

Development and Evaluation of a Model

for Modular Automation in Plant Manufacturing

Uwe KATZKE
Katja FISCHER

and

Birgit VOGEL-HEUSER

Automation and Process Control Engineering
Faculty of Electrical, Information, and Media Engineering, University of Wuppertal

Wuppertal, 42119, Germany

ABSTRACT

The benefit of modular concepts in plant automation is seen
ambivalent. On one hand it offers advantages, on the other hand
it also sets requirements on the system structure as well as
discipline of designer. The main reasons to use modularity in
systems design for automation applications in industry are
reusability and reduction of complexity, but up to now modular
concepts are rare in plant automation. This paper analyses the
reasons and proposes measures and solution concepts. An
analysis of the work flow and the working results of some
companies in several branches show different proposals of
modularity. These different proposals in production and process
engineering are integrated in one model and represent different
perspectives of an integrated system.

Keywords: Modularity, Reuse, Automation.

1. INTRODUCTION AND TASK ANALYSIS

In machine and plant automation for production and process
engineering huge application software and hardware often is
developed with much more than 3000 input/output points
(process variables), which represent sensors and actuators.
The software development in process automation is still
dominated by the languages for programmable logic controllers
(PLCs) [1, 2] standardized by the International Electrotechnical
Commission (IEC) [3]. The IEC 61131 languages are function-
oriented. The designed applications consist of pieces of code,
which are part of the IEC engineering concept. Usually plants
are programmed in plant automation industry with IEC
languages. Such a plant is unique and during design reusability
is not in the first place. Nevertheless many times these
implemented modules are used as draft for the next unique
plant. As a result modules are often very complex. These
complex modules are not subdivided into granular pieces.
Consequently these modules are difficult to manage and
maintain. The request to simplify complexity of plants exists
not only because of maintenance problems, but this is one
reason why systematic approaches and modeling are necessary.
Several projects are working on reusable modular concepts and
will be summarized in the following as a basis for the
introduction of this analysis. For example the idea of the project
Föderal [4] is the integration of engineering disciplines
(mechanical, electrical, etc.) in one modular reusable approach.

The goal should be a construction kit oriented engineering
process for machine tools. The organization of their so-called
mechatronic components have to occur in standard libraries of
the construction kit and in project-specific libraries. The basic
requirements of the underlying Federal Information
Architecture (FIA), which have to be considered, are among
others a modular and open structure. The kernel of this initiative
consists, inter alia, of three engineering companies, which are
organized in the German Engineering Federation (VDMA).
MoWiMa [5] and Mova [6], two similar approaches, stand for
modeling and reuse of object-oriented machine software closely
connected to mechanical engineering concepts. The goal was to
provide pre-conditions in order to increase the degree of
reusability of control software in machine and plant
manufacturing, to reduce the development costs and time, as
well as to raise the software quality and flexibility. Mova was
successful only with a specific development environment
(ECAE system, PLC and human machine interface - HMI) and
wasn’t applied from any company, outside the project. Both
approaches couldn’t bridge the gap from university to industrial
use, because there is a lack of practicability and an economic
development perspective.
Another phenomena increase the problem. The Unified
Modeling Language (UML) [7] as modeling standard for
business processes is not accepted in this domain up to now,
maybe because of missing notation constructs for modeling
characteristic process automation aspects [8]. By that the
appropriate modeling language for the description and
documentation of such modules is not available yet.
Further approaches are following. Schnieder et al. [9] analyzed
several modeling techniques and their suitability for different
process characteristics. Friedrich et al. [10] worked on a
comparison of modeling techniques for process control
engineering. Biermann et al. [11] analyzed UML and Idiomatic
Control Language (ICL) regarding decentralized systems. The
results of these approaches show the lack of an appropriate
accepted modeling technique for the design of plant automation
integrating hardware and software as well as architectural
aspects.
However aspects as for example reusability and modularity are
aimed but not achieved up to now in plant automation industry.
Nested structures and encapsulation are not considered in
industry at all until now. These aspects are well known and
adopted in computer science. Indeed computer scientists deal
with the same kind of computer and profit by the

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 4 15ISSN: 1690-4524

with the same kind of computers and profit by the homogeneous
structure of these systems. General structures can be designed
easier for uniform systems, but in process automation industry –
especially in machine and plant manufacturing – the developer
deals with heterogeneous systems.
Nevertheless, the solution appears to exist and it seems it only
has to be mapped. But the industrial success is still missing. A
first hint for these problems is, that reusability of modules failed
in most cases because the following aspects have been slightly
or not at all considered in industry.
 Analysis and structuring of plant requirements respective

modularity of machine and plant automation
 Documentation of available already tested modules
 Acceptance of developer to use modules out of a library,

which is not self-provided
 Standardization and maintenance of module libraries
 Development of concepts of new modules respective

adaption concepts of modules in case of changes
To find and verify the industries aloofness of design
alternatives, an analysis on the base of interviews is
accomplished. In all listed approaches the development of a
modular model is especially interesting in view to distributed
systems. The starting point of concepts as Interface for
Distributed Automation (IDA) [12] or Component Based
Automation (CBA) [13] is the assignment of hardware to a
software module [14].
Other approaches try to map the results of conventional object-
oriented software development to process automation systems
[15, 16].
Beside these points there is no special procedure for change
management, for example for the integration of an added
sensor, an initiator or switch, nor is a concept available how this
could be maintained easily. Additionally users want a free
allocation of software modules to automation devices, to use
modules flexible and cost-efficient.
In this paper the results of the analysis of production
applications and process engineering are discussed. Special
aspects are the concept and the application of module libraries.
First a draft module model is defined. This module is proofed
and extended by conducted interviews with companies of
different application areas and by the inspection of already
existing module libraries respective application soft- and
hardware.

2. REQUIREMENTS

This evaluation considers various automation systems, for
example programmable logic controllers (PLC), industrial
personal computers with IEC 61131-3 runtime environment [1,
2], process control systems, and its engineering tools (initially
of one manufacturer).
Thus the survey handles with heterogeneous distributed real
time systems. From viewpoint of system integrators and plant
operating enterprises the need of standards is evident to build
and to use module libraries. These standards are either reached
through the independence of different manufacturers or through
an orientation which is related to the technology of one major
automation system as a company standard.
The adaption of module libraries requires that development,
maintenance and documentation of modules can be handled
easy. The project engineer shall find the appropriate modules
quickly. It has to be ensured that the module will operate
properly.

Designing the right size of modules and the change
management (version management) belongs to the main
challenges. It is just difficult to identify the right module, if
numerous variants are present in the library. But an extreme
restrictive behavior is not the solution. Using only few, small
modules, which have to be rearranged for any new task doesn’t
generate all the expected benefit of modularity.
The principles of modularity are not restricted to the process of
systems’ design. They have to be regarded from the beginning
of the project in the sales and project planning departments and
keep their relevance beyond operation and maintenance. In fact
a concept for reengineering has to be integrated.
The given task was to examine the concepts of different
industrial users, to find similarities and differences and to
develop and evaluate a common model as a conclusion.
In respect of these requirements a first basic model is built and
evaluated with seven different users. These users represent
sales, basic engineering, detail engineering, implementation,
operating and maintenance in diverse ways. Their branches
belong to production and process engineering.

3. MODULE MODEL

The model for modules is based on three levels. The class of
basic modules builds the first level, the second level clusters
application modules and the third level covers the so-called
project or facility modules (Figure 1). The three levels differ
strictly in method and grade of modules’ reuse. Comparing the
three levels, the occurrence of transparency is contrary to the
ability to reuse modules.
Basic modules are encapsulated as black boxes. The behavior of
these modules can be configured through parameters. These two
aspects are special characteristics of basic modules. These
application independent modules map elementary functions.
In contrast to basic modules application modules are application
dependent, because of different requirements of industrial
applications. They could be integrated in different applications
as a result of module variation. Application modules are
designed by variation of standardized drafts. Sometimes it is
necessary for this reason to know the structure of modules to
create new versions. Application modules can be composed of
basic modules. They are also configured through parameters.
The task of project modules is to decrease complexity of plants
as a result of arrangement in smaller manageable parts.
Normally this draft is designed top-down until the plant is
composed in application modules. Usually a plant is unique. For
this reason there is less reusability of project modules but these
modules are transparent.
Despite its level a module is composed of automation hardware,
PLCs (functionality with operating methods and diagnosis
functions), HMIs, interfaces to super ordinate systems (ERP) as
well as documentation and calculation.

Facility

Fibre
Preperation Press Forming Line

ControllerSensorValve

Transparency

Reusability

Project/ Facility
Module

Application
Module

Basic Module

Figure 1 Three-level-module-model with an application
example of a manufacturing plant of timber industry

16 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 4 ISSN: 1690-4524

On every level the module concept is recursive (Figure 2). Basic
modules may be composed of basic modules as well as
application modules may contain application modules. Basic
modules, which are not composed of other basic modules, are
named atomic modules. These modules are elementary and it is
not reasonable to split them into smaller parts.

Basic Module
Basic Module

Technology Dependent Function
Technology Independent Function

Atomic Module

Basic Module Application Module

Application (Application Module)

Figure 2 Recursive module structure

(e.g. with application and basic modules)

4. EVALUATION

All users validated the three level model for modules. It is
remarkable, that the number of basic modules is very low (less
then 20), even if sophisticated and complex plants are regarded.
In many cases variation and combination of modules is the
preferred way of using modules. Application modules are
apparently a systematic approach to close the gap between reuse
and redesign of modules. They are used as patterns, which are –
according to the used strategy - either restricted or
supplemented.
As an interesting option application modules are divided into
two classes. A so called functional module targets the primary
purpose of applications. All its integral parts are designed to
provide assistance for it. For example a conveyer unit consists
of belts, rolls and mechanical drives as functional modules. In
addition to these functional modules non operating tasks are
handled by add-on-modules. Continuing this example a scanner
would be an addendum to the conveyor unit. A scanner covers
functions like detection and recognition, but it has nothing to do
with transportation. In this context a scanner would be regarded
as an add-on.
The integration of automation hardware is handled differently in
module concepts of the interviewed companies. Inputs and
outputs, respectively process instrumentation are represented in
the module by all users, but only one user realized electrical
hardware (contacts, motors) as an aspect for module design.
During the second phase of the evaluation system integrators
and end customers of automation systems have been involved.
The scope of these interviews was to discuss the benefit of
modules developed by other companies (suppliers). The benefit
of those modules is seen very critical, because communication
to the module designer is disturbed. Interface definitions are
regarded as very important and they are suggested as
insufficient communicated. The exact meaning of such an
interface may be exposed lately parallel to the progress of
implementation. Misunderstandings in the interpretation of
interface descriptions are regarded as a human manner. The
system integrators nearly deny the opportunity of creating
definite, clear descriptions. They claim, that different engineers
will understand modules differently. Some developers prefer a
simple step by step guidance to implement such a module and
others think a detailed comprehension of a module including all
its relations to the system is necessary to benefit from a module
library.

One proposal to handle these interfaces is suggested by the
OMAC for packaging machines. The OMAC (Open Modular
Architecture Controls) [17] has proposed an approach for
representing and standardizing modules in a comprehensible
way. The concept reduces components to generic actions with
clearly defined states. Such modules are defined as a standard,
supplying defined interfaces and behavior. State machines are
used to represent them definitely.

Stopping
{Run Out}

HoldingProducing
{Run}

Running
{Standby} Starting

{START UP}

Off

Ready Stopped Held

Aborting
{Abort}

Aborted

To STOPPING

From PRODUCING To ABORTING

From STOPPING

Stopping
{Run Out}

HoldingProducing
{Run}

Running
{Standby} Starting

{START UP}

OffOff

Ready Stopped Held

Aborting
{Abort}

Aborted

To STOPPING

From PRODUCING To ABORTING

From STOPPING

Figure 3 Automata for representation of the standardized

behavior of a packaging machine by OMAC [18]
Such a description is used for modeling a packaging machine
(Figure 3). Some functions could not be standardized in this
way, because of lack of frequency or acuity detail. Anyway they
could be described in this form.
The complexity of an interface corresponds to the capability of
its module. This is one result of the interviews. Consequently it
has to be deliberated up to which grade of complexity modules
can be transferred to a library. The range reaches from simple
basic modules up to complex modules with an all-inclusive
functionality. The level of application modules offers patterns,
which are qualified to be stored in libraries. So these modules
suggest an agreement between the reuse of unchanged modules
and the frequent design of new, individual modules. Economic
aspects are the basis for the decision, for which level each
module is developed. The decision respects how frequently the
use of a module is expected and what effort is required to
construct it. Definitive rules for this decision are rare.
Some deduced characteristics for modules are described in the
following.

 Number of basic modules
The average number of application independent basic
modules is approximately 15. Most of them are atomic
modules. Results of full reusability of modules are
available, unless the functionality of these modules is
not very complex. Most of the interviewed partners
avoid the development of such modules. There is a
lack of concepts, which compensate the development
costs with reusability to be economically successful.
Nevertheless one company developed these modules
and realized a module library.

 Module dependency on branches
Basic modules are built branch neutral. Application
modules depend on the branch.

 Granularity and complexity
Modules are often very complex. In industry complex
modules are not be subdivided into a granular
structure. Consequently these modules are difficult to
manage and maintain. Nevertheless the request to
simplify complexity of plants exists.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 4 17ISSN: 1690-4524

 Configuration of modules through parameters
Modules should be configured through parameters
independent of the module’s level. In contrast to other
module types basic modules cannot be adapted by
other means. Parameters are just complementary to
other module modifying techniques of application and
project modules.

 Interlocking
Some special interlocking modules exist. They are
cascadable in case of very complex interlocking tasks.
Often it is not seen in industry, that interlocking
modules are necessary. Instead not modular solutions
and auxiliary constructs are used.

 Distributed intelligence
In industry it is preferred to built central automation
systems. Concepts for distribution of software to
hardware (mapping) hardly exist in plant automation.
Only in case of encapsulated devices distribution is
required.

 Combined hardware and software modules
The modular approach, which bundles different
requirements and techniques, is only applied on
software.

 Building of variations
There are different mechanisms for building
variations. One approach is that standardized
application modules are used as drafts for variations.
Another way to build variations is using an adequate
application and modifying it. Variations can be built
through reduction or extension. In case of reduction
the starting point is a module with maximum
functionality and it will be reduced to application
modules. In case of extension the starting point is a
standardized module. The variation is built by adding
furthermore functionality.

 Supplier dependent implementation
All modules are dependent on engaged hardware with
the exception of basic modules.

 Interfaces to other systems
For interfaces to other systems established standards
are applied. For example XML (Extension Markup
Language) is used for module description, OPC [19] is
used as connection to distributed control systems
(DCS), and faceplates are used for the integration of
individual modules to a visualization system.

 Version management
There are different solutions in industry. Some
companies make only a simple marking. Others have
developed business processes to handle access and
application rights.

From this characteristics the following criteria, which are listed
in a table (Table 1), are affiliated. On the basis of these criteria
the requirements of a module can be allocated concerning to the
different levels of the presented module model.

5. SUMMARY AND PROSPECTS

The introduced module model is approved by typical users of
plant automation engineering in Germany. The benefit of

company specific module libraries is accepted as well. The
benefit of general module libraries could not be evaluated
because of the necessary but missing distinct documentation of
modules and interface handling. The module design in diverse
branches may be different. Several aspects, which are listed
below, have to be considered

• which structure (relations)
• which interaction (mechanisms for building interfaces

and their protocols)
• which variation (inheritance, polymorphism)
• which degree of reusability versus rapidity of design

is required. According to these aspects supporting measures will
be used to create a prototypically design. The three-level-
module-model offers an approach to arrange modules adequate.
A further analysis to appoint the requirements of these aspects
is necessary.
During the interviews it could be recognized that innovations
cause acceptance problems. Developers rejected foreign
modules, interfaces and new notations. Novelties can implicate
fear and uncertainty [20]. Though these fears cannot be
abolished completely, however it has to be considered. As a
result small steps are required to introduce progressive
techniques.
The aspects of hardware have been hardly integrated. In the
same way the qualities of distributed intelligence have been
dominated by current customer requests and the cost advantage
of central PLCs. The lack of concepts for distributed software
destroys the strong relation of hard- and software. Therefore a
free mapping of software to corresponding hardware is required.
The growing propagation of components, which are targeted by
technologies like PROFInet [21] and component based
automation (CBA), strengthen the assignment of hard- and
software and consequently distribution is reinforced, too.
The question remains how such modules should be modeled. In
the beginning we discussed several approaches. Therefore other
modeling concepts are essential. Maybe the answer is an
adapted UML. This contains a customization of UML for the
requirements of process automation [22].
Beside the expression possibility of a model it is necessary to
realize the attraction to today’s mode of operation. The software
development in process automation is still dominated by the
IEC 61131-3. One concept to bridge the gap between UML and
function oriented design in industry is an extension of the IEC
61131-3 languages to object oriented aspects. Other concepts
target the mapping of a reduced UML to IEC languages [15,
16].Single extensions of PLC-toolsets, which are also function-
oriented, allow extended modeling features, but they are
isolated and don’t actually deliver concepts for reuse [23].
The same is necessary for the design of state charts, which are
recommended by the OMAC. But the idea of prototypes with
generic functions extends the notation. Another approach is the
adoption of the ICL [10, 11]. In contrast to UML ICL offers
special notation constructs for model- ling typical process
automation aspects. But ICL has other disadvantages. The
comparison of these two languages, ICL and UML, is also topic
of current research projects. All these approaches target gaps in
the contemporary mode of work during modeling, designing
and implementing projects. Further work is necessary, since
new gaps are enforced through the focused view of the specific
projects. Future work will take their advantages and target
towards an integration of different techniques.

18 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 4 ISSN: 1690-4524

Table 1 Module criteria

Criteria Basic Modules Application Modules Project/ Facility
Modules

Project dependency Modules are a source of
well-engineered, branch
independent functions.

Dependent on applications
standardized versions of
modules are created. For
recurring parts, which have a
related form, these modules
would be adapted. Elemen-
tary functions are available as
predefined elements.

These modules have got
less reusability. Supple-
mented with application
modules they reflect the
modeled application. The
intention of project
modules is to give an
overview.

Hardware dependency Module software is not
constraint by hardware. An
exception is interface
software.

Applications are adapted to a
plant and therefore dependent
on hardware.

Project modules depends
on the structure of a plant,
they dependent on hard-
ware.

Dependency on branches Basic modules are
developed branch neutral.

Application modules may
depend on the branch.

Project modules depend on
the branch.

Encapsulation / Black Box
behavior

Basic modules are
encapsulated.

Encapsulation of source code
and variables eliminates
building of variation.

Project modules are
designed top-down as
white box.

Possibilities of adaption Basic modules are adapted
to standardized interfaces
by parameterization.

Application modules are
adapted by building of
variants and standardized
interfaces.

Project modules are
adapted by utilizing open
standards as e.g. OPC or
XML.

Interlocking techniques Interlocking is realized
with special basic modules,
which are standardized and
fixed in a library.

Interlocking is realized with
usage of basic modules.

Interlocking is realized at
the application level.

Recursive structure Basic modules can be
composed of basic
modules.

Application modules are
composed of basic modules.
The composition of different
application modules is
problematically. The integrity
of a module has to be
guaranteed, when a part of
the module is modified.

Composition is possible.
There are nor restrictions
because of reusability.

Change Management Changes of modules could
only be realized with
special change manage-
ment methods because of
requirements. Modified
modules would be
standardized, too.

Missing basic modules would
be requested. New templates
need acceptance procedures.

Project modules are
designed top-down. Every
plant is unique. Therefore
the design of every plant
has to be created new.

Availability Basic modules are
available by a library.

Application modules are
derived from templates of a
library.

Project modules are
designed top-down. Every
plant is unique. Therefore
the design of every plant
has to be created new.

Software Protection
(protection against
misusage)

Independency on hardware
and branch requires
software protection.

The need of software
protection depends on the
dependency on plant and
configuration complexity of a
module.

Software protection is
guaranteed by the close
relationship between the
project modules and the
plant.

Version management Version management
documents status and usage
of basic modules.

Version management
documents status and usage
of drafts.

Version management
documents the status of the
realized system.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 4 19ISSN: 1690-4524

6. ACKNOWLEDGEMENT

The work presented in this paper based on interviews with
industrial partners. We thank all participants for their patience
and cooperation during the interviews and for reviewing our
results.

7. REFERENCES

[1] John, K.-H.; Tiegelkamp, M.: IEC 61131-3.
Programming industrial automation systems.
Springer-Verlag, Berlin, Heidelberg, Germany, 1995.

[2] Lewis, R. W.: Programming industrial control
systems using IEC 61131-3. IEE, Herts, 1998.

[3] www.iec.ch, September 2003.
[4] www.foederal.org, September 2003.
[5] http://www.isw.uni-stuttgart.de/projekte/mowima/

index_e.htm, September 2003.
[6] Diedrich, C.; Günter, F.; Hanitsch, O.; Pastoors, N.;

Petig, M.: MOVA. Modulare Offene Verteilte
Funktionsblocksysteme für die Automatisierungs-
technik. VDMA Verlag GmbH. Frankfurt, 2001.

[7] www.omg.org; September 2003.
[8] Fischer, K.; Vogel-Heuser, B.: UML for real-time

applications in automation. In: Automatisierungs-
technische Praxis (atp) 44 (2002); Heft 10, Olden-
bourg, München, Germany, 2002, S. 63-69.

[9] http://www.iva.ing.tu-bs.de/
[10] Friedrich, David; Vogel-Heuser, Birgit; Bristol,

Edgar: Evaluation of Modeling Notations for Basic
Software Engineering in Process Control. In: 29th
Annual Conference of the IEEE Industrial Electronics
Society (IECON 03) in Roanoke, Virginia, USA,
November 2003.

[11] Biermann, C.; Vogel-Heuser, B.: Requirements of a
process control description language for distributed
control systems (DCS) in process industry. In:
Proceedings of IECON’02, 28th Annual Conference
of the IEEE Industrial Electronics Society, Seville,
November 2002.

[12] European Commission, Interchange of Data between
Administrations, Architecture Guidelines. Ausgabe
4.1, Brussels June 2002.

[13] Siemens, Component based Automation, Configuring
Plants, Working with SIMATIC iMap. Manual, 2001.

[14] Arlt, V., Funktionales Engineering: Ein ganzheitlicher
Engineeringansatz für modulare Maschinenkonzepte.
In: Tagungsband SPS/IPC/ DRIVES 2002, Hüthig
Verlag Heidelberg 2002.

[15] Zhang, Wei; Diedrich, Christian: Comparison
between FB-oriented and Object-oriented Designs in
Control Application. In: IEC TC65/WG6 meeting in
Bamberg, 17-21. June 2002,
http://www.holobloc.com/stds/iec/tc65wg6/meetings/
bambrg02/

[16] Bonfe, Marcello; Fantuzzi, Cesare: Design and
Verification of Industrial Logic Controllers with UML
and Statecharts. In: Proceedings CCA 2003, IEEE,
2003.

[17] Guidelines for Packaging Machinery Automation,
OMAC Packaging Workgroup. Version 2.0,
24.04.2002,
http://www.omac.org/wgs/GMC/Deliverables/Guideli
nes V2.03.pdf.

[18] Andrew McDonald, Collaborative Standards
Development for Packing Machinery. Unilever, ARC
Forum 2002.

[19] http://www.opcfoundation.org, September 2003.
[20] Bullinger, Hans-Jörg: Socio-Economic Aspects of

Human-Computer Interaction. Invited Lecture of the
International Status Conference in Saarbrücken,
Germany, 26.10.2001. In cooperation with the
Fraunhofer Institute for Industrial Engineering (IAO)
and Institute for Human Factors and Technology
Management (IAT), University of Stuttgart, 2001.

[21] http://www.profibus.com/, September 2003.
[22] www.lfa.uni-wuppertal.de/DisPA, September 2003.
[23] Siemens AG: S7-HiGraph for S7-300/400, Manual.

Edition 04/2003.

20 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 4 ISSN: 1690-4524

	P230386

