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ABSTRACT 

 
This paper presents a new approach, capable of 3D image 
segmentation and objects’ surface reconstruction. The main 
advantages of the method are: large capture range; quick 
segmentation of a 3D scene/image to regions; multiple 3D 
objects reconstruction. The method uses centripetal force and 
penalty function to segment the entire 3D scene/image to 
regions containing a single 3D object. Each region is inscribed 
in a convex, smooth closed surface, which defines a centripetal 
force. Then the surface is evolved by the geometric heat 
differential equation toward the force’s direction. The penalty 
function is defined to stop evolvement of those surface patches, 
whose normal vectors encountered object’s surface. On the base 
of the theoretical model Forward Difference Algorithm was 
developed and coded by Mathematica. Stability convergence 
condition, truncation error and calculation complexity of the 
algorithm are determined. The obtained results, advantages and 
disadvantages of the method are discussed at the end of this 
paper. 
 
Keywords: 3D centripetal force, multiple surfaces, 
reconstruction, CBIR. 
 
 

1. INTRODUCTION 
 

During the past decade there has been an enormous increase 
of the 3D graphical models obtained from a variety of sources: 
3D scanners, graphical 3D design software, computerized 
tomography, multiple camera views [8] or set of cross sections 
[3,8,11]. At the same time, 3D models and visualization are now 
used routinely in the medical diagnosis, surgical planning, mine 
planning, robotics, graphics design and 3D entertainment/movie 
industry. To store and save these 3D models image databases 
are built. Therefore techniques for indexing and retrieving 3D 
graphical models efficiently and accurately are fast becoming 
indispensable if we wish to query a 3D graphical/image 
database by examples [11,15,19]. Moreover, decision support 
techniques such as case-based reasoning can produce a stronger 
need to retrieve images that can be valuable for supporting 
certain diagnoses [15] as well as evaluating oil or mine deposits 
[32]. The need for more accurate or precise retrieval leads to the 
usage of active learning paradigm to exploit machine learning 
techniques with a human in the loop to learn and extract 
relevant semantics from multimedia content [11]. Linking 3D 
visualization, interpolation/extrapolation, learning, and tracking 
functions to a content based image retrieval (CBIR) will help 
the user to better investigate the subjects of his interest and will 
let him reach rapid and correct decisions.  

Thus, to tackle the problem for accurate retrieval of narrow 
set of 3D graphical data, particularly, a volumetric or polygonal 

mesh model is a key to provide a good environment for decision 
making. In the field of CBIR the main research efforts are 
directed toward the development of methods capable of finding 
suitable and robust representation of features that are able to 
describe and discriminate a set of 3D models (objects) 
[11,18,19,30].  The latter calls for development of a metric 
capable of quantifying suitable similarity definition among 3D 
models and theirs efficient 3D comparing. Follows that the 
primary concern for 3D models retrieval is the extraction and 
representation of theirs shapes and/or theirs 3D surface textures 
[11]. In this paper we consider the geometric heat differential 
equation as a 3D mesh model to be used for 3D shape 
description and presentation in a CBIR system with decision 
support abilities.  

In the sequence of tasks to be achieved for automatic retrieval 
of 3D objects is the problem for 3D image/scene segmentation. 
This problem is also a subject of great interest in the Mobile 
Robotics, Medicine [1,2,4,9], and Mining Industry [22,32,33].  

As a matter of fact, a system designed to deal with 3D 
segmentation should be capable of processing a large amount of 
data that could come from stereo camera in Robotics, computer 
tomograph in Medicine, boreholes or drills in Geology. The vast 
amount of data requires accurate and low-cost numerical 
methods, algorithms and software tools capable of running in a 
quasi real time.  

To respond to the above requirement the present paper 
develops a method, which uses centripetal force and a penalty 
function to segment the entire 3D scene/image to regions 
containing a single 3D object. Each region is inscribed in a 
convex, smooth closed surface, which defines a centripetal 
force. Then the surface is evolved by the geometric heat 
differential equation toward the force’s direction. The penalty 
function is defined to stop evolvement of those surface patches, 
whose normal vectors encountered object’s surface.  

 Once the scene/image is segmented and the 3D objects are 
reconstructed geometric features are to be extracted and 
employed for matching objects [13] and/or content-based image 
retrieval [14,16,30].  

One can find a number of different 3D models that could be 
appropriate for objects’ representation in a CBIR, and used for 
reconstruction and visualization. The first in the list is DICOM. 
Another approach developed in mid 90 is presented in [4,9] and 
applies Delaunay triangulations and Voronoi diagrams. In paper 
[17] smooth functions are used to build 3D object surfaces. The 
method is successfully implemented in a software tool called 
Surf Driver [34]. A 3D reconstruction and visualisation 
approach, and tool based on essential points, and regularities are 
reported in [22]. Later, a 3D interpolation technique and tool 
based on Mathematical Morphology was incorporated into the 
reconstruction method [23]. A 3D iterative modelling of the 
subsurface involving geophysical applications such as 3D ray 
tracing, 3D tomography and migration, reservoir simulation of 
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complex geological structures is reported in [21]. Its software 
implementation is called gOcad, and is presented in [33]. The 
tool offers an opportunity for multiple surfaces intersection and 
union. A powerful 3D model to help open mine management is 
offered by GemCom [32]. 

In the past decade applications of differential equations (DE) 
and variational methods (VM) in computer science experienced 
a significant growth, providing the area with powerful methods 
and tools capable of image segmentation, objects visualization 
and features extraction. The concept of employing DE and VM 
for Image Processing [27] led to a number of significant results 
in image filtering, interpolation, segmentation [27,31], and 3D 
reconstruction and visualization [1,2,8,29]. To guide curve or 
surface evolution some of the models use partial DE 
[7,8,12,17], whereas others minimize an energy functional 
[1,6,29,31] and apply level sets. The level set approach is a 
relatively new technique, which attracts the attention of a 
number of scientists because it allows automatic change in the 
topology, and several objects can be detected simultaneously 
without previous knowledge of them and without using special 
tracking [6,10,20,28,31]. The main disadvantage of the level set 
methods is the relatively high run-time of the software tools 
based on them. 

 The 2D and 3D active contour models are experiencing 
successful applications to CBIR [2,11,15,30,32]. In this field, 
beside the image segmentation and features extraction, they are 
employed in building 3D active shape or point distribution 
models of deformable 3D objects such as soft-tissue organs. 

This paper presents an active surface model (ASM) to be used 
for 3D objects representation in an image database as well as for 
3D image/scene segmentation and multiple objects’ shape 
reconstruction. The model employs the geometric heat DE to 
guide a surface evolvement toward the inward normal vectors 
[7,8,12], employed to determine object’s surface points which 
are used later to reconstruct the shape of the object as a 3D 
mesh. In case of multiple 3D objects, the vector force is first 
employed to split the 3D image/scene to conic regions, which 
we will call shells. The process of segmentation continues until 
a single 3D object remains in each shell. Then a smooth, closed, 
convex surface is defined to inscribe each shell and to define an 
inward vector force. A new penalty function is developed to 
calculate the rate of change of the 3D image function on each 
member of the vector force. Thus, the PF is used to distinguish 
background and foreground voxels. The latter are used together 
with the normal force to generate the object’s surface mesh. The 
Forward Difference Algorithm was employed to implement the 
ASM. A stability convergence condition, truncation error and 
calculation complexity of the discrete model are determined in 
the paper. Mathematica 5.0 is used to code the discrete 
algorithm and design active surface software (ASS). A set of 
experiments was performed to validate the theory. As an input 
ASS uses a set of 2D sections (images) cut from 3D scene by a 
stereo camera (in robotics), computer tomograph (in medicine), 
and drills or boreholes in Geology.  ASS could also use a file, 
whose components are vectors of the form 

),,,,,{ BiGiRiiii glglglzyx , where ),,{ iii zyx  present the voxel’s 
coordinate, while 

BiGiRi glglgl ,,  show the color value of the 
voxel, given by the R, G, B channels.  

The ASM introduced in the present paper has the following 
advantages over the 3D active models given in [1,2,6,12,29]: 
3D scene/image segmentation and multiple objects 
reconstruction; larger capture range; and better calculation 
complexity. The theoretical contribution is in the development 
of a new penalty function, used to stop the surface’s portions 
evolvement.  

To assure a better 3D visualization we added to the ASS a 
painting tool, which orders triangles, constructing the object’s 
surface mesh, with respect to their distance to an observer that 
stays in front of the computer screen [22]. Thus, the closer a 
triangle to the observer, the lighter the gray level.  

The paper is organized as follows: section 2 introduces the 
continuous 3D active model, while the next section develops the 
discrete algorithm; section 4 discusses the stability condition 
that relates the space and time steps in a way to provide a stable 
convergence to the proper 3D object without self intersection 
and 3D curls.  The truncation error added from derivatives 
approximation is determined in the same section; a 
segmentation algorithm is developed in 5; sections 6 and 7 show 
the obtained results, advantages and bottle necks of the method. 

2. THE CONTINUOUS 3D MODEL 

Consider the following parabolic differential equation DE [5]: 

2

2
2 ),(),(

dp
ptud

t
ptu α=

∂
∂ . (1)

Denote by C a closed, smooth, and convex curve parameterized 
by jptyiptxptrptC ),(),(),(),( +==  in the domain [-1,1]x[-1,1], 
where ),0[ ∞∈t  is a time parameter, which parameterizes the 
family of curves, whereas  ]2,0[ π∈p  is a space parameter, 
which parameterizes the particular curve. Substituting in Eq.(1) 
the function u(t,p) with r(t,p) we receive the geometric heat DE: 

dp
Td

dp
dr

dp
d

dp
rd

t
r

→

===
∂
∂ 22

2

2
2 ααα  
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Taking into account that →

=T
dp
dr ,  →

→

= Nk
dp

Td  [24] we arrive at: 

→

=
∂
∂ Nk

t
r 2α , (3)

which presents a vector flow [7,8,12,27], defined by the 

curvature k and the normal vector 
→

N . By 
→

T  we denoted the 
tangent vector to the curve. Extend the vector function r from 
2D to 3D by the following parametric definition: 

ktzjtyitxtr ),,(),,(),,(),,( φθφθφθφθ ++=
 

   (4)

 The time parameter t parameterizes the family of surfaces, 
whereas θ  and φ  parameterize the particular surface, such that 
θ  parameterizes the surface’s curves, which define horizontal 
planes, and φ  parameterizes the surface’s curves, which define 
vertical planes. For the 3D function in Eq.(4) we rewrite Eq.(3) 
in the following form: 

→

=
∂
∂ NH

t
r 2α ,    (5) 

where 
→

N is the normal vector to the surface defined by Eq.(4), 
whereas H is the mean curvature defined by: 

2
φθ kk

H
+

= ,  
3

θ

θθθ
θ

r

rr
k

×
=

,  
3

φ

φφφ
φ

r

rr
k

×
= . 

(6)
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In Eq.(6) we denoted with 
θk  the curvature of the horizontal 

surface’s curves, and with 
φk  the curvature of the vertical 

surface’s curves, whereas 
θr , and 

φr   show the partial 

derivatives with respect to the parameters θ  and φ  

respectively. In Eq.(5) the normal vector 
→

N  is calculated by: 

φθ

φθ

rr
rr

N
×

×
=

→ . (7)

Denote by P a penalty function to be used by the model to 

stop evolvement of all surface patches whose normal vectors 
→

N  
have reached the surface of a 3D object within the image 
I(x,y,z). A replacement of 2α  with P in Eq.(5) yields: 

→

=
∂
∂ NHP

t
r . 

(8)

It is shown in [24] that the penalty function P would take two 
values 0 and 1. Thus the penalty function could be designed as 
an implication 

1,εεP , which maps the rate of change of the 

image function I (x, y,z) on the line interval 
→

∈∆ NHt
 at time t 

to the set }1,0{  :  

}1,0{),,(
1, →⎟

⎠
⎞

⎜
⎝
⎛ ⋅∇== ∫∆

→

∆
t

t
dtNHzyxIIDPP εε

. 

(9)

If the rate of change ID
t∆

, calculated on the interval 
t∆ , which 

belongs to the vector 
→

NH , is between ε   and 
1ε , then 0=P , 

otherwise 1=P . The numbers ε  and 
1ε , represent the 

difference between the background and the foreground of the 
image and are defined by the user. 

3. THE DISCRETE 3D MODEL AND ALGORITHM 

To develop the discrete model we use Eq.(8) and employ the 
following central differences in order to approximate the partial 
derivatives with respect to t and θ  [5]: 

δ
φθδφθδ

2
),,(),,( −−+

≈
∂
∂ trtr

t
r   

h
htrhtrr

2
),,(),,( φθφθ

θ
−−+

≈
∂
∂  

22

2

)2(
),,(),,(2),,(

h
htrtrhtrr φθφθφθ

θ
−+−+

≈
∂
∂  

(10)

Taking into account that the central differences for φ  are the 
same as those for θ  we receive the following Forward 
Difference Algorithm (FDA):  

),,(),,(2),,(),,( φθδφθδδφθδφθδ −−−−≈+
→

tNtPHtrtr
 

(11)

where H and 
→

N  are computed using Eq. (6) and (7), whose 
derivatives are approximated by Eqs.(10). Thus, we rewrite 
Eq.(8) in the following form: 

→
−−−−−+ += 111111 2 j

ik
j

ik
j

ik
jj

ik
j

ik NHPrr δ , 
(12)

 
Figure 1. a) The initial surface, which defines a vector field, 
containing 196 inward normal vectors. b) The normal vectors 
are extended all the way to the center of the domain. 

where j =1,2,3…… is an index that corresponds to t and 
parameterizes the family of surfaces, whereas i=1,2,…..,n and 
k=1,2,…..,n are indexes that correspond to θ  and φ ,  and 
parameterize the horizontal and vertical lines on the particular 
surface. Denote by n the number of normal vectors on each line 
defined by θ  and φ , respectively. Follows that, each surface 
from the family is constructed by mesh containing n2  points. 
The number of normal vectors is the same. 

The discrete form of the penalty function P, introduced by 
Eq.(9), is defined by the following piecewise function: 

⎪⎩

⎪
⎨
⎧ ><

==
otherwiseif

vPSorvPSif
vPP

j
ik

j
ikj

ik 0

)()(1
)( 1

, 1

εε
εε

, 
(13)

where ε  < 
1ε  are thresholds given by the user in order to show 

the difference between the background and foreground. The 
penalty sum j

ikPS   is defined by )()( mdevPS tv

vm
j

ik
j

ik ∑ ∆+

=
= , for 

t
j

ik
j

ik rrv ∆−−= −+ ||,...,0 11 ,  where the penalty difference is 

|)1()(|)( −−= mImImde j
ik

j
ik

j
ik . In the latter equation 

)(mI j
ik

 shows the gray level value of the mth voxel that lies on 
the normal vector at the intersecting point between the ith 
horizontal and kth vertical surface’s lines at time j. It follows 
from Eq. (13), that the algorithm marches || 11 −+ − j

ik
j

ik rr  voxels 
on each normal vector, stops at each voxel m and “looks” 

t∆  
voxels ahead. If the rate of change on the interval 

t∆  belongs to 
[ε ,

1ε ], the marching stops and the surface’s approximation is 
set at the mth voxel. Otherwise, go to voxel m+1 and repeat the 
algorithm. It follows from the above concepts, that the maximal 
error of surface approximation, generated by the normal vector 
force, guided by Eq. (12), is  

t∆ . 
 

4. STABILITY CONDITION AND ACCURACY 

According to [5] the FDA will stably converge to the solution of 
Eq.(8) if and only if the time and space steps ( h,δ ) are related 
by the following inequality: 

2

2h
<δ . (14)

To satisfy Inequality (14) we define the space step h by: 
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12
i id
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  (15)

where id , for i=1,2,3, denote the sizes of the 3D image. 

Therefore if we select the values of h and δ  to satisfy Eqs.(15), 
we are confident that the initial surface will converge to the 
proper 3D object’s surface without self-intersection and curls. 

To determine the accuracy of the FDA we consider the 
following equations [5]: 
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δ
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t
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−−+

=
∂
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)(
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2
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+

−+−+
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∂
∂ φθφθφθ
θ

. 

 (8)

(16)

Note that we will receive the same equations for the derivatives 
with respect to φ . Using Eqs.(16) we determine that the error 
added from approximation of the derivatives is on order of 

)( 42 hO +δ , which is better than the error which will be 
obtained if finite differences are used. The truncation error in 
the latter case is on order of )( 2hO +δ . 

Recall that the Forward Difference method was used to 
develop algorithm (12), but one can employ also backward 
difference method. In this case, depend on the differences used 
to approximate the derivatives, he will obtain again )( 42 hO +δ  
or  )( 2hO +δ . 

5. 3D SHELLS AND SEGMENTATION 

As one can tell from the above presentation, the used normal 
force is a centripetal one. Follows that the ASM is capable of 
reconstructing the surface of a single 3D object only. Moreover, 
the object must contain the mass center of the active surface. To 
overcome this disadvantage and make ASM capable of multiple 
object reconstruction we developed a 3D scene/image 
segmentation method as an extension of the one published in 
[24].  

By definition, a 3D image/scene region is called a 3D object, 
if it consists of one connected set of voxels (points), whose gray 
level does not exceed a given interval [ε ,

1ε ], and whose 
maximum dimension on a horizontal plane is larger then given 
threshold 

h∆ , maximum dimension on a vertical plane is larger 
then 

v∆ , and the dimension along the normal vectors is greater 
then 

t∆ . The latter we call a height, but 
h∆  we call a horizontal 

radial length, whereas 
v∆  is a vertical radial length. In other 

words, to define a 3D object, 
h∆  represents the minimum 

number of normal vectors which lie in a horizontal plane, and 
penetrate at least 

t∆  voxels into an object. Analogously 
v∆  

shows the minimum number of normal vectors which lie in a 
vertical plane and penetrate at least 

t∆  voxels into an objec. 
Now we introduce the notion 3D shell. 
Definition1. A 3D shell is said to be a set of voxels 

},,|)()(|

|)()(|,|)()(|

0)(,)(:0{3

00

00
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00
1
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nwkqsomeforwImI

mImImImI

anduPuIVVDSh

yijij

vikihqjj

ik
u

ikuu

≤∆>−

∆>−∆>−

=== U
 

The Definition1 states that a 3D shell is constructed by the 
center of the domain [−1,1]×[−1,1]×[−1,1] and all voxels 
obtained by the normal vector force and belong to a single 3D 
object (defined by ε ,

1ε , 
h∆ , 

v∆ ,
t∆ ). Thus the shells are 

composed as conic regions, whose vertex is the origin O(0,0,0) 
and their base is constructed by 3D object’s voxels (Fig.2). In 
the left hand image of Fig.2 is presented a less-permeable 
groundwater unit, where the 3D shell voxels are denoted by 
bolded points. 

Based on the above theoretical concepts we developed an 
algorithm to segment a 3D image to shells. The algorithm  starts 
with a convex, smooth and closed surface, which envelops the 
entire 3D scene/image. Then a normal centripetal force is 
defined at each intersecting point between horizontal and 
vertical line. Then the vector force is extended all the way until 
the center of the 3D scene/image.  

If, for a normal vector  
→

N , there exists →

∈∆ Nt
 such that 

0)(
1, =∆ tP εε

 we say that 
→

N  is a zero vector [25]. Otherwise we 

call 
→

N  a nonzero vector. If all vectors in a force are zero we say 
that the force is zero. Otherwise the force is non zero. Follows 
that in order to define a shell the minimum number of 
consecutive horizontal-zero vectors should be 

h∆  and the 
minimum number of consecutive horizontal-zero vectors should 
be 

v∆ .   
 As we stated above the shell algorithm ends if all the vectors 

in the normal force are zero vectors. Otherwise, the algorithm 
determines the shells as conic segments defined by set of 
consecutive horizontal and vertical zero vectors, which satisfy 
Definition1 (Fig.2). Thus the normal force splits a 3D 
scene/image to 3D shells 

kSh , k=1,2,…... In each shell the 

algorithm computes the mass center 
k

__

µ  and determines the 

maximal distance Rk from 
k

__

µ  to the shell’s voxels. Both Rk and 

k

__

µ  are used as radius and center of initial active surface Ck 
inscribing 

kSh . Further a centripetal normal force, with one 
and same dimension is defined for each Ck and extended all the 
way to 

k

__

µ . Then the penalty function is computed for each 
vector in the force. If the normal force is zero in 

kSh  the 
process of subdivision ends for this shell, which holds a single 
region, containing the center of 

kSh . If the force is non zero in 

kSh  the process of subdivision continues, as described above. 
The advantage of shell algorithm over conventional level sets 

and/or explicit algorithms for image segmentation [6,7,8,20] is 
in the significant reduction of the arithmetic operations, because 
the shell algorithm does not really converge in between the 3D 
objects. 

A disadvantage of the shell segmentation is in its inability to 
handle certain 3D objects distributions in the scene/image. For 
example, it won’t be able to segment an image if multiple 3D 
objects are presented there and one of them contains the center 
of the image. Another 3D objects situation that can not be 
handled is if one of the objects is under the “shadow” of another 
one toward the direction of the normal force (Fig.3). 
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Figure 2. The hand right 3D shell contains 3D less permeable 
ground water unit. The left hand 3D shell contains a 3D piece of 
cement.  

 

 
Figure3. A 3D object under the shadow of another one in the 
toward the direction of the centripetal vector force.  

6. IMPLEMENTATION AND RESULTS 

The active contour and surface algorithms that can be found in 
the literature recalculate the normal vectors, and curvatures at 
each time step [1,6,7,8,12,29]. Although these approaches may 
produce better approximation of the 3D objects a substantial 
amount of time is needed to perform the calculations in 3D 
(remember that the vector flow consists of n2 members and 
Eqs.(12) and (13) must be calculated for each vector at every 
time step). To reduce the number of arithmetic operations our 
algorithm calculates the inward normal vectors and the 
curvature at each intersecting point between vertical and 
horizontal surface lines (at j=0), and extends the vectors all the 
way to the center of the image as is shown in Fig.(1b). We can 
perform the mentioned simplification, because the stability 
condition guarantees that the active surface will not change its 
shape until object’s voxels are encountered. Then the algorithm 

moves a distance d= || 1111
→
−−−− j

ik
j

ik
j

ik
j NHPδ  along each vector 

with initial point 0
ijr . Using Eq.(13) the penalty function 

searches for voxels that belong to the interval [ε ,
1ε ], and stops 

the movement for those vectors, on which at least 
t∆  

consecutive non-background voxels are encountered. The first 
one, among the 

t∆  foreground voxels, is set to be a surface 
point. Thus, FDA, introduced by Eq.(12), determines a set M of 
non-background voxels and uses them to generate a surface 
mesh, as an approximation of the 3D object’s surface. To build 
up the mesh the algorithm draws a set of horizontal lines linking 
all voxels Mv∈  which satisfy the following conditions: the 
voxels are indexed with one and the same j, minimum k for this 
j, and i=1,2…,n. To draw the vertical lines the algorithm links 
all voxels Mv∈  with one and the same i, minimum j for this i, 
and k=1,2,…,n. 

Incorporating the above concepts and using FDA (12), we 
have developed ASS (active surface software) using 

Mathematica 5.0. The calculation complexity of the ASS is on 
the order of O(mn2j), where m denotes the number of 3D objects 
in the image, n2 shows the number of the normal vectors, while j 
denotes the number of the time iterations.  

Experiments were performed employing ASS and using 
input files of the following format ),,,{ iiii glzyx , where 

iii zyx ,,  
present voxel’s coordinates, whereas 

igl  shows the gray level 
value of the voxel. For the first experiment we used data 
distributed on five closed, arbitrary but parallel curves which 
construct a surface. As an initial active surface the ASM allows 
for use any convex surface but we will apply a sphere defined 
by: >=< φθφθφ cos,sinsin,cossin RRr , where 2=R . Also 

k
n
πφ 2

= , and  i
n
πθ 2

= , for k, i=0,…..,n-1. The 3D mesh 

reconstructed by the vector field is given in Fig.4. The upper 
image provides a view to the top of the surface mesh in the 
domain [1,1]x[-1,1]x[-1,1], whereas the lower one shows an 
enlarged front view. 

 

 

 
Figure 4.  A 3D mesh constructed by 5 arbitrary curves. The 
upper image shows a view to the top plane, while the lower 
shows a front view. 

For the second experiment we used a file that contains 3D 
brain data distributed on 6 sections. As an initial active surface 
we employed a sphere as is shown in Fig 1. The shape of the top 
section is given in Fig.5(a). The mesh reconstructed by the 
vector force is shown in Fig.5(b), whereas its enlarged and 
painted version is given in Fig. 4(c). To perform the 
experiments we set n=150, which yields 22500 vectors in the 
centripetal force. ASS took less then 20 sec to construct the 3D 
mesh, and a minute to paint it. A PC with CPU clock frequency 
1.8 GNZ was used to perform the experiments. 

7. ADVANTAGES AND CONTRIBUTIONS 

The ASM and segmentation algorithm, developed in the 
present paper, has the following advantages over the 3D active 
surface and level set models given in [1,2,8,10,12,20,29]: larger 
capture range; faster 3D scene/image segmentation.  

The larger capture range (to perform the experiments we 
used 2=R  for the initial sphere, which inscribes the entire 
domain [1,1]x[-1,1]x[-1,1]) is provided by the ASM introduced 
by Eq.(8) and the stability convergence condition given by  
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Figure 5. a) A 2D brain section; b) The 3D mesh constructed 
by using 6 consecutive 2D brain sections; c) Painted 3D portion 
of the brain. 

Eq.(15). The latter allows for setting the initial surface as far as 
we want from the 3D objects, unlike some of the methods given 
in [6,29,31], which must set it close to the targeted 3D object, 
else the active surface is likely to converge to a wrong shape.  

The shell algorithm leads to significant reduction of the 
number of arithmetic operations needed for 3D scene/image 
segmentation, because it avoids the actual convergences of the 
active surface between the 3D objects as the conventional active 
contours and level sets will do [7,10,12,29,31]. 

Recall that the penalty function is used to halt the evolution 
for those patches, whose normal vectors encountered a 
boundary voxels.  In [7,12,27] the image gradient together with 
smoothing Gaussian are used to stop the evolution at the 
boundary. In practice the discrete gradients are bounded and 
then the stopping function could be different from zero on a 
blurred edge. To deal with this problem the isotropic smoothing 
Gaussian has to be very strong, but it will change the edge too. 
To overcome these problems [6] proposes an approach based on 
Mumford-Shah segmentation without stopping edge function (a 
citation to this technique is given in [6]), but proper coefficients 
must be determined in this case. To avoid this kind of choosing, 
to accelerate the evolution process and provide an opportunity 
for the model to escape a noise with dimensions smaller than 

h∆ , 
v∆ ,

t∆  our method calculates the directional derivative on 
interval 

t∆  in the direction of the normal force.   
A good active surface model also based on the heat DE is 

presented in [8]. The method is capable of 3D reconstruction of 
single 3D object by using 3D data or 2D data obtained from 
multiple views. The runtime of the approach is given for a set of 
experiments but no segmentation features of the method are 
reported. 

A disadvantage of our ASM is its inability to handle spiral 
objects and objects with complicated concavities [26]. Also, the 
shell algorithm is not able to segment an image if multiple 3D 
objects are presented there and one of them contains the center 
of the image. Another difficulty faced by the ASM is to 
segmented a scene/image where one of the objects is under the 
“shadow” of another one in the direction of the normal force 
(Fig.3). 

The further work will continue toward development of a 
solution of the above mentioned problems. A C++ coding of 
the entire 3D segmentation, reconstruction and visualization 
algorithm is to be released. 
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