

DAIDS: a Distributed, Agent-based Information Dissemination System

Pete HAGLICH, Mike KOPACK and David VAN BRACKLE
{peter.haglich, michael.a.kopack, david.van.brackle}@lmco.com

Lockheed Martin Advanced Technology Laboratories, 1800 Parkway Place, Suite 900
Marietta, GA 30067, USA

ABSTRACT
The Distributed Agent-Based Information Dissemination
System (DAIDS) concept was motivated by the need to share
information among the members of a military tactical team in an
atmosphere of extremely limited or intermittent bandwidth. The
DAIDS approach recognizes that in many cases
communications limitations will preclude the complete sharing
of all tactical information between the members of the tactical
team. Communications may be limited by obstructions to the
line of sight between platforms; electronic warfare; or
environmental conditions, or just contention from other users of
that bandwidth. Since it may not be possible to achieve a
complete information exchange, it is important to prioritize
transmissions so the most critical information from the
standpoint of the recipient is disseminated first. The challenge is
to be able to determine which elements of information are the
most important to each teammate. The key innovation of the
DAIDS concept is the use of software proxy agents to represent
the information needs of the recipient of the information. The
DAIDS approach uses these proxy agents to evaluate the
content of a message in accordance with the context and
information needs of the recipient platform (the agent’s
principal) and prioritize the message for dissemination. In our
research we implemented this approach and demonstrated that it
provides nearly a reduction in transmission times for critical
tactical reports by up to a factor of 30 under severe bandwidth
limitations.

DAIDS was developed as the result of a Phase I and Phase II
Small Business Innovative Research (SBIR) project for the
Army’s Aviation Applied Technology Directorate (AATD). It
was developed by ISX Corporation, with support from the
Lockheed Martin Advanced Technology Laboratories (LM
ATL), and implements LM ATL’s Grapevine concept. (LM
ATL acquired the ISX Corporation in July 2007, after this was
written. All references to ISX are now LM ATL.)

Keywords: Agents, Agent Architectures, Interoperability, Data
Access, Fusion, Information Dissemination, Situation
Awareness.

1. DAIDS TECHNICAL DESCRIPTION
DAIDS is an agent-based communications prioritization system.
It maximizes the use of available bandwidth by applying a
“First-In-Best-Out” scheme. The determination of “Best” is
policy-based, using operational knowledge. These policies are
very easy to modify, and can even be determined in the field.
Thus, DAIDS provides a communications prioritization
mechanism that is based upon operational elements, rather than
simply technical elements such as message size.

Each platform in a DAIDS-enabled scenario has a Proxy for
each teammate and other friendly platform in the scenario.

These Proxies represent their principals in vying for information
this platform has to offer.

Each DAIDS platform maintains a Context—a collection of
attribute/value pairs that are useful in determining importance of
information to that platform. These contexts may contain static
information, such as the platform type (e.g., Helicopter, Ground
unit, UAV), and various immutable attributes (e.g., size, weight,
max speed). Contexts may also contain dynamic information,
such as position, altitude, speed, current mission, current
operating mode, etc. Contexts can also contain fine-grained
specifications of platform information needs, such as areas of
interest or specific enemy units that are of particular interest.
Every platform maintains its own Context. It keeps track of its
own internal state, and updates its context accordingly.

Every Proxy maintains a Context for its principal, which it uses
to help determine the importance of new information to its
principal. Platforms keep their Proxies up-to-date via Entity
State Messages (ESMs). These messages are sent to all other
platforms whenever a platform significantly deviates from the
information in its context. Entity State Messages contain ONLY
changes to Context information. They are prioritized and placed
on the Priority Queue, along with all other elements of new
information. They initially have a very low priority, so other
information may go out first. However, as an ESM remains in
the queue, its priority increases so that it will, eventually, be
sent. There is never more than one ESM in the queue. If a new
one is generated while an old one is still on the queue, the two
are merged.

Each platform and each proxy maintains a Deduced Reckoning
(DR) model for the physical platform’s movement, in order to
reduce the number of ESMs issued. The DR model is linear. As
long as a platform maintains a constant speed and bearing, it
remains true to its DR model, and no new ESM needs to be
sent. This is consistent with many simulation paradigms.

Contexts, both at the platform level and on the proxies, are
extremely configurable. Clearly, different platform types require
different information, so they have different Context templates.
These are specified in XML by platform type, and are easy to
modify. At runtime, new elements may be added to a Context
for even more flexibility.

Information is packaged for distribution in Messages. Any new
piece of information is passed to an appropriate Parser, which
extracts a set of attribute/value (A/V) pairs describing that
information. There are different Parsers for different types of
messages. The A/V pairs are passed to the proxies for analysis.
The information itself is packaged in a Message and placed on
the Priority Queue with the assigned priority. These message
parsers are separate, and easily implemented, so new types of
information may be easily added for prioritization and
distribution.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 538 ISSN: 1690-4524

After a new piece of information is parsed into A/V pairs, these
pairs are given to the Proxies, which then run their own
Prioritization Scripts. These scripts take A/V pairs from the
Message Parser, and from the Proxy’s Context, and compute a
priority and an expiration time. There is a different
Prioritization Script for each type of platform, and more can be
added easily, without having to recompile the system. The
scripts are currently coded in Python, a simple scripting
language, and are easily modifiable or even written from
scratch, using only the knowledge of a user familiar with
spreadsheet formulas.

Once a priority is computed, each message is placed on the
Priority Queue, and is dispatched in priority order. There are
some additional algorithmic enhancements to increase the
efficiency of this mechanism. Messages waiting in the queue
past their expiration times are sent back to the proxies to be
reprioritized, as are messages which are selected for dispatch
but can’t be sent due to a network collision. The retry rate also
varies based on priority, so that important messages have a
higher probability of getting network resources, even across
platforms.

DAIDS supports two modes of operation: Broadcast, and Peer-
to-peer. In Broadcast mode, it is assumed that there is a single
communications channel, so there is no point-to-point
communications between platforms, and information must be
broadcast to all Platforms at the same time. In this mode, the
Priority responses from the Proxies are averaged, and the
information is sent once. Other aggregation techniques could
also be used. In Peer-to-peer Mode, it is assumed there are
multiple communications channels, and information can be sent
directly between specific platforms. In this mode, a piece of
information will be placed on the Priority Queue multiple times,
once for each other platform it must be sent to. For example, if
there are five platforms in the scenario, then each platform will
have proxies for the other four platforms. Each new piece of
information will be put on the queue four times, possibly with
four different priorities.

Architecture
The DAIDS system is an agent-based architecture, centers
around a cluster of agents that are referred to as a Platform.
These java-based agents can run on virtually any agent
architecture system through the use of an ISX abstraction layer
known as ISAF. By using ISAF it is simple to change the
underlying agent system (provided there is an ISAF
implementation available to support the new agent architecture.)
As a result, while the DAIDS program was initially based on
top of the CoABS Grid agent system, it now runs on top of the
Lockheed Martin EMAA system.

In addition to the base configuration, ISX has built a testbed and
supporting user interface components to assist in development,
testing, and demonstration of the core DAIDS system. These
supporting modules provide simulation capabilities and allow us
to create multiple DAIDS nodes running on one physical
machine, while at the same time simulating bandwidth
constraints and network topologies.

Components
Each physical system that will use DAIDS for communications
control will contain its own DAIDS Platform constellation. This
group of agents contains a primary control agent called a
Platform, a Disseminator that is responsible for controlling

prioritization of messages, a group of PlatformProxy agents that
represent the other platform nodes in the network, and a
CommIO agent that is responsible for all communications
processing between nodes. These are the minimum required
components to support the DAIDS functionality.

Platform Agent: The platform agent provides a
virtualized representation of the system on which DAIDS has
been deployed. Information such as the context of the local
system (location, operation mode, direction and speed of travel,
etc.) is held in the platform and used for updating remote
DAIDS nodes about the status of the local platform. The
platform agent is responsible for accepting communications
from other remote DAIDS nodes, and interfacing with
applications on the local platform. The platform agent maintains
a list of all incoming message traffic from other nodes and
relays it to local applications. Conversely, any message traffic
coming from local applications are prioritized and queued for
delivery to the other remote DAIDS nodes. The process of
prioritization is controlled through the Disseminator agent.

Disseminator Agent: The disseminator agent is
responsible for taking any messages that come into the platform
and determining a delivery priority score. It passes the message
to each of the Platform Proxy agents and waits for their
evaluation of importance. It applies an algorithm to combine the
scores from each of the remote nodes to arrive at a final priority
score. This algorithm is encoded within a user-modifiable script
and can be changed at any time to fit the needs of the system on
which DAIDS is being deployed.

PlatformProxy Agents: Each local DAIDS node will
contain one PlatformProxy Agent per remote DAIDS node on
the network. These Proxy agents represent the last
communicated state of the remote node, except for position,
which is projected via the dead reckoning model. This state, or
context, is used by the proxy in determining the importance of
messages to be delivered to that node. The determination of this
priority is controlled through a user-editable script file that
correlates information between the message and the proxy’s
context and arrives at a numerical score. This score is returned
to the Disseminator.

PlatformCommIO Agent: Each platform suite also
contains one PlatformCommIO agent. This agent is responsible
for handling all communications between DAIDS nodes. It is
expected that every deployment of DAIDS in a real system will
require a new implementation of the CommIO agents. In our
testbed environment the implementation is responsible for
handling flow control and simulating bandwidth constraints.
These requirements are not necessary when deploying in an
actual operational environment.

Application Interface Agents: In our testbed
environment the main application supported by the DAIDS
network is the sensor sharing system that feeds into a common
relevant operational picture (CROP) display. This is not the
only type of application that could be supported through the
DAIDS infrastructure. To support other applications, Agents
that interface the application with the DAIDS platform are
needed. The Platform agent must be modified to understand
these agents, and handlers for any application specific message
traffic types must be created. While this does require a code
recompile operation to integrate new applications, the procedure
involved is simple and straightforward, with template interface
specifications provided for new message formats, and clearly

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 5 39ISSN: 1690-4524

Platform

Out

In

Platform Cluster

Proxy

Proxy Proxy

Proxy

Disseminator

External
Systems

Other
Platforms

IO

Platform Agent
•Maintains context for this
platform
•Maintains priority queue,
sends out messages

IO Agent
•Abstracts communication
specifics away from
Platform agent

Proxy Agents
•Maintain context for their
principals
•Computes priority for
outgoing messages

Disseminator Agent
•Distributes messages to
Proxies
•Receives and Normalizes
their results

In/Out
Agents
•Provide
connectivity
to external
systems

Figure 1: Platform-Level DAIDS Architecture

demarcated locations in the code for placing implementation
specific code.

Assessment Scripts: The real power of DAIDS is in
the assessment scripts. These scripts are a user-configurable
piece of Python code that combine the data found in the message
to be prioritized, and the perceived context held in the Proxy of
the platform as inputs to the assessment process. The user can
use these inputs to determine a formula for a prioritization score.
This prioritization score should fall within a rank of 0 (not
interested at all, don’t send it ever) to 1000.0 (VERY important,
send immediately). It is important for the assessment script to
adequately spread scores across this range to reflect varying
importance levels of messages. Average importance messages
should fall somewhere in the middle of this range, near 500.0.

In addition, assessments have a timeout value associated with
them. This time-out indicates to the platform how long the
assessment score is valid. This helps ensure that the propriety
score of a message waiting on the queue for a period of time
doesn’t become invalid as the situation changes.

Devising and testing assessment scripts that prioritize
information correctly will always be the biggest challenge in
deploying a DAIDS system. However, with a well-crafted
assessment script, exemplary performance can be achieved.

Contexts: The DAIDS system uses the concept of a
Context to represent internally the state of the platform it is
representing. Contexts can contain any type of information that
can be represented in an XML format. An example context for a
helicopter might contain location, speed, mode of operation,
status, flight plan, and weapons. The information template can
be uniquely specified for each platform type, will each instance
having its own data set. The platform communicates this context
to all other nodes on the DAIDS network, so that the proxies on
those other nodes can know the state of their principle, and use it
for prioritization. In addition, the DAIDS system periodically
sends updated context information to the other nodes to
synchronize them with the current state of the principle. In these

situations, only changes are sent, not a full picture of the
context. This reduces network impact to the minimum possible
while maintaining DAIDS capabilities.

Testbed Environment: The testbed environment was
built in order to debug and demonstrate DAIDS. It provides
visibility into the operation of DAIDS, as well as the ability to
manipulate the scenario. Among the features the testbed
environment provides:

• A view of the agents

• A view of the message traffic, both textually and
graphically

• A view of each platform’s CROP

• A view of each platform’s Outgoing Message Queue

• A view of each platform’s Context

• The ability to create new platforms

• The ability to manipulate the apparent bandwidth and
simulate pairwise communications blackouts

• A Scripting capability to run designed scenarios

With the testbed, a complex scenario can be executed, observed,
and metrics measured.

Protocols
In the DAIDS development testbed we have developed two
different communication protocol examples. The first is a
broadcast mechanism that simulates half-duplex shared
communications similar to multiple users talking on a single
radio frequency. When one node is sending, all remote nodes
receive the message (even if it’s not meant for them), and all
other nodes are blocked from sending during that time. When
running in broadcast mode, there is a 1:1 relationship between
incoming messages and outgoing messages in the Platform. For
example, if the local platform needs to deliver a message to five

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 540 ISSN: 1690-4524

remote nodes, there will be a single copy of the message queued
with all five remote nodes addresses encoded.

The second protocol is a Peer-to-Peer mode that is full duplex
and operates similarly to each pair of nodes having two channels
on which to communicate, independent of all other nodes. If the
local platform needs to deliver a message to five remote nodes,
for example, it will need to queue up the message five times,
each copy having its own distinct destination node address.

All messages in the DAIDS system encoded as java String data.
This does preclude handling binary data. To support binary or
serialized data we require the information be UUEncoded
(Base64) so it can be represented as a String.

Multiple message types and formats can be supported, and it is
simple to support additional types. For each message type a
custom parser class must be implemented according to an
interface. This parser should be written to pull important data
elements out of the message and store them in a structured,
delimited manner, as well as encoding the names of individual
data element fields. This information is passed to the
PlatformProxies that take this data and inject it into a Jython
interpreter for the assessment scripts. For example, in our
testbed, images are encoded in Base 64. The ImageReport parser
reads this data, and determines the file size, specifies a type
(GIF or JPEG) and assigns each of those data elements to a field
name. When the message is injected into the Jython Assessment
interpreter, the assessment script can use the type and file size to
determine the criticality score for this message (for example,
larger images should have a lower priority because they’ll tie up
bandwidth longer.)

All communications between DAIDS nodes is provided by the
underlying Agent architecture (which must rely upon the
communications infrastructure of Java, the OS and the network
socket driver implementation.) As a result, DAIDS itself is not
in control of the network. DAIDS simply prioritizes and orders
the data so it is sent in a most-important-first manner.

Advanced Features: Built into the DAIDS system are
several features that were implemented to maximize the benefits
of DAIDS and allow for a balanced control of multiple DAIDS
nodes without additional communications overhead. These
features are:

Periodic Reprioritization – A thread examines all queued
outbound messages to look for any messages that have timed
out. These messages are sent back for re-assessment so they can
be re-prioritized with new scores that more accurately reflect the
importance to the destination platform at this time.

Reprioritization on Block – Any time a platform attempts to
send a message, if the bandwidth is blocked causing an inability
to send (for instance, in a broadcast environment where
somebody else transmitting) the outbound message is sent back
for reprioritization. This can possibly cause it to be given a
lower prioritization score. This lower score might force it to no
longer be the most important thing to send at this time and
would allow the new highest priority element to bubble to the
top of the queue.

Dynamic Retry Rates – DAIDS will dynamically adjust the rate
at which it tries to send a message based on the priority score of
that message. The higher the priority, the less time it will wait
between attempts. This lowers the latency between attempts for
high priority items, while at the same time providing a basic
means of network balancing between nodes. For example, if

node A is transmitting and nodes B and C both have data
waiting to be sent, when A finishes and clears the channel
whichever node (B or C) has a higher priority message will retry
faster and will be more likely to be the one to get control of the
channel next. While this is not guaranteed, it is more likely to
occur, and without the need for transmitting sync messages to
control this behavior.

Bandwidth Awareness – The platform measures the time it takes
between attempts to send a message and when it receives
acknowledgement (from the PlatformCommIO agent) that the
messages was successfully sent. This measurement is used to
determine the effective bandwidth at the time of transmission.
This measurement is fed back into the Disseminator agent and
can be used inside the Disseminator’s Assessor script to modify
the prioritization scores coming into it from the Proxies. This
allows DAIDS to perform any tweaking that is desired (for
example, if in a low bandwidth situation, we might want to
distribute low, medium and high priority scores more than
normal.)

2. DISSEMINTATION POLICIES IN DAIDS
Prioritized dissemination of critical information in DAIDS is
predicated on the ability to express information needs and pass
them to proxy agents hosted by the platform providing the
information. These information needs are expressed as
dissemination policies. The technical details for the
implementation of the dissemination policies by the proxy
agents were described in Section 1. In this section, we describe
the various types of dissemination policies used in DAIDS, the
factors that are considered by the specific dissemination policies
encoded in the Phase II DAIDS Prototype, and how messages to
different platforms are arbitrated.

Types of Dissemination Policies
The DAIDS implementation of dissemination is flexible and
allows for a variety of prioritization policies. In the Phase I and
Phase II development we focused on dissemination policies
needed for an application of DAIDS to a problem of interest for
the sponsor. This scenario involves the exchange of information
between military units cooperating as a team in tracking
potentially hostile targets. We categorize these policies in
several ways. The first categorization axis relates to the type of
message being prioritized. The next categorization axis relates to
whether the prioritization policy is target-based or location
based. The final categorization axis describes the intended
recipient of the message.

Message Types: The current implementation of
DAIDS includes prioritization policies for three specific types of
messages. These are sensor reports, image reports, and entity
state messages. Our DAIDS architecture includes abstraction of
the message concept. This allows the future addition of new
types of messages to be sent using the tactical data link and the
development of dissemination policies for them.

The primary focus of DAIDS was to enhance the data fusion
process through the prioritized transmission of critical target
Sensor Reports. The contractor team spent the most effort in
developing dissemination policies for sensor reports. The
prioritization of sensor reports is discussed at length in Section 3
of this chapter.

While prioritization of sensor reports for the fusion process was
the initial focus of DAIDS, we were prompted by the project
sponsor to consider situations where the tactical data link is used

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 5 41ISSN: 1690-4524

to share image data. These Image Reports compete for
bandwidth with sensor reports. Because a typical image has
more content than a sensor report, it has the potential to tie up
the data link for a long time. These considerations led us to a
prioritization criteria where most images received a lower
priority than most sensor reports. Our initial dissemination
policy for image reports is simply based on the size of the
image. In Section 4 below we suggest some more advanced
dissemination policies for image reports.

The current prioritization formula for image reports is:

 Priority = ImageSize/100

In order for the proxy agents to be able to assign a meaningful
priority to messages, the proxy agents must maintain the current
context of their principals. For this and other reasons Blue team
members who are not in radio silence send periodic reports of
their position and context to other members of the tactical team.
These Entity State Messages share the same data link and
compete for bandwidth with sensor reports. Therefore, the
priority of these e messages needs to be reconciled with the
priority of sensor reports.

In our implementation, we assume that most entity state reports
have a lower priority than most sensor reports. We also assume
that the urgency of reporting own context to teammates should
increase with the time since the previous report. The formula for
the priority of an entity state message is:

 Priority = 550 + Increment*TransmissionAttempts

The time between transmission attempts and the amount of
priority increase per transmission attempt can be configured in
an XML file that is provided with the DAIDS software
distribution. Presently DAIDS uses a 50 second interval between
transmission attempts for entity state messages and an increment
of 25 per transmission attempt.

Message-Based vs. Location-Based Policies:
Another aspect of dissemination policies examines whether they
are message-based or location-based. By this, we mean whether
the dissemination priority is based on the content of the message
or strictly on the location of the underlying data.

In DAIDS we developed one location-based policy suitable for
any platform that has a geographic area of interest. This policy
treats that area as an information filter, assigning the maximum
priority of 1000 to reports from that area and a priority of 0 to
reports outside that area.

This type of dissemination policy was developed to implement a
suggestion by the sponsor concerning implementation of
“Commander’s Information Pull.” This type of dissemination
policy achieves “virtual pull” but directing the top priority
dissemination of information meeting a particular criterion
determined by the commander.

Platform Policies: The third method of classifying
dissemination policies is by the platform is receiving the
message. For example, the proxy agent for an Apache Longbow
helicopter will have different types and weights for information
than a dismounted infantry unit. In DAIDS we developed
dissemination policies for helicopters, dismounted infantry units,
and artillery units. The dissemination policies for helicopters
and infantry units were of the same form but with different
parameters reflecting differing needs. The dissemination policy
for the artillery unit is an implementation of the location-based
policy described earlier.

Sensor Report Dissemination Factors
In this section we use sensor reports as an illustrative example of
message prioritization in DAIDS. The dissemination policies for
sensor reports received the most attention during the DAIDS
research because sensor report messages are most relevant to the
initial goal of DAIDS to make the sharing of important parts of
the CROP more effective.

At the most abstract level, the priority score for a sensor report
is:

 Priority = BaseScore + ContextScore + ContentScore

The Base Score is adjusted to ensure all but the least important
sensor reports receive a priority greater than the initial priority
of entity state messages. Currently DAIDS uses a base score of
400 for sensor reports.

The Context Score reflects unique information priorities for the
receiving platform. The operational context of the receiving
platform plays an important role in evaluating the priority of
messages for the platform. In DAIDS our context model for
receiving platform includes position and velocity data and the
operational mode of the platform. Factors considered include
whether the recipient is operating its own sensors and if the
recipient and the sender have a relationship of close cooperation
known as a “wingman” relationship.

The Content Score is computed from the sensor report data.
The sensor report includes data on the target’s kinematics
parameters (position and velocity), identity (type, affiliation),
and associated positional uncertainty. The DAIDS dissemination
policies currently disregard the positional uncertainty but use the
other factors in determining the content score, which is modeled:

 ContentScore = AffiliationScore + TargetTypeScore
+ RangeScore + SpeedScore

The affiliation score reflects whether the sensor report is about a
friendly, neutral, or hostile target. The target type score captures
a classification of the target as air, ground, etc. and combines
this with the type of the receiving platform to evaluate level of
threat, and therefore, level of importance. The range score is
based on the current distance of the target from the recipient,
and also its projected closest point of approach. The speed score
considers the speed of the target, including“closing speed, which
is the speed of approach to the receiving platform.

Arbitration
Each proxy agent uses the dissemination policies to compute the
importance of the message to its principal platform. However, a
sending platform may be sending messages to multiple
recipients. The sending platform requires an arbitration policy to
reconcile the priorities computed by the proxy agents. As
currently implemented, these arbitration policies depend on
whether the data link uses a broadcast protocol or a peer-to-peer
protocol.

When the network uses a broadcast protocol, each report is sent
to all recipients. In this case, the arbitration policy takes the
average of the priorities computed by the proxy agents to
determine the place of the message on the DAIDS priority
queue.

When the network uses a peer-to-peer protocol messages are
sent individually to each recipient. In this case the messages are
placed on the priority queue in accordance with their priority
scores as computed by the proxies. If one recipient is privileged

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 542 ISSN: 1690-4524

to hold “wingman“ status with the sender, messages to that
recipient are placed higher on the queue and sent earlier than
messages to other recipients.

Future Enhancements to Dissemination Policies
As presently implemented, the dissemination policies in DAIDS
prove the DAIDS hypothesis that operational benefits can be
obtained from intelligent prioritization of information in
bandwidth-limited environments. These policies were heavily
tailored toward use in the DAIDS simulation environment and
the AMUST-D sensor report format. The adaptation of DAIDS
for use in other command and control systems gives an
opportunity to develop enhanced dissemination policies. In this
section we describe some possible enhancements.

Intervisibility Modeling: The present DAIDS
dissemination policies do not address line-of-sight issues
between the principal and the target. This is because the DAIDS
simulation did not include an intervisibility model. If line-of-
sight computations are available to DAIDS these results can be
used to improve the dissemination policies. The principle to be
implemented would be “Targets obscured from the principal
should receive a higher priority than targets the principal can
detect with his own sensors.” For this enhancement to be useful
DAIDS would need to be embedded in a higher-fidelity
simulation or a command and control system.

Target Posture: The posture of the target reflects the
likelihood the target will attempt to engage Blue units.
Indicators that the target is adopting a hostile posture include
weapons employment, starting up weapons systems, using fire
control sensors, and aggressively pursuing Blue units. This
information could enhance the dissemination policy, using the
principle that “targets with a hostile posture should receive
increased priority.”

Target Aging: Sensor reports are currently prioritized
based on their snapshot information. However, it seems that
sensor reports concerning a target which hasn’t been seen or
shared lately would have a higher priority than reports on a
target for which reports are being sent regularly. An additional
score for target aging would address this aspect.

Information Quality: The data associated with a
sensor report includes an estimate of the associated area of
uncertainty, expressed as an ellipse. It is plausible that reports
with a lower degree of uncertainty have a higher dissemination
priority than reports with a higher degree of uncertainty. One
candidate model for the information quality score is:

 InfoQualityScore = K * NominalAreaOfUncertainty
/ AreaOfUncertainty

where K is a normalizing constant.

Image Report Location Metadata: The present
dissemination policy for image reports is simple, considering
only the size of the image report. A better dissemination policy
could consider metadata associated with the image itself. One
type of metadata concerns the location of the image. A candidate
policy would assign priority to the image report based on the
degree of overlap with an area of interest or based on the
distance from the receiving platform.

Entity State Deviation From Plan: Presently,
DAIDS uses the principle that “The longer it has been since I
reported in to my teammates, the more important it is that I do
so.” However, there is an opportunity to reduce the number of

entity state messages being sent. Each DAIDS platform has the
capability to publish a plan describing its intended position and
posture over time. It is possible to compute the platform’s
deviation from its plan and use this to determine the priority of
the entity state message. The corresponding principle would be
“My entity state reports have a lower priority if I am operating
in accordance with my published plan.”

More Sophisticated Arbitration Policies: The current
arbitration policy in broadcast mode has the drawback that the
priority of important messages can be diluted if there are other
platforms where the message is not important. For example,
there are three recipients for a sensor report with the priority for
recipient A being 900, the priority for recipient B being 700 and
the priority for recipient C being 500. The average priority of the
message will be 700, which may fall quite low in the priority
queue. To address this problem, alternative methods of
combining priorities from different proxies can be studied and
implemented in DAIDS. Some alternative arbitration policies
are:

• Place the message on the priority queue in accordance
with the maximum priority computed by any of the
proxies.

• Compute a weighted average of the priority scores that
emphasizes the platforms where the message is the
most important. Taking the example above, we assign
a weight of nine for where the most important
message, four for the second most important, and one
for the least important. This would result in a
composite priority of 814, placing it higher on the
priority queue than a score of 700 would place it. The
actual weights to be assigned need to be determined
through experimentation.

• Determine a criticality threshold (priority score of 900,
for example). If any proxy assigns a priority score
about that threshold then use that priority score for
arbitration. Otherwise, use the average score. This will
have the advantage in percolating the most critical
reports to the top of the queue.

3. DAIDS TESTING

Summary
We conducted experiments in order to determine whether
DAIDS prioritization provides a measurable improvement in the
time to disseminate critical information under a variety of
conditions typically found in a simple military scenario. We
found that DAIDS provides significant reduction in the time
needed to share critical information when compared with “First
In, First Out” dissemination whenever the available bandwidth
is limited. When bandwidth is not limited DAIDS performs as
well as FIFO dissemination. We also found that the performance
of DAIDS is strongly tuned to the information needs of the
recipient.

Test Procedure
Hypothesis: Using DAIDS intelligent prioritization,

critical information is delivered significantly faster than a "first-
in, first-out" (FIFO) dissemination protocol.

Test Metric: The test metric was the effective latency
of the dissemination process for critical reports. We define the
effective latency as the mean value of the time delay between

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 5 43ISSN: 1690-4524

the queuing of the report by the sender and the receipt of the
report.

Scenario Assumptions: In order to control the
number of variables in the experiment, we made some
simplifying assumptions:

• The scenario was set on flat terrain in daytime with
good visibility conditions. There was no modeling of
intervisibility.

• The receiving platforms remained essentially
stationary during the scenario.

• Information being shared was limited to sensor reports
and entity state messages. No image reports were
transmitted during the experiment.

• The DAIDS platforms ran on a single computer. This
was necessary to ensure accurate timestamps for
queuing and receipt events.

Controllable Variables
Communications Bandwidth: We ran the scenario

using bandwidths of 4800 baud and 1200 baud. 4800 baud was
chosen to approximate the nominal bandwidth of a
representative tactical communications network currently in use
by the Army. 1200 baud was chosen to examine network
performance when that bandwidth is degraded.

Communications Mode: We simulated broadcast and
point-to-point (P2P) protocols.

Team Size: We ran the experiments with team sizes
of seven platforms (one UAV, three helicopters, and three
infantry platoons) and four platforms (one UAV, two
helicopters, and one infantry platoon.)

Uncontrollable Variables
The primary uncontrollable variable in the experiment was
processor performance. To ensure accurate time stamps for the
collection of the latency metric we had to run all DAIDS agents
on a single computer. This is an unnatural and artificial
condition. Early experiments have shown that the efficiency of
the processor depends on external factors like the ambient
temperature of the room in which the computer is housed. We
assume that the performance of the processor is essentially
constant during a run but may vary between runs. We performed
a small pilot experiment to examine the change in performance
from run to run. We observed a high degree of variation between
runs, but the relative values of the test metrics tracked each
other.

Scenario Description
Our scenario featured a Blue tactical team consisting of a UAV
sending sensor reports to helicopters and dismounted infantry
units. There were several hostile and neutral units to represent
possible combinations of target type (aircraft or ground vehicle),
affiliation (hostile or neutral), and offensive capabilities (sensors
and weapons carried).

The hostile and neutral units maneuvered through the scenario
area during a 40-minute period. The movement of the targets
was designed to explore several combinations of proximity and
closing speed between the targets and the Blue platforms.

Analysis Methodology: Before running the test we
obtained assessments for the importance of the sensor reports
from a retired Army Aviation Major General who was a
consultant for the DAIDS contractor team and from a
representative of the sponsoring organization. The consultant
and the sponsor’s representative were each presented with the
scenario and asked to determine the time intervals during which
the targets were of critical importance, major importance, or
minor importance for each member of the tactical team. The
guidelines provided by the consultant were also used in the
development of the information dissemination policies used by
DAIDS. For each run we determined the average latency for
sensor reports of critical, normal, and minor importance. These
statistics are not independent, as an increase in the number of
critical reports results in an increased time to transmit sensor
reports of lower importance. Therefore statistical techniques
such as Analysis of Variance (ANOVA) have questionable
applicability. However, we will still be able to get a strong
comparison of the average latency for each level of importance.

Pilot Experiment: Run-to-Run Variation: The pilot
experiment examined whether multiple runs of the experiment
under the same conditions (team size seven platforms,
communications bandwidth 1200 baud, peer-to-peer
communications protocol) exhibited the same DAIDS
performance. We ran this same scenario six times to test for
variation in latency values across the runs.

Critical reports had an overall mean of 242.3 seconds with a
standard deviation of 76.1. (High value 334, low value 157).
Normal criticality reports had an overall mean of 2910.3 seconds
with a standard deviation of 695.3. (High value 3770, low value
2031). Minor criticality reports had an overall mean of 7187.2
seconds with a standard deviation of 767.6. (High value 8178,
low value 6046).

The average latencies of the three criticality categories had a
very high degree of correlation. For example, Critical and
Normal reports had a correlation coefficient of 0.974 across the
six runs. This means that the external factors affected the entire
experiment independently of the criticality categories. This
indicates that comparisons of results for a given set of conditions
are a valid indicator of relative benefits of DAIDS prioritization.
However, comparisons of results across differing sets of
conditions are less valid, as external factors may be a greater
source of differences in results.

Results Using Contractor Team Importance
Assessments: We performed initial test runs using report
criticalities determined by the DAIDS contractor team. These
runs showed that DAIDS prioritization shows great benefits in
bandwidth-limited conditions and under peer-to-peer
communications protocols. Under high bandwidth, broadcast-
protocol conditions, DAIDS performs as well as a “first in, first
out” dissemination protocol.

We present the results for a 1200-baud bandwidth using a peer-
to-peer protocol and a large tactical team, the most challenging
bandwidth conditions. We divided the average latency by the
overall average transmission time to normalize each set of
results. This was necessary because external factors render the
comparison of absolute magnitudes useless for comparison
purposes, as we discovered in our pilot experiment. In Table 1,
the number shown is the factor by which the dissemination time
is improved, equal to the average time for all reports divided
bythe average time for reports of the given level of criticality.
As the bandwidth conditions became less restrictive the

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 544 ISSN: 1690-4524

performance improvements shown by DAIDS were less marked.
However, at no point did DAIDS perform worse than FIFO.

 DAIDS FIFO

Critical 27.139 0.895

Normal 2.286 0.973

Minor 0.768 1.023

Table 1: Timeliness Improvement Factor, Peer-to-Peer, 1200
Baud, Small Team

Comparison of Results Using Both Importance
Assessments: Having observed the disparity between the results
using importance assessments generated by the Contractor Team
and by the sponsor, we decided to perform one more experiment
with both sets of criticality encodings. We chose conditions of
1200 baud, peer-to-peer communications protocol and a small
team size enhance the magnitude of the latency differences. The
table below gives the number of reports and the mean latency
for reports that have importance assessments corresponding to
the row and column headings. For example, there were 27
reports that were assessed as being critical using both Contractor
team and sponsor assessments. The average latency for these
reports was 334.6 seconds. The average latency for all reports
was 5762.9 seconds, which was used as the normalizing factor
in Table 2.

Number of
Reports

Improvement
Factor

Sponsor
Critical

Sponsor
Normal

Sponsor
Minor

Row
Aggregates

Contractor
Critical

27
17.241

52
27.027

265
31.250

344
28.249

Contractor
Normal

16
3.448

476
2.232

792
1.536

1284
1.751

Contractor
Minor

165
0.873

658
1.245

2841
0.742

3664
0.806

 Column
Aggregates

208
1.066

1186
1.595

3898
0.895

5292
1.000

Table 2: Comparison of Results Using Sponsor and
Contractor Assessments

4. SUMMARY

Conclusions
The performance results using the Contractor assessment
indicate that DAIDS provides measurably, significantly faster
dissemination of critical sensor reports in situations where the
available bandwidth limits the rate at which reports can be
transmitted. In our experiment, these conditions occurred when

the baud rate was low (1200 baud and below) or a peer-to-peer
communications protocol was used.

Where the Contractor and sponsor assessments agreed, DAIDS
provided the expected benefits in reduction of latency for higher
priority reports.

In any column, DAIDS provided the expected benefits in
reduction of latency for higher priority reports.

Less than 8% of the reports assessed by the contractor team as
critical were assessed as critical by the sponsor’s evaluator. Less
than 13% of the reports assessed by the sponsor’s evaluator as
critical were assessed as critical by the Contractor team. This
indicates a divergence of information prioritization needs
between the two evaluators. The DAIDS prioritization scripts
were based on the same parameters and heuristics as the
contractor assessment, which means that reports assessed as
critical by the sponsor’s assessor did not receive high
dissemination priority scores.

We conclude that DAIDS performance is strongly tuned to the
information needs of the recipient. When the dissemination
prioritization scripts match the information needs closely then
DAIDS is effective at disseminating critical information much
more quickly

 than non-critical information. When the prioritization policies
are not matched to the information needs of the recipient DAIDS
does not provide any performance benefits.

Ongoing Work: In our Phase II research we have
implemented the DAIDS concept. Our testing proves that
DAIDS provides measurable, significant benefits with the faster
transmission of critical information in bandwidth-limited
environments. This proven technology is available to the U.S.
Army for transition toward operational use.

The DAIDS technology is be the backbone for two follow-on
LM ATL research initiatives, described here.

GUAVA: In the General Unmanned Aerial Vehicle
Associate (GUAVA) system, DAIDS was used as a
communication control layer between a UAV and a command
and control PDA system. DAIDS was responsible for
prioritizing control commands, context changes and system
failure messages between the processing engines on both
systems. The UAV was considered one platform, the PDA
another.

UAMS: In the UAV Airspace Management System
(UAMS), we proposed a hybrid approach to airspace
management that dynamically adjusts the balance of centralized
and distributed control strategies among multiple distributed
airspace managers (AMs). The distribution of intelligence
among these multiple AMs within the airspace management
system provides a greater number of resources available for the
computation of the problem of collision detection and
deconfliction. Dynamically adjusting the control of airspace
management among these airspace managers permits
exploitation by decomposing both the computational load and
the bandwidth requirements of the problem, and can benefit
from the topographical/geometric decomposition of the airspace.
The DAIDS architecture provides a head start in the necessary
intelligent dissemination and communications awareness aspects
of UAMS.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 5 45ISSN: 1690-4524

	P169012

