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ABSTRACT 
 

The general approach for quantum algorithm simulation on 
classical computer is introduced. Efficient fast algorithm for 
simulation of Grover's quantum search algorithm in unsorted 
database is presented. Comparison with common quantum 
algorithm simulation approach is demonstrated.  
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1. INTRODUCTION 
 

Quantum algorithms (QA) demonstrate great efficiency in many 
practical tasks such as factorization of large integer numbers, 
where classical algorithms are failing or dramatically ineffective 
[1]. Practical application is still away due to lack of the physical 
hardware implementation of quantum computers. 
The difference between classical and QAs is following: problem 
solved by QA is coded in the structure of the quantum operators. 
Input to QA in this case is always the same. Output of QA says 
which problem was coded. In some sense you give a function to 
QA to analyze and QA returns its property as an answer. 
Formally, the problems solved by QAs could be stated as 
follows: 
 

Input A function f:{0,1}n →{0,1}m 

Problem Find a certain property of f 

 
Thus QA studies qualitative properties of the functions. 
The core of any QA is a set of unitary quantum operators or 
quantum gates. In practical representation quantum gate is a 
unitary matrix with particular structure. The size of this matrix 
grows exponentially with the number of inputs, making it 
impossible to simulate QAs with more than 30-35 inputs [2] on 
classical computer with von Neumann architecture. In this 
report we present a practical approach to simulate most of 
known QAs on classical computers. We present the results of 
the classical efficient simulation of the Grover’s quantum 
search algorithm (QSA) as a benchmark of this approach. 
 

2. STRUCTURE OF QA GATE SYSTEM DESIGN 
 

The background of QA simulation is a generalized 
representation of QA as a set of sequentially applied smaller 
quantum gates as it is presented on the Figure 1a. From the 
structural point of view each QA requires a particular set of 
quantum gates, but generally each particular set can be divided 
into three main subsets with same function for all QAs: 
Superposition operators, Entanglement operators and 
Interference operators.  

This division permits to generalize the approach of QA 
simulation and to create a classical tool to simulate any type of 
known QA. Further more, local optimization of QA components 
according to specific hardware realization makes it possible to 
develop appropriate hardware accelerator of QA simulation 
using classical gates [3, 4]. 
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Figure 1: a) Circuit representation of QA; b) Quantum circuit 
of Grover’s QSA 

 
2.1. Generalized approach in QA simulation. In general, any 
QA can be represented as a circuit of smaller quantum gates as 
it is demonstrated on the Figure 1 [3].  
The circuit presented in the Figure 1 is divided on five general 
steps:  
Step 1: Input. Quantum state vector is set up to an initial value 
for this concrete algorithm. For example, input for Grover’s 
QSA is a quantum state   0φ described as a tensor product 
 

0 0 00...01 0 0 1a aφ = = ⊗ ⊗ ⊗" ,  (1) 
 

where
1

0
0
 

=  
 

; 
0

1
1
 

=  
 

; ⊗  denotes Kronecker tensor 

product operation [1]. Such a quantum state can be presented as 
it is shown on the Figure 2a.  
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Figure 2: Dynamics of Grover’s QSA probability amplitudes of 

state vector on each algorithm step 
 
The coefficients in the Eq. (1) are called probability amplitudes 
[3]. Probability amplitudes may take negative or even complex 
values. The only one constraint on the values of the probability 
amplitudes is 

2 1i
i

a =∑   (2) 

The actual probability of the arbitrary quantum state ia i  to 
be measured is calculated as a square of its probability 
amplitude value 2

i ip a= .  
Step 2: Superposition The state of the quantum state vector is 
transformed in the way that probabilities are distributed 
uniformly among all basis states. The result of the superposition 
step of Grover’s QSA is presented on the Figure 2b in 
probability amplitude representation and in the Figure 3b in 
probability representation.   
Step 3: Entanglement Probability amplitudes of the basis vector 
corresponding to the current problem are flipped while rest 
basis vectors left unchanged. Entanglement is done via 
controlled NOT operation. Result of entanglement operation 
application to the state vector after superposition operation is 
shown on the Figure 2c and in the Figure 3c. Note that, an 
entanglement operation does not affect the probability of state 
vector to be measured. Actually entanglement prepares a state 
which can not be represented as a tensor product of simpler 
state vectors. For example, consider state 1φ presented on the 

Figure 2b and state 2φ  presented on the Figure 2c: 
 

( )
( ) ( )

1 0.35355 000 001 010 011 100 101 110 111

=0.35355 00 01 10 11 0 1

φ = − + − + − + − =

+ + + −

( )
( ) ( )

2 0.35355 000 001 010 011 100 101 110 111

=0.35355 00 01 10 11 0 -0.35355 00 01 10 11 1

φ = − − + + − + − =

− + + + + +

 
As it was shown above, described state 1φ  can be presented as 

tensor product of simpler states while state 2φ  can not.  
Step 4: Interference Probability amplitudes are inverted about 
the average value. As a result the probability amplitude of states 
“marked” by entanglement operation will increase. Result of 
interference operator application is presented on the Figure 2a 
in a probability amplitude representation and in the Figure 3a in 
a probability representation. 

Step 5: Output On this step performed measurement operation 
(extraction of the state with maximum probability), and 
following interpretation of the result. For example, in case of 
Grover’s QSA required index is coded in first n  bits of the 
measured basis vector.   
Steps of QAs are realized by unitary quantum operators. 
Simulation of quantum operators is a key point in general QA 
simulation. In order to accelerate QAs basic quantum operators 
must be studied.  
 

 
Figure 3: Dynamics of Grover’s QSA probabilities of state 

vector on each algorithm step 
 
2.2. Main QA operators 
We consider superposition, entanglement and interference 
operators from simulation view point. In this case superposition 
and interference have more complicated structure and differ 
from algorithm to algorithm. And then we consider 
entanglement operators, since they have similar structure for all 
QAs, and differ only by function being analyzed. 
 
Superposition operators of QAs In general, the superposition 
operator consists of the combination of the tensor products 
Hadamard H operators with identity operator I : 
 

1 1 1 01 ,  
1 1 0 12

H I
   

= =   −   
  

 
For most QAs the superposition operator can be expressed as 
 

1 1

n m
n m

i i
Sp H S H S

= =

   = ⊗ ⊗ ⊗ = ⊗   
   

,   (3) 

 
where n  and m  are the numbers of inputs and of outputs 
respectively, left side power operation means tensor power. 
Operator, S  depending on the algorithm may be or Hadamard 
operator H  or identity operator I . Numbers of outputs m as 
well as structures of corresponding superposition and 
interference operators are presented in the Table 1 for different 
QAs.  
Note that superposition and interference operators are often 
contain tensor power of Hadamard operator ( H ) which is 
called Walsh-Hadamard operator ( W ). It is known [3] that 
elements of the Walsh-Hadamard operator could be obtained as 

( )
*

1
/ 2,

1
2

i j

n n
ni j

H H+ −
   =    ,    (4) 

where 0,1,  0,1i j= = . 
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Table 1: Parameters of superposition and interference operators 
of main quantum algorithms 

Algorithm Superposition m  Interference 
Deutsch’s H I⊗  1 H H⊗  
Deutsch-
Jozsa’s 

n H H⊗  1 n H I⊗  

Grover’s n H H⊗  1 nD I⊗  

Simon’s n nH I⊗  n  n nH I⊗  
Shor’s n nH I⊗  n  n

nQFT I⊗  
 
This approach improves greatly speedup of classical simulation 
of the Walsh – Hadamard operators, since its elements could be 
obtained by the simple replication according to the  rule 
presented in Eq. (4). 
Example 1: Consider superposition operator of Deutsch’s 
algorithm, 1,  1,  n m S I= = = : 

[ ] ( ) *

, 1/ 2

0*0 0*1

1*0 1*1

1
 

2
( 1) ( 1)1 1
( 1) ( 1)2 2

i j
Deutsch

i jSp I

I II I
I II I

−
= ⊗

 − −  
= =   −− −   

 (5) 

 
 
Example 2: Consider superposition operator of Deutsch-Jozsa’s 
and of Grover’s algorithm, for the case 2,n =  1,m =  
S H= : 

[ ] ( ) *
' , '

, 2 / 2

0*0 0*0 0*1 0*1

0*0 0*0 0*1 0*1

1*0 1*1 1*1 1*1

1*0 1*1 1*1 1*1

1
 

2
( 1) ( 1) ( 1) ( 1)
( 1) ( 1) ( 1) ( 1)1

2 ( 1) ( 1) ( 1) ( 1)
( 1) ( 1) ( 1) ( 1)

1
2

i j
Deutsch Jozsa s Grover s

i jSp H

H H H H
H H H H
H H H H
H H H H

H H H H
H H H H

− −
= ⊗

 − − − −
 
− − − − =  − − − −

  − − − − 

− −
=

H H H H
H H H H

 
 
 
 − −
 

− − 

 (6) 

 
Example 3:  Superposition operator of Simon’s and of Shor’s 
algorithms, 2, 2,n m S I= = = : 

[ ] ( ) *
, 2

, 2 / 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

1
 

2

1
2

i j
Simon Shor

i jSp I

I I I I
I I I I
I I I I
I I I I

−
= ⊗ =

 
 

− − =  − −
  − − 

 

Interference operators of main QAs Interference operators 
must be selected for each algorithm individually according to 
the parameters presented in the Table 1. Consider some 
particular parts of interference operators.  
Interference operator consists of interference part, which is 
different for all algorithms, and from measurement part, which 
is the same for most of algorithms and consists of m  tensor 
power of identity operator. Consider interference operator of 
each algorithm. 

Interference operator of Deutsch’ algorithm. Interference 
operator of Deutsch’s algorithm consists of tensor product of 
two Hadamard transformations, and can be calculated using Eq. 
(4) with 2n = : 
 

*
2

2 / 2,

1 1 1 1
1 1 1 1( 1) 1  
1 1 1 122
1 1 1 1

i j
Deutsch

i j
Int H H

 
 − −−    = = =   − −
 

− − 

 (7) 

 
Note that in Deutsch’s algorithm, Walsh-Hadamard 
transformation in interference operator is used also for the 
measurement basis.    
Interference operator of Deutsch-Jozsa’s algorithm. 
Interference operator of Deutsch-Jozsa’s algorithm consists of 
tensor product of n  power of Walsh-Hadamard operator with 
an identity operator. In general form the block matrix of the 
interference operator of Deutsch-Jozsa’s algorithm can be 
written as: 

 
*

'

,
2

( 1) 
2

i j
Deutsch Jozsa s

ni j
Int I− −  = ⊗  ,  (8) 

 
where 0,..., 2 1, 0,..., 2 1n ni j= − = −  
 
Example 4: Interference operator of Deutsch-Jozsa’s algorithm, 

2, 1n m= = : 
*

'
2,
2

( 1) 
2

1
2

i j
Deutsch Jozsa s

i j
Int I

I I I I
I I I I
I I I I
I I I I

− −  = ⊗ 

 
 − − =
 − −
 

− − 

  (9) 

 
Interference operator of Grover’s algorithm. Interference 
operator of Grover’s algorithm can be written as a block matrix 
of the following form: 
 

/ 2,

/ 2 / 2 / 2

1 
2

,1 1 11 ,
,2 2 2

Grover n
n ni j

n n n
i j i j

Int D I I I

I i j
I I

I i j= ≠

   = ⊗ = − ⊗    
− =   = − + ⊗ ⊗ =     ≠    

, (10) 

 
where 0,..., 2 1, 0,..., 2 1n ni j= − = − , nD  refers to diffusion 
operator: 

[ ]
1 ( )

/ 2,

( 1) .
2

AND i j

n ni j
D

=−
=  

 
Example 5: Interference operator of Grover’s QSA, 

2, 1n m= = : 
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2
2 2 / 2,

1
2

1 11 ,
2 2

1 .
2

Grover

i j

i j i j

Int D I I I

I I

I I I I
I I I I
I I I I
I I I I

= ≠

   = ⊗ = − ⊗    

   = − + ⊗ ⊗   
   

− 
 − =
 −
 

− 

   (11) 

 
 
Note that with growing number of qubits, gain coefficient will 
become smaller. Dimension of the matrix increases according 
to 2n , but each element can be extracted using Eq. (10), without 
allocation of entire operator matrix. 
Interference operator of Simon’s algorithm. Interference 
operator of Simon’s algorithm is prepared in the same manner 
as superposition (as well as superposition operators of Shor’s 
algorithm) and can be described as following Eq. (12) and 
Eq.(12a): 

( )

( )

( )

( ) ( ) ( ) ( )

*

/ 2,

0* 2 10*0 0*

* 2 1*0 *
/ 2

2 1 *0 2 1 * 2 1 * 2 1

1
 

2

( 1) ( 1) ( 1)

1
( 1) ( 1) ( 1)2

( 1) ( 1) ( 1)

n

n

n n n n

i j
Simon n m m

ni j

m j m m

ii m i j m m
n

jm m m

Int H I I

I I I

I I I

I I I

−

−

− − − −

−
  = ⊗ = ⊗ 

 − ⋅ − ⋅ − ⋅ 
 
 

=  − ⋅ − ⋅ − ⋅
 
 
  − ⋅ − ⋅ − ⋅ 

" "
# # # # #

" "
# # # # #

" "

 (12) 

 
 
Remark. In general, interference operator of Simon’s algorithm 
coincides with interference operator of Deutsch-Jozsa’s 
algorithm Eq. (8), but each block of the operator matrix Eq. (12) 
consists of m  tensor products of identity operator. 
Remark. Each odd block (when product of the indexes is an odd 
number) of the Simon’s interference operator Eq. (12), has a 
negative sign. Actually if 0,2, 4, , 2 2ni = −…  or 

0,2,4, , 2 2nj = −…  the block sign is positive, else block sign 
is negative. This rule is applicable also for Eq. (8) of Deutsch-
Jozsa’s algorithm interference operator. Then it is convenient to 
check if one of the indexes is an even number instead of 
calculating their product. Then Eq. (12) can be reduced as: 
 

( ) *

/ 2,

/ 2

1
2

,if  is odd or if  is odd1
2 ,if  is even and  is even

i j
Simon n m m

ni j

m

n m

Int H I I

I i j
I i j

−
  = ⊗ = ⊗ 


= 

−

     (12a) 

 
Interference operator of Shor’s algorithm. Interference operator 
of Shor’s algorithm uses Quantum Fourier Transformation 
operator (QFT) [1], calculated as: 
 

[ ]
2( * )
2

/ 2,

1
2

nJ i j

n ni j
QFT e

π

= ,  (13) 

 
where: J  - imaginary unit, 0,..., 2 1ni = −  and,  

0,..., 2 1nj = − .  

With 1n =  we can observe the following relation: 
 

1 1

1 11 1

*(0*0)2 / 2 *(0*1)2 / 2

11 *(1*0)2 / 2 *(1*1)2 / 2
2

1

2
1 11
1 12

J J

k k J J

e e
QFT

e e

H

π π

π π=

 
 =
 
 

 
= = − 

 (14) 

 
Eq. (13) can be also presented in harmonic form using Euler 
formula: 
 

1 1 1 1/ 2,

1 2 2cos ( * ) sin ( * )
2 2 2k k k ki j

QFT i j J i jπ π      = +          
 (15) 
 
Entanglement operators of main QAs In general 
entanglement operators are part of QA where the information 
about the function being analyzed is coded as input-output 
relation. Let’s discuss the general approach for coding binary 
functions into corresponding entanglement gates. Consider 
arbitrary binary function: 

{ } { }: 0,1 0,1 ,n mf →  
such that: 

0 1 0 1( ,..., ) ( ,..., )n mf x x y y− −= . 
In order to create unitary quantum operator which performs the 
same transformation, first we transfer irreversible function f  
into reversible function F , as following: 

{ } { }: 0,1 0,1 ,m n m nF + +→  
such that: 

( )0 1 0 1

0 1 0 1 0 1

,..., , ,...,
( ,..., , ( ,..., ) ( ,..., ))

n m

n n m

F x x y y
x x f x x y y

− −

− − −

=

= ⊕
 

 
where ⊕  denotes addition modulo 2. 
Having reversible function F  we can design an entanglement 
operator matrix using the following rule: 

 
[ ] NN ,

1 iff ( ) ,  ,  0,..,0;1,..,1;B B
B B

F i j
n m n m

U F j i i j
+ +

= = ∈  
  

 

 
B  denotes binary coding. Actually resulted entanglement 
operator is a block diagonal matrix, of the form: 

0

2 1

0

0 n

F

M
U

M
−

 
 

=  
  
 

%   (16) 

 
Each block , 0,..., 2 1n

iM i = −  consists of m  tensor products 
of I  or of C  operators, and can be obtained as following: 

1

0

, iff ( , ) 0
, iff ( , ) 1

m

i k

I F i k
M

C F i k

−

=

=
= ⊗  =

,   (17) 

where C  stays for NOT operator, defined as: 
0 1
1 0

C  
=  
 

. 
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It is clear that entanglement operator is a sparse matrix. Using 
property of sparse matrix operations it is possible to accelerate 
the simulation of the entanglement. 
 
Example 6:  Entanglement operator for binary function: 

{ } { }2 1: 0,1 0,1f → , 

such that: 
01 01

( ) 1 0
x x

f x
= ≠

=  

Reversible function F  in this case will be: 

{ } { }3 3: 0,1 0,1F → , 
such that: 
 

( , ) ( , ( ) )
00,0 00,0 0 0
00,1 00,0 1 1
01,0 01,1 0 1
01,1 01,1 1 0
10,0 10,0 0 0
10,1 10,1 0 1
11,0 11,0 0 0
11,1 11,1 0 1

x y x f x y⊕
⊕ =
⊕ =
⊕ =
⊕ =
⊕ =
⊕ =
⊕ =
⊕ =

 

 
The corresponding entanglement block matrix can be written as: 

 00 01 10 11
     0 0 000

01 0 0 0
10 0 0 0
11 0 0 0

F

I
U C

I
I

 
 =  
 
  
 

 

 
Figure 2c demonstrates the result of the application of this 
operator in Grover’s QSA. Entanglement operators of Deutsch 
and of Deutsch-Jozsa’s algorithms have the same form. 
Example 7:  Entanglement operator for binary function:  

{ } { }2 2: 0,1 0,1f → , 

such that: 
01,11 01,11

( ) 10 00
x x

f x
= ≠

=  

 
    00   01   10   11

   0 0 000
01 0 0 0
10 0 0 0
11 0 0 0

F

I I

U C I
I I

C I

⊗ 
 

= ⊗ 
 ⊗ 
 ⊗ 

 

Entanglement operators of Shor and of Simon’s algorithms have 
the same form. 
 

3. RESULTS OF CLASSICAL QA GATE SIMULATION 
 

Analyzing quantum operators presented in the section 2 we can 
do the following simplification for increasing performance of 
classical QA simulations: 
a) All quantum operators are symmetrical around main diagonal 
matrices;  
b) State vector is allocated as a sparse matrix;  

c) Elements of the quantum operators are not stored, but 
calculated when necessary using Eqs. (6), (10), (16) and (17);  
d) As termination condition we consider minimum of Shannon 
entropy of the quantum state, calculated as: 

 
2

0
log

m n

Sh
i i

i
H p p

+

=

= −∑   (18) 

 
Calculation of the Shannon entropy is applied to the quantum 
state after interference operation [5]. 
Minimum of Shannon entropy Eq. (18) corresponds to the state 
when there are few state vectors with high probability (states 
with minimum uncertainty). 
Selection of appropriate termination condition is important 
since QAs are periodical. Figure 4 shows results of the Shannon 
information entropy calculation for the Grover’s algorithm with 
5 inputs.   

2 4 6 8 10 12 14 16 18 20

1.5

2

2.5

3

3.5

4

4.5

5

5.5

H

Iteration h  
Figure 4: Shannon entropy analysis of Grover’s QSA dynamics 

with five inputs 
 
Figure 4 shows that for five inputs of Grover’s QSA an optimal 
number of iterations, according to minimum of the Shannon 
entropy criteria for successful result, is exactly four. After that 
probability of correct answer will decrease and algorithm may 
fail to produce correct answer. Note that theoretical estimation 

for 5 inputs gives 5
4 2 4.44π =  iterations. 

Simulation results of fast Grover QSA are summarized in Table 
2. Numbers of iterations for fast algorithm were estimated 
according to termination condition as minimum of Shannon 
entropy of quantum state vector. The following approaches 
were used in simulation:  
Approach 1: Quantum operators are applied as matrices, 
elements of quantum operator matrices are calculated 
dynamically according to Eqs. (6), (10), and (17). Classical 
Hardware limit of this approach is around 20 qubits, caused by 
exponential temporal complexity.  
Approach 2: Quantum operators are replaced with classical 
gates. Product operations are removed from simulation 
according to [4]. State vector of probability amplitudes is stored 
in compressed form (only different probability amplitudes are 
allocated in memory). With second approach it is possible to 
perform classical efficient simulation of Grover’s QSA with 
arbitrary large number of inputs (50 qubits and more). 
With allocation of the state vector in computer memory, this 
approach permits to simulation 26 qubits on PC with 1GB of 
RAM. Figure 5 shows memory required for Grover algorithm 
simulation, when whole state vector is allocated in memory. 
Adding one qubit require double of the computer memory 
needed for simulation of Grover's QSA in case when state 
vector is allocated completely in memory. 
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Table 2: Temporal complexity of Grover’s QSA simulation on 
1.2GHz computer with two CPUs 

Temporal complexity, seconds 
n  Number of 

iterations h  Approach 1 
(one iteration) 

Approach 2 
( h  iterations) 

10 25 0.28 ~0 
12 50 5.44 ~0 
14 100 99.42 ~0 
15 142 489.05 ~0 
16 201 2060.63 ~0 
20 804 - ~0 
30 25.375 - 0.016 
40 853.549 - 4.263 
50 26.353.589 - 12.425 

 
 

 
Figure 5: Spatial complexity of Grover QA simulation 

 
Temporal complexity of Grover's QSA is presented in Figure 6. 
In this case state vector is allocated in memory, and quantum 
operators are replaced with classical gates according to [3, 4]. 
Fastest case is when we compress state vector and replace 
quantum operator matrices with corresponding classical gates 
according with [3,4]. In this case we obtain speedup according 
to Approach 2. 

4. CONCLUSIONS 
 

Efficient simulation of QAs on classical computer with large 
number of inputs is difficult problem. For example, to operate 
only with 50 qubits state vector directly, it is necessary to have 
at least 128TB of memory (for the moment largest 
supercomputer has only 10TB [6]). In present report, for 
concrete important example as Grover’s QSA [1], it is 
demonstrated the possibility to override spatio-temporal 
complexity, and to perform efficient simulations of QA on 
classical computers. Comparison with sparse matrix based 

approaches [2] give us new effective possibility for simulation 
of quantum control algorithms using classical computers.  
 
 

 
Figure 6: Temporal complexity of Grover's QSA 
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