s o f a d e s ig n .

Fig. 1 Versions and references of the engineering design

R o o t

N o d e A N o d e B

A B

Fig.2 An example R-tree

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 472

Spatia l D ata

R 1
V ersion V 1

N 1

L 1

R 2
V ersion V 2

O 1

Spatia l D ata

R 1

N 1

L 1

R 2

L 1 '

N 1 '

Spatia l D ata

R 1
V ersion V 1

N 1

L 1

R 2
V ersion V 2

L 1 '

N 1 '

L 2

L 2 '1 L 2 '2
N ew 1

L 2L 2

O 2

Spatia l D ata

R 1
V ersion V 1

N 1

L 1

R 2
V ersion V 2

L 1 '

N 1 '

L 2

L 2 '1 L 2 '2
N ew 1

V ersion V 3
R 3

L 2 '2 '

(a) C reation o f new version 2 (b) A fter insertion o f object O 1 to leaf L 1

(c) A fter insertion of ob ject O 2 to fu ll leaf L2 (d) A fter insertion o f object in to version 3

F ig .4 T he M V R -tree m anaging versions

V ersion V 1 V ersion V 2
C opy

C opy N ew 1 '
O 3

full, but others are not. An MVR-tree in Fig.4 (b) is obtained
after inserting O1. When object O2 is inserted into full leaf L2
through R2, a copy of L2, L2’1, is created. New leaf L2’2 is
then created and (C x M’) objects in L2’1 are moved to L2’2.
O2 is inserted into either L2’1 or L2’2. As a result, N1’ has
four child nodes. Since any node cannot have more than 3 child
nodes, new node New1 is created to manage L2’1 and L2’2.
Then, New1 is added to R2 as a child. Fig.4 (c) illustrates this
case.

If a new version is created from the k-th version tree, a new
root is created by copying the root of the k-th version. In Fig.4
(d), the third version, V3, is created from the second version
tree V2, and an object, O3, is inserted in L2’2. Eventually,
node New1 and leaf L2’2 are copied to New1’ and L2’2’,
respectively. Object O3 is inserted into L2’2’. The actual
algorithms of creation of a new version and insertion of an
object are presented in the followings.

 (a) Construct a new version

CreateNewVersionFrom(Vk)
Vk: version of the R-tree.
/* create a new version by modifying version Vk. */
S1: Create new root Rk+1 corresponding to a new version.
S2: Set the child pointers of Vk’s root to Rk+1. Return Rk+1.

(b) Insert an object

Insert(Vn, Ox)
Vn: R-tree version
Ox : Object
/* insert object Ox into version Vn */

S1: Let the root of Vn be R.

S2: Tracing from R to lower nodes, find leaf L in which Ox
should be inserted.

S3: Copy the nodes and leaf L on the path from R to L that are
not in Vn into Vn.

S4: Insert Ox into copied leaf L1 of L, if L1 is not full.
Otherwise, create new leaf L2 and move (c x M’) objects in
L1 to L2. Insert Ox into L1 or L2.

S5: If a new leaf is created, adjust the R-tree. This procedure is
the same as that of the R-tree.

(c) Delete an object

Delete(Vn, Ox)
Vn: R-tree version
Ox : Object
/* delete object Ox from Vn. */
S1: Let the root of Vn be R.
S2: Tracing from R, find leaf L in which Ox exists.
S3: If L is in Vn and is not shared by other versions, remove Ox

from L. If L satisfies the underflow condition, remove L and
re-insert the objects in L. (This is the same algorithm of the
R-tree.) Return.

S4: Copy the nodes and leaf L on the path from R to L if they
are not in Vn into Vn.

S5: Let L’ be a copy of leaf L. Remove Ox from copied leaf L’.
S6: If L’ satisfies the underflow condition, remove L’ from Vn

and adjust the tree by re-inserting the objects in L’. (This is
the same algorithm of the R-tree.)

(d) Search objects
Spatial searches such as nearest neighbor searches and range
searches for a designated version can be performed efficiently
both in the simple R-tree based method and the MVR-tree. It is
well-known that the search performances using the hierarchical

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 4 73

data structures are proportional to the number of accessed nodes
during a search process.

In the R-tree, each node and leaf manages the minimum
bounding box (MBB) that encloses all the objects below that
node and in the leaf. The following Range_search procedure
can find objects intersecting a give region using the MBB. The
search procedures using in the R-tree such as the nearest
neighbor searches and range searches can be applicable to the
MVR-tree.

Range_searchst(Vn, Range)
Vn: R-tree version
Range: a search region
/* find objects intersecting a given region, Range. */
S1: Let the root of Vn be R.
S2: Trace each child node whose MBB intersects Range from

R until a leaf is found. If the MBB of the leaf, L, intersects
Range, collect objects in L intersecting Range.

S3: Return collected objects.

3.2 Features of The MVR-tree
The MVR-tree contains the R-trees corresponding to multiple
versions of drawings without the duplication of nodes. When a
root of an R-tree corresponding to a version in the MVR-tree is
designated, the structural properties of that R-tree in the MVR-
tree are the same as the original R-tree managing the objects at
that version. Therefore the search performances are expected to
be almost equal to the original R-tree, although the MVR-tree
has an advantage that the number of nodes and leaves is less
than that of the simple R-tree based version management
method.

 Assume that the modification of objects is applied to a small
area and that the number of objects inserted or deleted is small.
The MVR-tree copies a small number of nodes and leaves and
creates a small number of split nodes and leaves. In other words,
the unchanged portion between a former version and a new
version is shared by both versions. Compared to the simple
method in 2.2, the MVR-tree has an advantage that the amount
of storage required for the MVR is much less than that for the
simple method. The experiments in section 4 reveal the
advantage of the MVR-tree to the simple version management
of the R-tree.

On the other hand, even though the number of modified objects
is small, the number of duplicated nodes and leaves increases if
the modification affects the wide area of a drawing. This is
because even if one object is inserted in a leaf, the nodes on the
path from the root to the leaf must be copied. Therefore, as the
modification applies to a wider area, the number of copied
nodes and leaves increases considerably even the number of
modified data is small. The experimental results showing this
aspect are also presented in section 4.

3.3 Improved MVR-tree: The MVR*-tree
The MVR-tree is efficient when the modifications are applied to
a small area. However, even if the number of modified objects
is small, the performances become worse when the
modifications are applied to a wide area.

To overcome the shortcoming of the MVR-tree, the MVR*-tree
is developed by reducing the duplication of leaves in the MVR-

tree. Namely, in the MVR*-tree, when an object is inserted into
a leaf with a space, the object is inserted into the leaf without
making a copy. In the case, since objects belonging to the
different versions exit in a leaf, some token indicating active
objects in the versions must be added to the data structure. This
idea reduces the number of the duplications of leaves. Since the
object occupancy rate in leaves is known to be 60~70% in the
R-tree, the small number of modifications would not lead the
large number of leaf splits if the modified area is wide.

The idea is illustrated in Fig.5. We add a new structure, called
an active object identifier (AOI), between a lowest internal node
and a leaf. AOI consists of an array of Boolean values and a
pointer to a leaf. Boolean values indicate which objects in the
leaf are active at the version. For examples, AOI 1 in Fig.5 (a)
has value 1 on the first and second elements, and value 0 on the
third element. This means that the first and second objects in a
leaf are active at version V0 but the third object is not active in
versions V1 and V2. After inserting O1, as shown in Fig.5 (b),
all elements of AOI 1’ have value 1. AOI 1 and AOI 2 point the
same leaf with 3 objects. However, the third object in the leaf is
not active in version 1 because the third element of AOI 1 is 0.

In the actual implementation, AOI is integrated into an internal
node structure. This modification increases both the amount of
storage for the node, and CPU times required for insertion of
objects and objects searches a little. However, since the access
to the nodes and leaves in the secondary memory takes the
major time in the searches and insertion, search and insertion
performances will not become worse in the MVR*-tree.

3.4 Construction of The MVR*-tree
The MVR*-tree is an improved MVR-tree with an array of
active object identifier (AOI). AOI indicates which objects in a
leaf are active at the version. This allows the multiple versions
of R-trees in an MVR-tree can share a leaf. Therefore, in the
MVR*-tree, a leaf is copied only when the leaf is full and an
object is inserted in the leaf. The algorithms of the MVR*-tree
can be constructed by modifying the algorithm of the MVR-tree
such that it makes AOI effective. The insertion algorithm of the
MVR*-tree is presented as follows.

(a) Insert an object

InsertInMVR*(Vn, Ox)
Vn: R-tree version
Ox : Object
/* insert object Ox into version Vn */
S1: Let the root of Vn be R.
S2: Tracing from R to lower nodes, find AOI E pointing to leaf

L in which Ox should be inserted.
S3: Copy the nodes on the path from R to E that are not in Vn

into Vn.
S4: If E is not in Vn, make a copy of AOI E and set the pointer

of the copied AOI to L. Set E to the copied AOI.
S5: If L is not full, insert Ox into L and set 1 to the

corresponding element in E. Return.
S6: Otherwise, make copy L1 of L and copy E1of E. Remove

objects in L1 that are not active at this version.
S7: If L1 is full, create new leaf L2 and copy E1 of E, then

move (C x M’) objects in L1 to L2. Insert Ox by the R-
tree’s algorithm. Adjust AOIs pointing to L1 and split leaf.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 474

R1
V ersion V1

N 1

L1

R2

O 1

AO Is 1 1 0 1 1 0 1 1 0 1 1 01 1 1

R1
Version V 1

N1

L1

R2

1 1 0 1 1 0 1 1 0 1 1 01 1 1

Version V2 Version V 2

1 1 1
AO I1

A OI1'

A OI1

N '1

R1
Version V 1

N1

L1

R2

1 1 0 1 1 0 1 1 01 1 1

V ersion V2

1 1 1
AO I1'

A OI1

N '1

1 1 0 1 1 0 1 1 0

O2

L2 L2

L2 L2'1 L2'2

Fig.5 The M V R*-tree m anaging versions

(a) Creation of new version 2 (b) After insertion of object O1

(c) After insertion of object O2 into full leaf L2

R1
Version V 1

N 1

L1

R2

1 1 0 1 1 0 1 1 01 1 1

Version V 2

0 1 1
A OI1'

A OI1

N '1

1 1 0 1 1 0

L2

1 1 0

O3

(c) After deletion of object O3 from L1 at version 2

(b) Delete an object
In the deletion procedure, an object is not removed from a leaf
immediately, but a corresponding element of AIO is set to be 0.
An element with 0 means the corresponding object in a leaf is
not active in a version.

DeleteFromMVR*(Vn, Ox)
Vn: R-tree version
Ox : Object
/* delete object Ox from Vn. */
S1: Let the root of Vn be R.
S2: Tracing from R, find AOI E pointing to leaf L in which Ox

exists.
S3: If L is in Vn, remove Ox from L and set value 0 to the

corresponding element of E If L satisfies the underflow
condition, apply the same algorithm of the R-tree. Return.

S4: If E is not in Vn, copy the nodes and AOI on the path from
R to E that are not in Vn into Vn. E<-copied AOI.

S5: If L is in Vn, remove Ox from L.
S6: Set 0 to the corresponding element of E.
S7: If L’ satisfies the underflow condition, remove L’ from Vn

and adjust the tree. Then re-insert the objects in L’ .These
procedures are the same as those of the R-tree.

Fig.5 shows insertion and deletion processes of an
MVR*-tree. At the first insertion of object O1 into version V2
in Fig.5 (a), since leaf L is not full, object O1 is inserted in L1
through AOI 1. Bit 1 in AOI indicates that the object at the
position in the corresponding leaf is active at the version. AOI 1
belongs to version V1. Therefore, a copy of AOI 1, AOI 1’,
pointing to L1 is created and O1 is inserted in L1, as shown
Fig.5 (b). AOI 1 in V1 and AOI 1’ in V2 indicate which objects
are active in each version of trees. That is, the third object in L1
is not active in version V1, but active in version V2. When
object O2 is inserted full leaf L2 in Fig.5 (b), a copy of L2,
L2’1, and a new leaf, L2’2, are created. Two objects in L2’1
are moved to L2’2, and O2 is then inserted. Leaves L2’1 and

L2’2 are added to node N1’ as children. However, a node
cannot have more than 3 nodes. As a result, new node is created
to manage L2’1 and L2’2, and the new node is added to root
R2 as a child. The MVR*-tree in Fig.5 (c) is obtained. When
object O3 that is stored as the first object in leaf L1 is deleted at
version V2, O3 is not removed from L but the corresponding
element (the first element) of AOI 1’ pointing to L1 in version
V2 is set to be 0, as shown in Fig.5 (d).

4. EXPERIMENTAL RESULTS

To evaluate the performances and characteristics of the MVR-
tree, the MVR*-tree, and the simple R-tree method, a series of
simulation tests is carried out. In the simple R-tree method, R-
trees managing the versions are created to manage the multi-
version drawings. An R-tree corresponding to a new version is
created by copying an old version R-tree and modifying the
contents. The roots of these R-trees are managed in the database.
Hereinafter we represent this method the R-tree.

(1) Conditions of Experiments
 The MVR and MVR* trees are expansions of the R-tree. The R-
tree with the quadratic split algorithm is used as a basic
structure in both cases of the MVR and MVR* trees. The
number of maximum child nodes the R-tree is equal to 3, and
the number of objects in a leaf is 20. The original version
drawing, v0.0, with 100,000 objects is prepared. The entire data
space is a 10,000x10,000 square area. Objects’ positions are
generated randomly from a uniform distribution. Object are
rectangles with the sides varying from 5 to 10 in length.

Versions, v1.0, v2.0,…, and v6.0, are then created from version
v0.0. Vi+1.0 is created from vi.0. 10,000 objects are added in
each new version in any case. The following two cases are
tested.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 4 75

 Case 1: 10,000 objects are inserted into a 100x100 square
area at the center of the entire data space.

Case 2: 10,000 objects are inserted into the entire area
randomly.

 (2) Experimental Results
Table 1 shows the construction time of the R-tree, MVR-tree
and MVR*-tree with 7 versions in Case 1. The R-tree method
requires more construction time than others. It takes almost the
same time to construct the MVR and MVR* trees, because the
R-tree methods requires much more nodes and leaves than the
MVR and MVR* trees. As for Case 2 data sets, the construction
time for the R-tree is also longer than the MVR and MVR* trees.

The numbers of nodes and leaves in the R, MVR, and MVR*
trees in Case 1 experiment are shown in Fig.6 (a). The number
of total nodes in the R-tree method is proportional to the
number of versions. An R-tree with only one version contains
approximately 5.5K nodes and the total nodes of the R-trees
with 7 versions are approximately 48K. On the other hand, the
number of total nodes in the MVR and MVR* trees are
approximately 13.5K. The numbers of total leaves in the R,
MVR, and MVR* trees are 62.6K, 17.9K, and 14.1K,
respectively. Namely, the required storages for the MVR, and
MVR* tree are reduced to 29% and 23% of the R-tree,, when
the objects are inserted in a small area.

The results of Case 2 experiment are shown in Fig.6 (b).
Regarding the R-tree, the numbers of total nodes and leaves are
almost equal to those of Case 1. However, the MVR-tree
contains more nodes and leaves compared to Case 1. Especially,
the number of leaves in the MVR-tree is 80% of the R-tree in
Case 1, because objects are inserted into almost leaves. In the
MVR*-tree, the number of leaves is reduced to 1/3 of the MVR-
tree. These results reveal that the MVR*-tree requires much less
storage than the MVR-tree when the modification is applied in a
wide area. Even if the modification is local, the number of
leaves nodes in the MVR*-tree is less than that of the MVR-tree.
The search performances of these methods in Case 2 are almost
the same as shown in Table 2, because the structural properties

o
c
p

T
t
b
e

W
f
a
r
t
a
n
m

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

1 2 3 4 5 6 7
Version

N
o

R-tree # of leaves

R-tree # of nodes

MVR # of leaves

MVR and MVR* # of
nodes
MVR* # of leaves

1

2

3

4

5

6

7

N
o

(a) Case 1: Modifications are applied to a small area.

Fig.5 The numbers of nodes and leaves

Table 1 Construction results of R, MVR, and MVR*trees

in Case 1
 Time(sec.) Nodes Leaves
R-tree 73.2 46,899 62,608
MVR-tree 32.8 13,551 17,877
MVR*-tree 33.7 13,551 14,129

SYSTEMICS, CYBERNETICS AND INFORMATICS76
Table 2 Performances of the nearest neighbor search
in Case 2

 Time(msec.) Visited nodes
R-tree 0.078 18.72
MVR-tree 0.078 18.72

MVR*-tree 0.079 18.72
f these methods are identical. Although additional structure
alled AOI was introduced in the MVR*-tree, the search
erformances do not deteriorate.

hese experiments reveal that the MVR*-tree is much efficient
han the simple R-tree or MVR-tree in the amount of storage,
ecause the R-trees in MVR*-tree share the nodes and leaves
ffectively by introducing the AOI structure.

5. CONCLUSION

e proposed new data structures, the MVR-tree and MVR*-tree,
or handling sets of spatial objects such as multiple versions of
n engineering drawing, diagram, and so on. The experimental
esults reveal the better performances of the MVR and MVR*
rees than the simple R-tree method when a modification is
pplied to a small portion of the data space. The number of
odes and leaves in the MVR-tree is 29% of the R-tree. When a
odification affects a wide portion of the data space, however,

0

0,000

0,000

0,000

0,000

0,000

0,000

0,000

1 2 3 4 5 6 7Version

R-tree # of leaves

R-tree # of nodes

MVR # of leaves

MVR and MVR* # of
nodes
MVR* # of leaves

 (b) Case 2: Modifications are applied a wide area.

 of the R, MVR and MVR* tree for 6 versions

 VOLUME 2 - NUMBER 4

the number of nodes and leaves in the MVR-tree decreases only
17% compared to the R-tree. To improve this, the MVR*-tree
was developed. In the MVR*-tree, the number of nodes and
leaves is 25% of the R-tree, in the case of the modification is
local and is 53% in the case of the modification is applied wide
area.

Since the engineering database is required to manage a large
number of multi-version drawings efficiently, we plan to apply
the MVR*-tree method as an index structure for engineering
databases.

References
[1]R. H. Katz, “Toward a Unified Framework for Version

Modeling in Engineering Databases,” ACM Computing
Surveys, Vol. 22, No. 4, pp.375-408(1990).

[2] V. J. Tsotras and B. Gopinath, “Effient Algoruthms for
Managing The History of Evolving Databases,” Proc. Int.
Conf. Database Theory, pp.141-174(1990).

[3] S. Lanka and E. Mays, “Fully persistent B+-trees,” Proc.
ACM SIGMOD Conf., pp.426-435(1991).

[4] D. Lomet and B. Salzberg, “Access Methods for
Mutiversion Data,” Proc. ACM SIGMOD conf., pp.315-
324(1989).

[5] P. J. Varman and R. M. Verma, “An Efficient Multiversion
Access Structure,” IEEE trans. KDE, Vol. 9, No. 3,
pp.391-409(1997).

[6] A. Guttman, “R-trees: A Dynamic Index Structure for
Spatial Searching,” Proc. ACM SIGMOD, pp.47-57(1984).

[7] Y. Nakamura, et al., "A Balanced Hierarchical Data
Structure for Multidimensional Data with Efficient
Dynamic Characteristics,” IEEE trans. KDE, Vol.5, No.4,
pp.682-694(1993).

[8] V. J. Tsotras and B. Gopinath: “Efficient Algorithm,s for
Manageing the Histrory of Evoling Databases,” Proc. Int.
Conf. Database Theory, pp. 141-174(1990).

[9] G. Kollis, D. Gunopulos and V. J. Tsotras: “On Indexing
Mobile Objects, Proc. PODS, pp.261-272(1999).

[10] Y. Nakamura, H. Dekihara, and R. Furukawa: “Spatio-
temporal Data Management for Moving Objects Using the
PMD-tree,” Lecture Notes in Computer Science 1552,
Advances in Database Technology(Y. Kanbayashi, D. L.
Lee et. al (Eds)), pp.496-507 (1999).

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 4 77

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

