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ABSTRACT 
 

We attempt to achieve corporative behavior of autonomous 
decentralized agents constructed via Q-Learning, which is a 
type of reinforcement learning. As such, in the present paper, we 
examine the piano mover’s problem. We propose a multi-agent 
architecture that has a training agent, learning agents and 
intermediate agent. Learning agents are heterogeneous and can 
communicate with each other. The movement of an object with 
three kinds of agent depends on the composition of the actions 
of the learning agents. By learning its own shape through the 
learning agents, avoidance of obstacles by the object is expected. 
We simulate the proposed method in a two-dimensional 
continuous world. Results obtained in the present investigation 
reveal the effectiveness of the proposed method. 
 
Keywords piano mover’s problem, reinforcement 
learning, hierarchy agent system 

 
1. Introduction 

 
Original Piano mover’s problem was introduced by 
Schwartz and Sharris [1] for a mathematical model. The 
Piano Mover’s Problem is treated as a problem which 
controls the attitude of an object by iterating rotations and 
parallel translations in order to move the object outside of 
a room. The problem is easy to imagine how difficult to 
solve it because usually people have been faced with 
similar problem when you try to move a sofa in a small 
room or move a grand piano into a room and so on. 
Schwartz and Sharris proved to calculate the optimal path 
mathematically for the case in which the geometries of 
the space that the object passes is set. However, in the 
real world, it is mostly impossible to calculate exactly 
their environment and the objects, for example the sofa is 
now 132.5cm far from the table and if it is moved to 
30cm to write, it is 15cm far from the chair and so on. 
The environment is dynamics.  
 
There are many approaches for motion planning problem 
to solve this problem in real world. Configuration space 
method and potential field method are major approaches. 

The Configuration space method (C-space) treats a robot 
as a point without physical size in the space, and any 
obstacles and free spaces known. Lozano-Perez [2] 
generates the c-space obstacles using Minkowski sum of 
the robot and environment. Dorst,L. and etc.[3] used a 
rasterized c-space approach to plan for a two-link arm. 
Lengyel.J and etc. [4]  rasiterized configuration space 
obstacles into a series of bitmap slices, and dynamic 
programming to create a create a navigation function. 
Khatib.O and Maitre [5] proposed potential field methods 
first. The obstacles were represented as zero level 
surfaces of scalar valued analytic functions. However this 
method has one major problem which is spurious local 
minima, especially for concave robots. Yokoi et al. [6] 
solved this problem using the vibrating potential method. 
In their study, the shape of the object was a rectangle, 
called the AGV (autonomous guided vehicle).  
 
We propose a new piano mover’s problem. The new 
piano mover’s problem includes finding path problem in 
the complex space and in addition the attitude must be 
controlled autonomously. Generally these two problems, 
i.e. finding path problem and controlling attitude problem, 
contradict each other to solve them simultaneously. In 
order to find a path, the global learning is needed but to 
control the attitude, the local learning is necessary for 
collision avoidance.   
 
We view this contradict problem as a geometric 
ambiguous. What the geometric ambiguous means 
includes not matched evaluated signals spatially. To solve 
this ambiguity problem we propose herein a hierarchy 
agent system which has three kinds of agents, a training 
agent, learning agents and an intermediate agent. 
Training agent has no perception about its own shape 
then it cannot be applied to mathematical method. 
Learning agents is also unknown about the shape, but 
grasp it vacantly by learning obstacle avoidance. 
Intermediate agent try to match the evaluated signals 
between a training agent and learning agent. Each agent 
makes its own decision for taking action, so usually the 
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shown path but cannot pass 

axis  of  space 

Amibuity spatially 

f(t,s+ ⊿ s)=f*(t,s) 

ｆ*(t,s): true value for learner 

f(t,s- ⊿ s)=f*(t,s) 

Fig.1  Definition of ambiguity spatially 

Fig.2 The ambiguity restricted spatially (geometry) decisions of the training agent and learning agents are 
different from each other. In other words there is high 
possibilities for training agent to show the wrong path 
which learning agents cannot pass because of the size. 
Intermediate agent is necessary for solving this kind of 
problem. 
 
We propose herein a heterogeneous multi-agent system in 
which homogeneous multi-agents treated as learning 
agents, one training agent and one intermediate agent are 
constructed. Each learning agent takes simple actions, 
and the training agent is it treated as an object. 
Q-Learning [7] is performed for each learning agent, 
which consequently learns obstacle avoidance. The 
TD-method [8] is used for the training agent, which 
learns the path from start to finish. The simple rule is 
applied to intermediate agent. The proposed system is a 
form of hierarchic reinforcement learning. 
 

2. The definition of ambiguity 
 

In this paper a spatially ambiguity is shown (geometry). 
Fig.1 shows the geometric ambiguity. In Fig.1 f*(t,s) 
means the true value for learners. Δt and Δs mean the 
finite differences of time and state respectively. The 
ambiguity is defined as the differences, i.e. t±Δt or s±
Δs. Fig. 2 shows an example the geometric ambiguity. 
Training agent orders to pass the narrow path to learner 
and training agent dose not grasp the learner’s shape 
exactly. Learning agents try to avoid the obstacles but the 
direction of taken action is not same as shown by training 
agent. It causes dead lock. In this kind of unmatched 
evaluated signals case, intermediate agent decided the 
new action by observing both training agent and learning 
agents evaluated signals. The behaviors of intermediate 
signals are important.  
 

3. Proposed System 
 
Three kinds of agent are proposed as follows. The 
training agent indicates the entire object of outline, 
learning agents are constructed inside of the training 
agent and the intermediate agent matches between 
evaluated signals from a training agent and taken action 
by learning agents. Fig.3 shows the outline of our system. 

The advantages of this method are 1) correspondence to 
the variant environment, 2) although each agent requires 
simple architecture, complicated movement is possible, 
3) faults of agents are addressed, and 4) application to 
other problems (not only piano mover’s or motion control 
problems) according to separate heterogeneous agents is 
possible. For example, learning agents learn obstacle 
avoidance, but they learn also suspension, rolling and 
coming and going. These agents simply attempt to avoid 
walls and do not learn how to find the path. If the rewards 
are set finely, then the path can be learned. However, in 
this case the reward setting is focused and should be reset 
as the problem (even the environment) is changed. In 
order to avoid this reward-setting problem, we propose 
the training agent, which learns the path, and shows the 
direction to the learning agents. In this method the reward 
can be set simply. In the following section, we describe 
each agent in detail.  
 

3.1 The architecture of an object 
 
Let the shape of the object be rectangular, and let the 
length of long boundary and short boundary be 2a and 2b 
respectively (a>b). The magnitude of a vector indicating 
an action taken is f, and the mass is M.  
 
Let the initial coordinates of the center-of-gravity be 
(X0,Y0), where t=0. The movement of an object can be 
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Fig.3  Relation ships of three kinds of agent for 
piano mover’s problem. 
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Fig.5 An example of state sets for an agent 
Fig. 4 An example of physical calculation. 

resolved into a parallel translation component and a 
rotation component. The component vectors of force are 
obtained respectively as follows:  
 
For x component, 
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 For y component, 

,0
4

sin
4

sin
4
3sin

4
3sin

=















 −+






+






+






 −=

ππππ ffffFy  

 
Then, we obtain the coordinates after movement in time t 
as 
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In this case, the object has no parallel translation 
component because the center-of-gravity of the object has 
not moved. 
The moment-of-force M_P for the emphasis of agent 2 is 
calculated as follows: 
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The moment-of-inertia I around the center of the object is  

( )
3
1 22 baMI += .  

 
The equation of motion for rotation around the 
center-of-gravity is  

. _ 2
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The equation of motion about θ can then be solved as 
follows:  
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The coordinates of Agent 2 at time t (xt,yt) are then 
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Since the object is a rigid body, its movement can be 
calculated using the relative movement between the 
center-of-gravity and a point not on the body. We 
therefore omit the other agents’ calculation. 

3.2 Learning agents 

Q-learning, which is reinforcement learning, is 
constructed in each learning agent. The state of each 
learning agent is given by sensors information of five 
directions {s0,s1,…,s4}, and one compressed information 
is given by communications. The range of each sensor is 
divided into six stages to obstacles, and each learning 
agent can take actions in four directions, as shown in 
Fig.4. Fig. 5 shows an example of state sets for an agent. 
Each agent can obtain the sensor information (five 
directions) using both their own sensors and the sensors 
of other agents (0 or 1) through communication. 
Therefore, learning agents learn obstacle avoidance by 
cooperating with each other. 
 
Updating Q-values in learning agents is defined in the 
following equation: 
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,where s(t) is the state at time t, o(t) is the taken action ate 
time t, α is the step-size parameter, γ is the discount-rate 

SYSTEMICS, CYBERNETICS AND INFORMATICS                VOLUME 3 - NUMBER 4 87ISSN: 1690-4524



parameter and r is the reward from the environment. If r 
is obtained as a penalty, then both learning and training 
agents can learn obstacle avoidance. The function max 
selects the maximum Q-value action from the finite 
action set Oi. When learning agents take actions, if the 
traning agent collides with an obstacle or does not move 
at all, then the function max becomes, 
  

))(),(())1(),1((max
'

totsQtotsQ iiiiiiOo ii

=++
∈

. 

3.3 Training Agent 

The shape of a training agent is assumed as a rectangle, 
and in the rectangle of each corner four learning agents 
are put in position respectively. A training agent is only 
one. The training agent learns the path from a given start 
point to goal, and shows the direction to the goal location 
to the learning agents. The training agent does not have 
its own sensors, so the movement depends on the learning 
agents.  
 
We used TD-learning for the training agent. The state of 
a training agent is the x-y coordinate. The training agent 
can select an action from a combination of the action 
directions of the four learning agents, which gives a total 
of 256 possible actions. Updating V-values is performed 
using the following equation: 
 

[ ])()()()( 1 ttttt sVsVrsVsV −++← +γα , 
 
We employed TD-learning because Q-leaning depends on 
the dimensionality of the course, and is impossible to 
implement due to the state sets, i.e. the actual coordinates 
of the environment, and the action sets from physical 
calculation. Here, we use reinforcement learning for both 
learning agents and the training agent. However, for the 
training agent, several types of learning systems can be 
applied. If it is easy to give the path roughly, the path can 
be given directly to the training agent. Therefore, the 
autonomous robot can follow the path while avoiding 
obstacles intelligently. In this case, even the learning 
system for an training agent may not be necessary.  
 
3.4 Internal agent  
 

Internal agent matches between evaluated signals from 
training agent and action taken by learning agents. Fig. 6 
shows the strategy of internal agent. A strategy of an 
internal agent is employed here. It is to select the action 
for which the Q-value is maximum among the 
combinations that show the direction decided by the 
training agent. The indicated direction is also described in 
Fig.6. 

 

  
4. Experiments 

Fig.6 Internal agent select the direction among the blue 
arrows.  

Fig. 7 shows the trajectories for different environments of 
size 800 x 800. Learning agents and training agent are 
learning simultaneously. Fig. 8 uses similar environment 
but the goal position is different. In Fig. 8 learning agents 
must switch back near goal. The trajectories are shown 
respectively. Lower small figure shows the expansion of 
appearance of switch back. Fig.9 shows the results of 
different environment. 
 
The common parameters for all simulations are as 
follows: for learning agents; sensor range = 30, 
sensibility = 6 levels, and the movement length is 4 per 
step, for Q-learning; step-size parameter α i= 0.1, 
discount rate γ i ＝ 0.9, initial Q-values ＝ 2.0, and 
penalty ri =－1/(max step number), for the training agent; 
size = (20 x 40), and mass M = 1, for TD learning; 
step-size parameter αe= 0.1, discount rate γe ＝0.9, 
initial V-value＝2.0, and reward re =1 when the agents 
reach the goal. The max step number is 5000 and the 
episode is 1000. The policies of both reinforcement 
learning are greedy algorithms.  
 
 

6. Conclusion 
 
We propose a new piano mover’s problem which includes 
both path finding problem and controlling attitude 
problem. Generally these two problems are incongruous 
with each other. One of them is needed global learning 
and the other is needed local learning. We treated the 
problem as a problem not matched evaluated signals 
spatially (geometric ambiguous). In order to solve this 
new piano mover’s problem, we suggest hierarchy agent 
system which has three kinds of agent, i.e., training agent, 
learning agents and intermediate agent. Training agent 
has no perception about its own shape then it cannot be 
applied to mathematical method. Learning agents is also 
unknown about the shape, but grasp it vacantly by 
learning obstacle avoidance. In this problem there is high 
possibilities for training agent to show the wrong path 
which learning agents cannot pass because of the size. 
Intermediate agent is necessary for solving this kind of 
problem.  
 
From the various experiments it is shown the robustness 
of agent system architecture, it is compared between the  
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Fig.7 The trajectories of a training agent. Start point is 
middle of the mouse and goal position is shown in red 
squared right upper side. Environment size is 800 x 
800. Lower figure shows zoomed of the complex 

behavior, i.e. switch back in the above 
environment. 

Fig.8 An example of the trajectories of a training. Start 
point is middle of the mouse and goal position is shown 

in red squared left upper side in the puteranodon. 
Environment size is 800 x 800. Lower figure shows 

zoomed of the complex behavior, i.e. switch back in the 
above environment. 

case of changing only training agent, and the case of 
changing only internal agent respectively. As a result the 
problem can be solved even though the system has 
changed. According these experiments the easiness of 
changing system and robustness are shown. 
 
Simultaneous learning by two types of agent, i.e. learning 
agents and a training agent, is particularly effective. 
However, the problem of our algorithms is also appeared. 
The learning of the training agent is dominant over that of 
the learning agents, so intermediate agent applies the 
efficiency of the learning of the learning agents is 
diminished. In order to avoid this problem, we must 
investigate adaptive internal agent. In the future, the 
experimental environment will be extended to three 
dimensions. 
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Fig.9 An example of the trajectories of an training 
agent using Exp.3a after learning in a room. The size 

of environment is 800 x 800. Start point is the left 
bottom and goal is shown in red squired left upper 

side. There is only one exit door per room from start to 
goal. 
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