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ABSTRACT 
The Distributed Agent-Based Information Dissemination 
System (DAIDS) concept was motivated by the need to share 
information among the members of a military tactical team in an 
atmosphere of extremely limited or intermittent bandwidth. The 
DAIDS approach recognizes that in many cases 
communications limitations will preclude the complete sharing 
of all tactical information between the members of the tactical 
team. Communications may be limited by obstructions to the 
line of sight between platforms; electronic warfare; or 
environmental conditions, or just contention from other users of 
that bandwidth. Since it may not be possible to achieve a 
complete information exchange, it is important to prioritize 
transmissions so the most critical information from the 
standpoint of the recipient is disseminated first. The challenge is 
to be able to determine which elements of information are the 
most important to each teammate. The key innovation of the 
DAIDS concept is the use of software proxy agents to represent 
the information needs of the recipient of the information. The 
DAIDS approach uses these proxy agents to evaluate the 
content of a message in accordance with the context and 
information needs of the recipient platform (the agent’s 
principal) and prioritize the message for dissemination. In our 
research we implemented this approach and demonstrated that it 
provides nearly a reduction in transmission times for critical 
tactical reports by up to a factor of 30 under severe bandwidth 
limitations. 

DAIDS was developed as the result of a Phase I and Phase II 
Small Business Innovative Research (SBIR) project for the 
Army’s Aviation Applied Technology Directorate (AATD). It 
was developed by ISX Corporation, with support from the 
Lockheed Martin Advanced Technology Laboratories (LM 
ATL), and implements LM ATL’s Grapevine concept. (LM 
ATL acquired the ISX Corporation in July 2007, after this was 
written. All references to ISX are now LM ATL.) 

Keywords: Agents, Agent Architectures, Interoperability, Data 
Access, Fusion, Information Dissemination, Situation 
Awareness. 

1. DAIDS TECHNICAL DESCRIPTION 
DAIDS is an agent-based communications prioritization system. 
It maximizes the use of available bandwidth by applying a 
“First-In-Best-Out” scheme. The determination of “Best” is 
policy-based, using operational knowledge. These policies are 
very easy to modify, and can even be determined in the field. 
Thus, DAIDS provides a communications prioritization 
mechanism that is based upon operational elements, rather than 
simply technical elements such as message size. 

Each platform in a DAIDS-enabled scenario has a Proxy for 
each teammate and other friendly platform in the scenario. 

These Proxies represent their principals in vying for information 
this platform has to offer.  

Each DAIDS platform maintains a Context—a collection of 
attribute/value pairs that are useful in determining importance of 
information to that platform. These contexts may contain static 
information, such as the platform type (e.g., Helicopter, Ground 
unit, UAV), and various immutable attributes (e.g., size, weight, 
max speed). Contexts may also contain dynamic information, 
such as position, altitude, speed, current mission, current 
operating mode, etc. Contexts can also contain fine-grained 
specifications of platform information needs, such as areas of 
interest or specific enemy units that are of particular interest. 
Every platform maintains its own Context. It keeps track of its 
own internal state, and updates its context accordingly.  

Every Proxy maintains a Context for its principal, which it uses 
to help determine the importance of new information to its 
principal. Platforms keep their Proxies up-to-date via Entity 
State Messages (ESMs). These messages are sent to all other 
platforms whenever a platform significantly deviates from the 
information in its context. Entity State Messages contain ONLY 
changes to Context information. They are prioritized and placed 
on the Priority Queue, along with all other elements of new 
information. They initially have a very low priority, so other 
information may go out first. However, as an ESM remains in 
the queue, its priority increases so that it will, eventually, be 
sent. There is never more than one ESM in the queue. If a new 
one is generated while an old one is still on the queue, the two 
are merged. 

Each platform and each proxy maintains a Deduced Reckoning 
(DR) model for the physical platform’s movement, in order to 
reduce the number of ESMs issued. The DR model is linear. As 
long as a platform maintains a constant speed and bearing, it 
remains true to its DR model, and no new ESM needs to be 
sent. This is consistent with many simulation paradigms.  

Contexts, both at the platform level and on the proxies, are 
extremely configurable. Clearly, different platform types require 
different information, so they have different Context templates. 
These are specified in XML by platform type, and are easy to 
modify. At runtime, new elements may be added to a Context 
for even more flexibility.  

Information is packaged for distribution in Messages. Any new 
piece of information is passed to an appropriate Parser, which 
extracts a set of attribute/value (A/V) pairs describing that 
information. There are different Parsers for different types of 
messages. The A/V pairs are passed to the proxies for analysis. 
The information itself is packaged in a Message and placed on 
the Priority Queue with the assigned priority. These message 
parsers are separate, and easily implemented, so new types of 
information may be easily added for prioritization and 
distribution.  
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After a new piece of information is parsed into A/V pairs, these 
pairs are given to the Proxies, which then run their own 
Prioritization Scripts. These scripts take A/V pairs from the 
Message Parser, and from the Proxy’s Context, and compute a 
priority and an expiration time. There is a different 
Prioritization Script for each type of platform, and more can be 
added easily, without having to recompile the system. The 
scripts are currently coded in Python, a simple scripting 
language, and are easily modifiable or even written from 
scratch, using only the knowledge of a user familiar with 
spreadsheet formulas. 

Once a priority is computed, each message is placed on the 
Priority Queue, and is dispatched in priority order. There are 
some additional algorithmic enhancements to increase the 
efficiency of this mechanism. Messages waiting in the queue 
past their expiration times are sent back to the proxies to be 
reprioritized, as are messages which are selected for dispatch 
but can’t be sent due to a network collision. The retry rate also 
varies based on priority, so that important messages have a 
higher probability of getting network resources, even across 
platforms. 

DAIDS supports two modes of operation: Broadcast, and Peer-
to-peer. In Broadcast mode, it is assumed that there is a single 
communications channel, so there is no point-to-point 
communications between platforms, and information must be 
broadcast to all Platforms at the same time. In this mode, the 
Priority responses from the Proxies are averaged, and the 
information is sent once. Other aggregation techniques could 
also be used. In Peer-to-peer Mode, it is assumed there are 
multiple communications channels, and information can be sent 
directly between specific platforms. In this mode, a piece of 
information will be placed on the Priority Queue multiple times, 
once for each other platform it must be sent to. For example, if 
there are five platforms in the scenario, then each platform will 
have proxies for the other four platforms. Each new piece of 
information will be put on the queue four times, possibly with 
four different priorities. 

Architecture 
The DAIDS system is an agent-based architecture, centers 
around a cluster of agents that are referred to as a Platform. 
These java-based agents can run on virtually any agent 
architecture system through the use of an ISX abstraction layer 
known as ISAF. By using ISAF it is simple to change the 
underlying agent system (provided there is an ISAF 
implementation available to support the new agent architecture.) 
As a result, while the DAIDS program was initially based on 
top of the CoABS Grid agent system, it now runs on top of the 
Lockheed Martin EMAA system. 

In addition to the base configuration, ISX has built a testbed and 
supporting user interface components to assist in development, 
testing, and demonstration of the core DAIDS system. These 
supporting modules provide simulation capabilities and allow us 
to create multiple DAIDS nodes running on one physical 
machine, while at the same time simulating bandwidth 
constraints and network topologies. 

Components 
Each physical system that will use DAIDS for communications 
control will contain its own DAIDS Platform constellation. This 
group of agents contains a primary control agent called a 
Platform, a Disseminator that is responsible for controlling 

prioritization of messages, a group of PlatformProxy agents that 
represent the other platform nodes in the network, and a 
CommIO agent that is responsible for all communications 
processing between nodes. These are the minimum required 
components to support the DAIDS functionality. 

Platform Agent: The platform agent provides a 
virtualized representation of the system on which DAIDS has 
been deployed. Information such as the context of the local 
system (location, operation mode, direction and speed of travel, 
etc.) is held in the platform and used for updating remote 
DAIDS nodes about the status of the local platform. The 
platform agent is responsible for accepting communications 
from other remote DAIDS nodes, and interfacing with 
applications on the local platform. The platform agent maintains 
a list of all incoming message traffic from other nodes and 
relays it to local applications. Conversely, any message traffic 
coming from local applications are prioritized and queued for 
delivery to the other remote DAIDS nodes. The process of 
prioritization is controlled through the Disseminator agent.  

Disseminator Agent: The disseminator agent is 
responsible for taking any messages that come into the platform 
and determining a delivery priority score. It passes the message 
to each of the Platform Proxy agents and waits for their 
evaluation of importance. It applies an algorithm to combine the 
scores from each of the remote nodes to arrive at a final priority 
score. This algorithm is encoded within a user-modifiable script 
and can be changed at any time to fit the needs of the system on 
which DAIDS is being deployed.  

PlatformProxy Agents: Each local DAIDS node will 
contain one PlatformProxy Agent per remote DAIDS node on 
the network. These Proxy agents represent the last 
communicated state of the remote node, except for position, 
which is projected via the dead reckoning model. This state, or 
context, is used by the proxy in determining the importance of 
messages to be delivered to that node. The determination of this 
priority is controlled through a user-editable script file that 
correlates information between the message and the proxy’s 
context and arrives at a numerical score. This score is returned 
to the Disseminator. 

PlatformCommIO Agent: Each platform suite also 
contains one PlatformCommIO agent. This agent is responsible 
for handling all communications between DAIDS nodes. It is 
expected that every deployment of DAIDS in a real system will 
require a new implementation of the CommIO agents. In our 
testbed environment the implementation is responsible for 
handling flow control and simulating bandwidth constraints. 
These requirements are not necessary when deploying in an 
actual operational environment. 

Application Interface Agents: In our testbed 
environment the main application supported by the DAIDS 
network is the sensor sharing system that feeds into a common 
relevant operational picture (CROP) display. This is not the 
only type of application that could be supported through the 
DAIDS infrastructure. To support other applications, Agents 
that interface the application with the DAIDS platform are 
needed. The Platform agent must be modified to understand 
these agents, and handlers for any application specific message 
traffic types must be created. While this does require a code 
recompile operation to integrate new applications, the procedure 
involved is simple and straightforward, with template interface 
specifications provided for new message formats, and clearly 
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Figure 1: Platform-Level DAIDS Architecture

demarcated locations in the code for placing implementation 
specific code. 

Assessment Scripts: The real power of DAIDS is in 
the assessment scripts. These scripts are a user-configurable 
piece of Python code that combine the data found in the message 
to be prioritized, and the perceived context held in the Proxy of 
the platform as inputs to the assessment process. The user can 
use these inputs to determine a formula for a prioritization score. 
This prioritization score should fall within a rank of 0 (not 
interested at all, don’t send it ever) to 1000.0 (VERY important, 
send immediately). It is important for the assessment script to 
adequately spread scores across this range to reflect varying 
importance levels of messages. Average importance messages 
should fall somewhere in the middle of this range, near 500.0. 

In addition, assessments have a timeout value associated with 
them. This time-out indicates to the platform how long the 
assessment score is valid. This helps ensure that the propriety 
score of a message waiting on the queue for a period of time 
doesn’t become invalid as the situation changes. 

Devising and testing assessment scripts that prioritize 
information correctly will always be the biggest challenge in 
deploying a DAIDS system. However, with a well-crafted 
assessment script, exemplary performance can be achieved.  

Contexts: The DAIDS system uses the concept of a 
Context to represent internally the state of the platform it is 
representing. Contexts can contain any type of information that 
can be represented in an XML format. An example context for a 
helicopter might contain location, speed, mode of operation, 
status, flight plan, and weapons. The information template can 
be uniquely specified for each platform type, will each instance 
having its own data set. The platform communicates this context 
to all other nodes on the DAIDS network, so that the proxies on 
those other nodes can know the state of their principle, and use it 
for prioritization. In addition, the DAIDS system periodically 
sends updated context information to the other nodes to 
synchronize them with the current state of the principle. In these 

situations, only changes are sent, not a full picture of the 
context. This reduces network impact to the minimum possible 
while maintaining DAIDS capabilities. 

Testbed Environment: The testbed environment was 
built in order to debug and demonstrate DAIDS. It provides 
visibility into the operation of DAIDS, as well as the ability to 
manipulate the scenario. Among the features the testbed 
environment provides: 

• A view of the agents 

• A view of the message traffic, both textually and 
graphically 

• A view of each platform’s CROP 

• A view of each platform’s Outgoing Message Queue 

• A view of each platform’s Context 

• The ability to create new platforms 

• The ability to manipulate the apparent bandwidth and 
simulate pairwise communications blackouts 

• A Scripting capability to run designed scenarios 

With the testbed, a complex scenario can be executed, observed, 
and metrics measured. 

Protocols 
In the DAIDS development testbed we have developed two 
different communication protocol examples. The first is a 
broadcast mechanism that simulates half-duplex shared 
communications similar to multiple users talking on a single 
radio frequency. When one node is sending, all remote nodes 
receive the message (even if it’s not meant for them), and all 
other nodes are blocked from sending during that time. When 
running in broadcast mode, there is a 1:1 relationship between 
incoming messages and outgoing messages in the Platform. For 
example, if the local platform needs to deliver a message to five 
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remote nodes, there will be a single copy of the message queued 
with all five remote nodes addresses encoded. 

The second protocol is a Peer-to-Peer mode that is full duplex 
and operates similarly to each pair of nodes having two channels 
on which to communicate, independent of all other nodes. If the 
local platform needs to deliver a message to five remote nodes, 
for example, it will need to queue up the message five times, 
each copy having its own distinct destination node address. 

All messages in the DAIDS system encoded as java String data. 
This does preclude handling binary data. To support binary or 
serialized data we require the information be UUEncoded 
(Base64) so it can be represented as a String.  

Multiple message types and formats can be supported, and it is 
simple to support additional types. For each message type a 
custom parser class must be implemented according to an 
interface. This parser should be written to pull important data 
elements out of the message and store them in a structured, 
delimited manner, as well as encoding the names of individual 
data element fields. This information is passed to the 
PlatformProxies that take this data and inject it into a Jython 
interpreter for the assessment scripts. For example, in our 
testbed, images are encoded in Base 64. The ImageReport parser 
reads this data, and determines the file size, specifies a type 
(GIF or JPEG) and assigns each of those data elements to a field 
name. When the message is injected into the Jython Assessment 
interpreter, the assessment script can use the type and file size to 
determine the criticality score for this message (for example, 
larger images should have a lower priority because they’ll tie up 
bandwidth longer.) 

All communications between DAIDS nodes is provided by the 
underlying Agent architecture (which must rely upon the 
communications infrastructure of Java, the OS and the network 
socket driver implementation.) As a result, DAIDS itself is not 
in control of the network. DAIDS simply prioritizes and orders 
the data so it is sent in a most-important-first manner. 

Advanced Features: Built into the DAIDS system are 
several features that were implemented to maximize the benefits 
of DAIDS and allow for a balanced control of multiple DAIDS 
nodes without additional communications overhead. These 
features are: 

Periodic Reprioritization – A thread examines all queued 
outbound messages to look for any messages that have timed 
out. These messages are sent back for re-assessment so they can 
be re-prioritized with new scores that more accurately reflect the 
importance to the destination platform at this time. 

Reprioritization on Block – Any time a platform attempts to 
send a message, if the bandwidth is blocked causing an inability 
to send (for instance, in a broadcast environment where 
somebody else transmitting) the outbound message is sent back 
for reprioritization. This can possibly cause it to be given a 
lower prioritization score. This lower score might force it to no 
longer be the most important thing to send at this time and 
would allow the new highest priority element to bubble to the 
top of the queue.  

Dynamic Retry Rates – DAIDS will dynamically adjust the rate 
at which it tries to send a message based on the priority score of 
that message. The higher the priority, the less time it will wait 
between attempts. This lowers the latency between attempts for 
high priority items, while at the same time providing a basic 
means of network balancing between nodes. For example, if 

node A is transmitting and nodes B and C both have data 
waiting to be sent, when A finishes and clears the channel 
whichever node (B or C) has a higher priority message will retry 
faster and will be more likely to be the one to get control of the 
channel next. While this is not guaranteed, it is more likely to 
occur, and without the need for transmitting sync messages to 
control this behavior. 

Bandwidth Awareness – The platform measures the time it takes 
between attempts to send a message and when it receives 
acknowledgement (from the PlatformCommIO agent) that the 
messages was successfully sent. This measurement is used to 
determine the effective bandwidth at the time of transmission. 
This measurement is fed back into the Disseminator agent and 
can be used inside the Disseminator’s Assessor script to modify 
the prioritization scores coming into it from the Proxies. This 
allows DAIDS to perform any tweaking that is desired (for 
example, if in a low bandwidth situation, we might want to 
distribute low, medium and high priority scores more than 
normal.) 

2. DISSEMINTATION POLICIES IN DAIDS 
Prioritized dissemination of critical information in DAIDS is 
predicated on the ability to express information needs and pass 
them to proxy agents hosted by the platform providing the 
information. These information needs are expressed as 
dissemination policies. The technical details for the 
implementation of the dissemination policies by the proxy 
agents were described in Section 1. In this section, we describe 
the various types of dissemination policies used in DAIDS, the 
factors that are considered by the specific dissemination policies 
encoded in the Phase II DAIDS Prototype, and how messages to 
different platforms are arbitrated.  

Types of Dissemination Policies 
The DAIDS implementation of dissemination is flexible and 
allows for a variety of prioritization policies. In the Phase I and 
Phase II development we focused on dissemination policies 
needed for an application of DAIDS to a problem of interest for 
the sponsor. This scenario involves the exchange of information 
between military units cooperating as a team in tracking 
potentially hostile targets. We categorize these policies in 
several ways. The first categorization axis relates to the type of 
message being prioritized. The next categorization axis relates to 
whether the prioritization policy is target-based or location 
based. The final categorization axis describes the intended 
recipient of the message. 

Message Types: The current implementation of 
DAIDS includes prioritization policies for three specific types of 
messages. These are sensor reports, image reports, and entity 
state messages. Our DAIDS architecture includes abstraction of 
the message concept. This allows the future addition of new 
types of messages to be sent using the tactical data link and the 
development of dissemination policies for them. 

The primary focus of DAIDS was to enhance the data fusion 
process through the prioritized transmission of critical target 
Sensor Reports. The contractor team spent the most effort in 
developing dissemination policies for sensor reports. The 
prioritization of sensor reports is discussed at length in Section 3 
of this chapter. 

While prioritization of sensor reports for the fusion process was 
the initial focus of DAIDS, we were prompted by the project 
sponsor to consider situations where the tactical data link is used 
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to share image data. These Image Reports compete for 
bandwidth with sensor reports. Because a typical image has 
more content than a sensor report, it has the potential to tie up 
the data link for a long time. These considerations led us to a 
prioritization criteria where most images received a lower 
priority than most sensor reports. Our initial dissemination 
policy for image reports is simply based on the size of the 
image. In Section 4 below we suggest some more advanced 
dissemination policies for image reports. 

The current prioritization formula for image reports is: 

 Priority = ImageSize/100 

In order for the proxy agents to be able to assign a meaningful 
priority to messages, the proxy agents must maintain the current 
context of their principals. For this and other reasons  Blue team 
members who are not in radio silence send periodic reports of 
their position and context to other members of the tactical team. 
These Entity State Messages share the same data link and 
compete for bandwidth with sensor reports. Therefore, the 
priority of these e messages needs to be reconciled with the 
priority of sensor reports. 

In our implementation, we assume that most entity state reports 
have a lower priority than most sensor reports. We also assume 
that the urgency of reporting own context to teammates should 
increase with the time since the previous report. The formula for 
the priority of an entity state message is: 

  Priority = 550 + Increment*TransmissionAttempts 

The time between transmission attempts and the amount of 
priority increase per transmission attempt can be configured in 
an XML file that is provided with the DAIDS software 
distribution. Presently DAIDS uses a 50 second interval between 
transmission attempts for entity state messages and an increment 
of 25 per transmission attempt. 

Message-Based vs. Location-Based Policies: 
Another aspect of dissemination policies examines whether they 
are message-based or location-based. By this, we mean whether 
the dissemination priority is based on the content of the message 
or strictly on the location of the underlying data.  

In DAIDS we developed one location-based policy suitable for 
any platform that has a geographic area of interest. This policy 
treats that area as an information filter, assigning the maximum 
priority of 1000 to reports from that area and a priority of 0 to 
reports outside that area. 

This type of dissemination policy was developed to implement a 
suggestion by the sponsor concerning implementation of 
“Commander’s Information Pull.” This type of dissemination 
policy achieves “virtual pull” but directing the top priority 
dissemination of information meeting a particular criterion 
determined by the commander. 

Platform Policies: The third method of classifying 
dissemination policies is by the platform is receiving the 
message. For example, the proxy agent for an Apache Longbow 
helicopter will have different types and weights for information 
than a dismounted infantry unit. In DAIDS we developed 
dissemination policies for helicopters, dismounted infantry units, 
and artillery units. The dissemination policies for helicopters 
and infantry units were of the same form but with different 
parameters reflecting differing needs. The dissemination policy 
for the artillery unit is an implementation of the location-based 
policy described earlier. 

Sensor Report Dissemination Factors 
In this section we use sensor reports as an illustrative example of 
message prioritization in DAIDS. The dissemination policies for 
sensor reports received the most attention during the DAIDS 
research because sensor report messages are most relevant to the 
initial goal of DAIDS to make the sharing of important parts of 
the CROP more effective.  

At the most abstract level, the priority score for a sensor report 
is: 

  Priority = BaseScore + ContextScore + ContentScore 

The Base Score is adjusted to ensure all but the least important 
sensor reports receive a priority greater than the initial priority 
of entity state messages. Currently DAIDS uses a base score of 
400 for sensor reports. 

The Context Score reflects unique information priorities for the 
receiving platform. The operational context of the receiving 
platform plays an important role in evaluating the priority of 
messages for the platform. In DAIDS our context model for 
receiving platform includes position and velocity data and the 
operational mode of the platform. Factors considered include 
whether the recipient is operating its own sensors and if the 
recipient and the sender have a relationship of close cooperation 
known as a “wingman” relationship. 

The Content Score is computed from the sensor report data. 
The sensor report includes data on the target’s kinematics 
parameters (position and velocity), identity (type, affiliation), 
and associated positional uncertainty. The DAIDS dissemination 
policies currently disregard the positional uncertainty but use the 
other factors in determining the content score, which is modeled: 

 ContentScore = AffiliationScore + TargetTypeScore  
+ RangeScore + SpeedScore 
 

The affiliation score reflects whether the sensor report is about a 
friendly, neutral, or hostile target. The target type score captures 
a classification of the target as air, ground, etc. and combines 
this with the type of the receiving platform to evaluate level of 
threat, and therefore, level of importance. The range score is 
based on the current distance of the target from the recipient, 
and also its projected closest point of approach. The speed score 
considers the speed of the target, including“closing speed, which 
is the speed of approach to the receiving platform.  

Arbitration 
Each proxy agent uses the dissemination policies to compute the 
importance of the message to its principal platform. However, a 
sending platform may be sending messages to multiple 
recipients. The sending platform requires an arbitration policy to 
reconcile the priorities computed by the proxy agents. As 
currently implemented, these arbitration policies depend on 
whether the data link uses a broadcast protocol or a peer-to-peer 
protocol. 

When the network uses a broadcast protocol, each report is sent 
to all recipients. In this case, the arbitration policy takes the 
average of the priorities computed by the proxy agents to 
determine the place of the message on the DAIDS priority 
queue. 

When the network uses a peer-to-peer protocol messages are 
sent individually to each recipient. In this case the messages are 
placed on the priority queue in accordance with their priority 
scores as computed by the proxies. If one recipient is privileged 
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to hold “wingman“ status with the sender, messages to that 
recipient are placed higher on the queue and sent earlier than 
messages to other recipients. 

Future Enhancements to Dissemination Policies 
As presently implemented, the dissemination policies in DAIDS 
prove the DAIDS hypothesis that operational benefits can be 
obtained from intelligent prioritization of information in 
bandwidth-limited environments. These policies were heavily 
tailored toward use in the DAIDS simulation environment and 
the AMUST-D sensor report format. The adaptation of DAIDS 
for use in other command and control systems gives an 
opportunity to develop enhanced dissemination policies. In this 
section we describe some possible enhancements. 

Intervisibility Modeling: The present DAIDS 
dissemination policies do not address line-of-sight issues 
between the principal and the target. This is because the DAIDS 
simulation did not include an intervisibility model. If line-of-
sight computations are available to DAIDS these results can be 
used to improve the dissemination policies. The principle to be 
implemented would be “Targets obscured from the principal 
should receive a higher priority than targets the principal can 
detect with his own sensors.”  For this enhancement to be useful 
DAIDS would need to be embedded in a higher-fidelity 
simulation or a command and control system. 

Target Posture: The posture of the target reflects the 
likelihood the target will attempt to engage Blue units. 
Indicators that the target is adopting a hostile posture include 
weapons employment, starting up weapons systems, using fire 
control sensors, and aggressively pursuing Blue units. This 
information could enhance the dissemination policy, using the 
principle that “targets with a hostile posture should receive 
increased priority.” 

Target Aging: Sensor reports are currently prioritized 
based on their snapshot information. However, it seems that 
sensor reports concerning a target which hasn’t been seen or 
shared lately would have a higher priority than reports on a 
target for which reports are being sent regularly. An additional 
score for target aging would address this aspect. 

Information Quality: The data associated with a 
sensor report includes an estimate of the associated area of 
uncertainty, expressed as an ellipse. It is plausible that reports 
with a lower degree of uncertainty have a higher dissemination 
priority than reports with a higher degree of uncertainty. One 
candidate model for the information quality score is: 

 InfoQualityScore = K * NominalAreaOfUncertainty 
/ AreaOfUncertainty 

where K is a normalizing constant.  

Image Report Location Metadata: The present 
dissemination policy for image reports is simple, considering 
only the size of the image report. A better dissemination policy 
could consider metadata associated with the image itself. One 
type of metadata concerns the location of the image. A candidate 
policy would assign priority to the image report based on the 
degree of overlap with an area of interest or based on the 
distance from the receiving platform. 

Entity State Deviation From Plan: Presently, 
DAIDS uses the principle that “The longer it has been since I 
reported in to my teammates, the more important it is that I do 
so.” However, there is an opportunity to reduce the number of 

entity state messages being sent. Each DAIDS platform has the 
capability to publish a plan describing its intended position and 
posture over time. It is possible to compute the platform’s 
deviation from its plan and use this to determine the priority of 
the entity state message. The corresponding principle would be 
“My entity state reports have a lower priority if I am operating 
in accordance with my published plan.” 

More Sophisticated Arbitration Policies: The current 
arbitration policy in broadcast mode has the drawback that the 
priority of important messages can be diluted if there are other 
platforms where the message is not important. For example, 
there are three recipients for a sensor report with the priority for 
recipient A being 900, the priority for recipient B being 700 and 
the priority for recipient C being 500. The average priority of the 
message will be 700, which may fall quite low in the priority 
queue. To address this problem, alternative methods of 
combining priorities from different proxies can be studied and 
implemented in DAIDS. Some alternative arbitration policies 
are: 

• Place the message on the priority queue in accordance 
with the maximum priority computed by any of the 
proxies. 

• Compute a weighted average of the priority scores that 
emphasizes the platforms where the message is the 
most important. Taking the example above, we assign 
a weight of nine for where the most important 
message, four for the second most important, and one 
for the least important. This would result in a 
composite priority of 814, placing it higher on the 
priority queue than a score of 700 would place it. The 
actual weights to be assigned need to be determined 
through experimentation. 

• Determine a criticality threshold (priority score of 900, 
for example). If any proxy assigns a priority score 
about that threshold then use that priority score for 
arbitration. Otherwise, use the average score. This will 
have the advantage in percolating the most critical 
reports to the top of the queue. 

3. DAIDS TESTING 

Summary 
We conducted experiments in order to determine whether 
DAIDS prioritization provides a measurable improvement in the 
time to disseminate critical information under a variety of 
conditions typically found in a simple military scenario. We 
found that DAIDS provides significant reduction in the time 
needed to share critical information when compared with “First 
In, First Out” dissemination whenever the available bandwidth 
is limited. When bandwidth is not limited DAIDS performs as 
well as FIFO dissemination. We also found that the performance 
of DAIDS is strongly tuned to the information needs of the 
recipient. 

Test Procedure 
Hypothesis: Using DAIDS intelligent prioritization, 

critical information is delivered significantly faster than a "first-
in, first-out" (FIFO) dissemination protocol. 

Test Metric: The test metric was the effective latency 
of the dissemination process for critical reports. We define the 
effective latency as the mean value of the time delay between 
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the queuing of the report by the sender and the receipt of the 
report. 

Scenario Assumptions: In order to control the 
number of variables in the experiment, we made some 
simplifying assumptions:  

• The scenario was set on flat terrain in daytime with 
good visibility conditions. There was no modeling of 
intervisibility. 

• The receiving platforms remained essentially 
stationary during the scenario. 

• Information being shared was limited to sensor reports 
and entity state messages. No image reports were 
transmitted during the experiment. 

• The DAIDS platforms ran on a single computer. This 
was necessary to ensure accurate timestamps for 
queuing and receipt events. 

Controllable Variables 
Communications Bandwidth: We ran the scenario 

using bandwidths of 4800 baud and 1200 baud. 4800 baud was 
chosen to approximate the nominal bandwidth of a 
representative tactical communications network currently in use 
by the Army. 1200 baud was chosen to examine network 
performance when that bandwidth is degraded. 

Communications Mode: We simulated broadcast and 
point-to-point (P2P) protocols. 

Team Size: We ran the experiments with team sizes 
of seven platforms (one UAV, three helicopters, and three 
infantry platoons) and four platforms (one UAV, two 
helicopters, and one infantry platoon.) 

Uncontrollable Variables 
The primary uncontrollable variable in the experiment was 
processor performance. To ensure accurate time stamps for the 
collection of the latency metric we had to run all DAIDS agents 
on a single computer. This is an unnatural and artificial 
condition. Early experiments have shown that the efficiency of 
the processor depends on external factors like the ambient 
temperature of the room in which the computer is housed. We 
assume that the performance of the processor is essentially 
constant during a run but may vary between runs. We performed 
a small pilot experiment to examine the change in performance 
from run to run. We observed a high degree of variation between 
runs, but the relative values of the test metrics tracked each 
other.  

Scenario Description 
Our scenario featured a Blue tactical team consisting of a UAV 
sending sensor reports to helicopters and dismounted infantry 
units. There were several hostile and neutral units to represent 
possible combinations of target type (aircraft or ground vehicle), 
affiliation (hostile or neutral), and offensive capabilities (sensors 
and weapons carried). 

The hostile and neutral units maneuvered through the scenario 
area during a 40-minute period. The movement of the targets 
was designed to explore several combinations of proximity and 
closing speed between the targets and the Blue platforms.  

Analysis Methodology: Before running the test we 
obtained assessments for the importance of the sensor reports 
from a retired Army Aviation Major General who was a 
consultant for the DAIDS contractor team and from a 
representative of the sponsoring organization. The consultant 
and the sponsor’s representative were each presented with the 
scenario and asked to determine the time intervals during which 
the targets were of critical importance, major importance, or 
minor importance for each member of the tactical team. The 
guidelines provided by the consultant were also used in the 
development of the information dissemination policies used by 
DAIDS. For each run we determined the average latency for 
sensor reports of critical, normal, and minor importance. These 
statistics are not independent, as an increase in the number of 
critical reports results in an increased time to transmit sensor 
reports of lower importance. Therefore statistical techniques 
such as Analysis of Variance (ANOVA) have questionable 
applicability. However, we will still be able to get a strong 
comparison of the average latency for each level of importance.  

Pilot Experiment: Run-to-Run Variation: The pilot 
experiment examined whether multiple runs of the experiment 
under the same conditions (team size seven platforms, 
communications bandwidth 1200 baud, peer-to-peer 
communications protocol) exhibited the same DAIDS 
performance. We ran this same scenario six times to test for 
variation in latency values across the runs. 

Critical reports had an overall mean of 242.3 seconds with a 
standard deviation of 76.1. (High value 334, low value 157). 
Normal criticality reports had an overall mean of 2910.3 seconds 
with a standard deviation of 695.3. (High value 3770, low value 
2031). Minor criticality reports had an overall mean of 7187.2 
seconds with a standard deviation of 767.6. (High value 8178, 
low value 6046). 

The average latencies of the three criticality categories had a 
very high degree of correlation. For example, Critical and 
Normal reports had a correlation coefficient of 0.974 across the 
six runs. This means that the external factors affected the entire 
experiment independently of the criticality categories. This 
indicates that comparisons of results for a given set of conditions 
are a valid indicator of relative benefits of DAIDS prioritization. 
However, comparisons of results across differing sets of 
conditions are less valid, as external factors may be a greater 
source of differences in results. 

Results Using Contractor Team Importance 
Assessments: We performed initial test runs using report 
criticalities determined by the DAIDS contractor team. These 
runs showed that DAIDS prioritization shows great benefits in 
bandwidth-limited conditions and under peer-to-peer 
communications protocols. Under high bandwidth, broadcast-
protocol conditions, DAIDS performs as well as a “first in, first 
out” dissemination protocol.  

We present the results for a 1200-baud bandwidth using a peer-
to-peer protocol and a large tactical team, the most challenging 
bandwidth conditions. We divided the average latency by the 
overall average transmission time to normalize each set of 
results. This was necessary because external factors render the 
comparison of absolute magnitudes useless for comparison 
purposes, as we discovered in our pilot experiment. In Table 1, 
the number shown is the factor by which the dissemination time 
is improved, equal to the average time for all reports divided 
bythe average time for reports of the given level of criticality. 
As the bandwidth conditions became less restrictive the 
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performance improvements shown by DAIDS were less marked. 
However, at no point did DAIDS perform worse than FIFO. 

 

 DAIDS FIFO 

Critical 27.139 0.895 

Normal 2.286 0.973 

Minor 0.768 1.023 

Table 1: Timeliness Improvement Factor, Peer-to-Peer, 1200 
Baud, Small Team 

 

Comparison of Results Using Both Importance 
Assessments: Having observed the disparity between the results 
using importance assessments generated by the Contractor Team 
and by the sponsor, we decided to perform one more experiment 
with both sets of criticality encodings. We chose conditions of 
1200 baud, peer-to-peer communications protocol and a small 
team size enhance the magnitude of the latency differences. The 
table below gives the number of reports and the mean latency 
for reports that have importance assessments corresponding to 
the row and column headings. For example, there were 27 
reports that were assessed as being critical using both Contractor 
team and sponsor assessments. The average latency for these 
reports was 334.6 seconds. The average latency for all reports 
was 5762.9 seconds, which was used as the normalizing factor 
in Table 2. 

 

Number of 
Reports 

Improvement 
Factor 

Sponsor 
Critical 

Sponsor 
Normal 

Sponsor 
Minor 

Row 
Aggregates 

Contractor 
Critical 

27 
17.241 

52 
27.027 

265 
31.250 

344 
28.249 

Contractor 
Normal 

16 
3.448 

476 
2.232 

792 
1.536 

1284 
1.751 

Contractor 
Minor 

165 
0.873 

658 
1.245 

2841 
0.742 

3664 
0.806 

 Column 
Aggregates 

208 
1.066 

1186 
1.595 

3898 
0.895 

5292 
1.000 

Table 2: Comparison of Results Using Sponsor and 
Contractor Assessments 

 

4. SUMMARY 

Conclusions 
The performance results using the Contractor assessment 
indicate that DAIDS provides measurably, significantly faster 
dissemination of critical sensor reports in situations where the 
available bandwidth limits the rate at which reports can be 
transmitted. In our experiment, these conditions occurred when  

the baud rate was low (1200 baud and below) or a peer-to-peer 
communications protocol was used. 

Where the Contractor and sponsor assessments agreed, DAIDS 
provided the expected benefits in reduction of latency for higher 
priority reports. 

In any column, DAIDS provided the expected benefits in 
reduction of latency for higher priority reports. 

Less than 8% of the reports assessed by the contractor team as 
critical were assessed as critical by the sponsor’s evaluator. Less 
than 13% of the reports assessed by the sponsor’s evaluator as 
critical were assessed as critical by the Contractor team. This 
indicates a divergence of information prioritization needs 
between the two evaluators. The DAIDS prioritization scripts 
were based on the same parameters and heuristics as the 
contractor assessment, which means that reports assessed as 
critical by the sponsor’s assessor did not receive high 
dissemination priority scores. 

We conclude that DAIDS performance is strongly tuned to the 
information needs of the recipient. When the dissemination 
prioritization scripts match the information needs closely then 
DAIDS is effective at disseminating critical information much 
more quickly 

 than non-critical information. When the prioritization policies 
are not matched to the information needs of the recipient DAIDS 
does not provide any performance benefits. 

Ongoing Work: In our Phase II research we have 
implemented the DAIDS concept. Our testing proves that 
DAIDS provides measurable, significant benefits with the faster 
transmission of critical information in bandwidth-limited 
environments. This proven technology is available to the U.S. 
Army for transition toward operational use. 

The DAIDS technology is be the backbone for two follow-on 
LM ATL research initiatives, described here. 

GUAVA: In the General Unmanned Aerial Vehicle 
Associate (GUAVA) system, DAIDS was used as a 
communication control layer between a UAV and a command 
and control PDA system. DAIDS was responsible for 
prioritizing control commands, context changes and system 
failure messages between the processing engines on both 
systems. The UAV was considered one platform, the PDA 
another.  

UAMS: In the UAV Airspace Management System 
(UAMS), we proposed a hybrid approach to airspace 
management that dynamically adjusts the balance of centralized 
and distributed control strategies among multiple distributed 
airspace managers (AMs). The distribution of intelligence 
among these multiple AMs within the airspace management 
system provides a greater number of resources available for the 
computation of the problem of collision detection and 
deconfliction. Dynamically adjusting the control of airspace 
management among these airspace managers permits 
exploitation by decomposing both the computational load and 
the bandwidth requirements of the problem, and can benefit 
from the topographical/geometric decomposition of the airspace. 
The DAIDS architecture provides a head start in the necessary 
intelligent dissemination and communications awareness aspects 
of UAMS. 
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