
Fast algorithm for efficient simulation of quantum algorithm gates on classical computer

Sergey A. PANFILOV, Sergey V. ULYANOV, Ludmila V. LITVINTSEVA
Yamaha Motor Europe N.V. R&D Office, Via Bramante, 65, 26013, Crema (CR), Italy

Alexander V. YAZENIN
Dept. of Informatics, Tver State University, Ul. Zhelyabova 33, 170000, Tver, Russian Federation

ABSTRACT

The general approach for quantum algorithm simulation on
classical computer is introduced. Efficient fast algorithm for
simulation of Grover's quantum search algorithm in unsorted
database is presented. Comparison with common quantum
algorithm simulation approach is demonstrated.

Keywords: Quantum algorithm, efficient simulation, fast
algorithms

1. INTRODUCTION

Quantum algorithms (QA) demonstrate great efficiency in many
practical tasks such as factorization of large integer numbers,
where classical algorithms are failing or dramatically ineffective
[1]. Practical application is still away due to lack of the physical
hardware implementation of quantum computers.
The difference between classical and QAs is following: problem
solved by QA is coded in the structure of the quantum operators.
Input to QA in this case is always the same. Output of QA says
which problem was coded. In some sense you give a function to
QA to analyze and QA returns its property as an answer.
Formally, the problems solved by QAs could be stated as
follows:

Input A function f:{0,1}n →{0,1}m

Problem Find a certain property of f

Thus QA studies qualitative properties of the functions.
The core of any QA is a set of unitary quantum operators or
quantum gates. In practical representation quantum gate is a
unitary matrix with particular structure. The size of this matrix
grows exponentially with the number of inputs, making it
impossible to simulate QAs with more than 30-35 inputs [2] on
classical computer with von Neumann architecture. In this
report we present a practical approach to simulate most of
known QAs on classical computers. We present the results of
the classical efficient simulation of the Grover’s quantum
search algorithm (QSA) as a benchmark of this approach.

2. STRUCTURE OF QA GATE SYSTEM DESIGN

The background of QA simulation is a generalized
representation of QA as a set of sequentially applied smaller
quantum gates as it is presented on the Figure 1a. From the
structural point of view each QA requires a particular set of
quantum gates, but generally each particular set can be divided
into three main subsets with same function for all QAs:
Superposition operators, Entanglement operators and
Interference operators.

This division permits to generalize the approach of QA
simulation and to create a classical tool to simulate any type of
known QA. Further more, local optimization of QA components
according to specific hardware realization makes it possible to
develop appropriate hardware accelerator of QA simulation
using classical gates [3, 4].

|x>

H
UF

|0>

Input Superposition Entanglement Interference Output

H|0>

INT
...

n

|x>

m ...

...

...

h

S

S

h

h

h

Repeated k times

...

...

M
E
A
S
U
R
E
M
E
N
T

bit

bit

bit

bit

(a)

|1>

UF

|0>

INPUT STEP 1 STEP 2 STEP 3 OUTPUT

|ϕν−1>

|ϕν>H

H|0>

Dn

|ϕ0>

...n

h

h

h

H

(b)

Figure 1: a) Circuit representation of QA; b) Quantum circuit
of Grover’s QSA

2.1. Generalized approach in QA simulation. In general, any
QA can be represented as a circuit of smaller quantum gates as
it is demonstrated on the Figure 1 [3].
The circuit presented in the Figure 1 is divided on five general
steps:
Step 1: Input. Quantum state vector is set up to an initial value
for this concrete algorithm. For example, input for Grover’s
QSA is a quantum state 0φ described as a tensor product

0 0 00...01 0 0 1a aφ = = ⊗ ⊗ ⊗" , (1)

where
1

0
0
 

=  
 

;
0

1
1
 

=  
 

; ⊗ denotes Kronecker tensor

product operation [1]. Such a quantum state can be presented as
it is shown on the Figure 2a.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 3 63

Figure 2: Dynamics of Grover’s QSA probability amplitudes of

state vector on each algorithm step

The coefficients in the Eq. (1) are called probability amplitudes
[3]. Probability amplitudes may take negative or even complex
values. The only one constraint on the values of the probability
amplitudes is

2 1i
i

a =∑ (2)

The actual probability of the arbitrary quantum state ia i to
be measured is calculated as a square of its probability
amplitude value 2

i ip a= .
Step 2: Superposition The state of the quantum state vector is
transformed in the way that probabilities are distributed
uniformly among all basis states. The result of the superposition
step of Grover’s QSA is presented on the Figure 2b in
probability amplitude representation and in the Figure 3b in
probability representation.
Step 3: Entanglement Probability amplitudes of the basis vector
corresponding to the current problem are flipped while rest
basis vectors left unchanged. Entanglement is done via
controlled NOT operation. Result of entanglement operation
application to the state vector after superposition operation is
shown on the Figure 2c and in the Figure 3c. Note that, an
entanglement operation does not affect the probability of state
vector to be measured. Actually entanglement prepares a state
which can not be represented as a tensor product of simpler
state vectors. For example, consider state 1φ presented on the

Figure 2b and state 2φ presented on the Figure 2c:

()
() ()

1 0.35355 000 001 010 011 100 101 110 111

=0.35355 00 01 10 11 0 1

φ = − + − + − + − =

+ + + −

()
() ()

2 0.35355 000 001 010 011 100 101 110 111

=0.35355 00 01 10 11 0 -0.35355 00 01 10 11 1

φ = − − + + − + − =

− + + + + +

As it was shown above, described state 1φ can be presented as

tensor product of simpler states while state 2φ can not.
Step 4: Interference Probability amplitudes are inverted about
the average value. As a result the probability amplitude of states
“marked” by entanglement operation will increase. Result of
interference operator application is presented on the Figure 2a
in a probability amplitude representation and in the Figure 3a in
a probability representation.

Step 5: Output On this step performed measurement operation
(extraction of the state with maximum probability), and
following interpretation of the result. For example, in case of
Grover’s QSA required index is coded in first n bits of the
measured basis vector.
Steps of QAs are realized by unitary quantum operators.
Simulation of quantum operators is a key point in general QA
simulation. In order to accelerate QAs basic quantum operators
must be studied.

Figure 3: Dynamics of Grover’s QSA probabilities of state

vector on each algorithm step

2.2. Main QA operators
We consider superposition, entanglement and interference
operators from simulation view point. In this case superposition
and interference have more complicated structure and differ
from algorithm to algorithm. And then we consider
entanglement operators, since they have similar structure for all
QAs, and differ only by function being analyzed.

Superposition operators of QAs In general, the superposition
operator consists of the combination of the tensor products
Hadamard H operators with identity operator I :

1 1 1 01 ,
1 1 0 12

H I
   

= =   −   

For most QAs the superposition operator can be expressed as

1 1

n m
n m

i i
Sp H S H S

= =

   = ⊗ ⊗ ⊗ = ⊗   
   

, (3)

where n and m are the numbers of inputs and of outputs
respectively, left side power operation means tensor power.
Operator, S depending on the algorithm may be or Hadamard
operator H or identity operator I . Numbers of outputs m as
well as structures of corresponding superposition and
interference operators are presented in the Table 1 for different
QAs.
Note that superposition and interference operators are often
contain tensor power of Hadamard operator (H) which is
called Walsh-Hadamard operator (W). It is known [3] that
elements of the Walsh-Hadamard operator could be obtained as

()
*

1
/ 2,

1
2

i j

n n
ni j

H H+ −
   =    , (4)

where 0,1, 0,1i j= = .

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 364

Table 1: Parameters of superposition and interference operators
of main quantum algorithms

Algorithm Superposition m Interference
Deutsch’s H I⊗ 1 H H⊗
Deutsch-
Jozsa’s

n H H⊗ 1 n H I⊗

Grover’s n H H⊗ 1 nD I⊗

Simon’s n nH I⊗ n n nH I⊗
Shor’s n nH I⊗ n n

nQFT I⊗

This approach improves greatly speedup of classical simulation
of the Walsh – Hadamard operators, since its elements could be
obtained by the simple replication according to the rule
presented in Eq. (4).
Example 1: Consider superposition operator of Deutsch’s
algorithm, 1, 1, n m S I= = = :

[] () *

, 1/ 2

0*0 0*1

1*0 1*1

1

2
(1) (1)1 1
(1) (1)2 2

i j
Deutsch

i jSp I

I II I
I II I

−
= ⊗

 − −  
= =   −− −   

 (5)

Example 2: Consider superposition operator of Deutsch-Jozsa’s
and of Grover’s algorithm, for the case 2,n = 1,m =
S H= :

[] () *
' , '

, 2 / 2

0*0 0*0 0*1 0*1

0*0 0*0 0*1 0*1

1*0 1*1 1*1 1*1

1*0 1*1 1*1 1*1

1

2
(1) (1) (1) (1)
(1) (1) (1) (1)1

2 (1) (1) (1) (1)
(1) (1) (1) (1)

1
2

i j
Deutsch Jozsa s Grover s

i jSp H

H H H H
H H H H
H H H H
H H H H

H H H H
H H H H

− −
= ⊗

 − − − −
 
− − − − =  − − − −

  − − − − 

− −
=

H H H H
H H H H

 
 
 
 − −
 

− − 

 (6)

Example 3: Superposition operator of Simon’s and of Shor’s
algorithms, 2, 2,n m S I= = = :

[] () *
, 2

, 2 / 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

1

2

1
2

i j
Simon Shor

i jSp I

I I I I
I I I I
I I I I
I I I I

−
= ⊗ =

 
 

− − =  − −
  − − 

Interference operators of main QAs Interference operators
must be selected for each algorithm individually according to
the parameters presented in the Table 1. Consider some
particular parts of interference operators.
Interference operator consists of interference part, which is
different for all algorithms, and from measurement part, which
is the same for most of algorithms and consists of m tensor
power of identity operator. Consider interference operator of
each algorithm.

Interference operator of Deutsch’ algorithm. Interference
operator of Deutsch’s algorithm consists of tensor product of
two Hadamard transformations, and can be calculated using Eq.
(4) with 2n = :

*
2

2 / 2,

1 1 1 1
1 1 1 1(1) 1
1 1 1 122
1 1 1 1

i j
Deutsch

i j
Int H H

 
 − −−    = = =   − −
 

− − 

 (7)

Note that in Deutsch’s algorithm, Walsh-Hadamard
transformation in interference operator is used also for the
measurement basis.
Interference operator of Deutsch-Jozsa’s algorithm.
Interference operator of Deutsch-Jozsa’s algorithm consists of
tensor product of n power of Walsh-Hadamard operator with
an identity operator. In general form the block matrix of the
interference operator of Deutsch-Jozsa’s algorithm can be
written as:

*

'

,
2

(1)
2

i j
Deutsch Jozsa s

ni j
Int I− −  = ⊗  , (8)

where 0,..., 2 1, 0,..., 2 1n ni j= − = −

Example 4: Interference operator of Deutsch-Jozsa’s algorithm,

2, 1n m= = :
*

'
2,
2

(1)
2

1
2

i j
Deutsch Jozsa s

i j
Int I

I I I I
I I I I
I I I I
I I I I

− −  = ⊗ 

 
 − − =
 − −
 

− − 

 (9)

Interference operator of Grover’s algorithm. Interference
operator of Grover’s algorithm can be written as a block matrix
of the following form:

/ 2,

/ 2 / 2 / 2

1
2

,1 1 11 ,
,2 2 2

Grover n
n ni j

n n n
i j i j

Int D I I I

I i j
I I

I i j= ≠

   = ⊗ = − ⊗    
− =   = − + ⊗ ⊗ =     ≠    

, (10)

where 0,..., 2 1, 0,..., 2 1n ni j= − = − , nD refers to diffusion
operator:

[]
1 ()

/ 2,

(1) .
2

AND i j

n ni j
D

=−
=

Example 5: Interference operator of Grover’s QSA,

2, 1n m= = :

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 3 65

2
2 2 / 2,

1
2

1 11 ,
2 2

1 .
2

Grover

i j

i j i j

Int D I I I

I I

I I I I
I I I I
I I I I
I I I I

= ≠

   = ⊗ = − ⊗    

   = − + ⊗ ⊗   
   

− 
 − =
 −
 

− 

 (11)

Note that with growing number of qubits, gain coefficient will
become smaller. Dimension of the matrix increases according
to 2n , but each element can be extracted using Eq. (10), without
allocation of entire operator matrix.
Interference operator of Simon’s algorithm. Interference
operator of Simon’s algorithm is prepared in the same manner
as superposition (as well as superposition operators of Shor’s
algorithm) and can be described as following Eq. (12) and
Eq.(12a):

()

()

()

() () () ()

*

/ 2,

0* 2 10*0 0*

* 2 1*0 *
/ 2

2 1 *0 2 1 * 2 1 * 2 1

1

2

(1) (1) (1)

1
(1) (1) (1)2

(1) (1) (1)

n

n

n n n n

i j
Simon n m m

ni j

m j m m

ii m i j m m
n

jm m m

Int H I I

I I I

I I I

I I I

−

−

− − − −

−
  = ⊗ = ⊗ 

 − ⋅ − ⋅ − ⋅ 
 
 

=  − ⋅ − ⋅ − ⋅
 
 
  − ⋅ − ⋅ − ⋅ 

" "
#

" "
#

" "

 (12)

Remark. In general, interference operator of Simon’s algorithm
coincides with interference operator of Deutsch-Jozsa’s
algorithm Eq. (8), but each block of the operator matrix Eq. (12)
consists of m tensor products of identity operator.
Remark. Each odd block (when product of the indexes is an odd
number) of the Simon’s interference operator Eq. (12), has a
negative sign. Actually if 0,2, 4, , 2 2ni = −… or

0,2,4, , 2 2nj = −… the block sign is positive, else block sign
is negative. This rule is applicable also for Eq. (8) of Deutsch-
Jozsa’s algorithm interference operator. Then it is convenient to
check if one of the indexes is an even number instead of
calculating their product. Then Eq. (12) can be reduced as:

() *

/ 2,

/ 2

1
2

,if is odd or if is odd1
2 ,if is even and is even

i j
Simon n m m

ni j

m

n m

Int H I I

I i j
I i j

−
  = ⊗ = ⊗ 


= 

−

 (12a)

Interference operator of Shor’s algorithm. Interference operator
of Shor’s algorithm uses Quantum Fourier Transformation
operator (QFT) [1], calculated as:

[]
2(*)
2

/ 2,

1
2

nJ i j

n ni j
QFT e

π

= , (13)

where: J - imaginary unit, 0,..., 2 1ni = − and,

0,..., 2 1nj = − .

With 1n = we can observe the following relation:

1 1

1 11 1

*(0*0)2 / 2 *(0*1)2 / 2

11 *(1*0)2 / 2 *(1*1)2 / 2
2

1

2
1 11
1 12

J J

k k J J

e e
QFT

e e

H

π π

π π=

 
 =
 
 

 
= = − 

 (14)

Eq. (13) can be also presented in harmonic form using Euler
formula:

1 1 1 1/ 2,

1 2 2cos (*) sin (*)
2 2 2k k k ki j

QFT i j J i jπ π      = +          
 (15)

Entanglement operators of main QAs In general
entanglement operators are part of QA where the information
about the function being analyzed is coded as input-output
relation. Let’s discuss the general approach for coding binary
functions into corresponding entanglement gates. Consider
arbitrary binary function:

{ } { }: 0,1 0,1 ,n mf →
such that:

0 1 0 1(,...,) (,...,)n mf x x y y− −= .
In order to create unitary quantum operator which performs the
same transformation, first we transfer irreversible function f
into reversible function F , as following:

{ } { }: 0,1 0,1 ,m n m nF + +→
such that:

()0 1 0 1

0 1 0 1 0 1

,..., , ,...,
(,..., , (,...,) (,...,))

n m

n n m

F x x y y
x x f x x y y

− −

− − −

=

= ⊕

where ⊕ denotes addition modulo 2.
Having reversible function F we can design an entanglement
operator matrix using the following rule:

[] NN ,

1 iff () , , 0,..,0;1,..,1;B B
B B

F i j
n m n m

U F j i i j
+ +

= = ∈  
  

B denotes binary coding. Actually resulted entanglement
operator is a block diagonal matrix, of the form:

0

2 1

0

0 n

F

M
U

M
−

 
 

=  
  
 

% (16)

Each block , 0,..., 2 1n

iM i = − consists of m tensor products
of I or of C operators, and can be obtained as following:

1

0

, iff (,) 0
, iff (,) 1

m

i k

I F i k
M

C F i k

−

=

=
= ⊗  =

, (17)

where C stays for NOT operator, defined as:
0 1
1 0

C  
=  
 

.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 366

It is clear that entanglement operator is a sparse matrix. Using
property of sparse matrix operations it is possible to accelerate
the simulation of the entanglement.

Example 6: Entanglement operator for binary function:

{ } { }2 1: 0,1 0,1f → ,

such that:
01 01

() 1 0
x x

f x
= ≠

=

Reversible function F in this case will be:

{ } { }3 3: 0,1 0,1F → ,
such that:

(,) (, ())
00,0 00,0 0 0
00,1 00,0 1 1
01,0 01,1 0 1
01,1 01,1 1 0
10,0 10,0 0 0
10,1 10,1 0 1
11,0 11,0 0 0
11,1 11,1 0 1

x y x f x y⊕
⊕ =
⊕ =
⊕ =
⊕ =
⊕ =
⊕ =
⊕ =
⊕ =

The corresponding entanglement block matrix can be written as:

 00 01 10 11
 0 0 000

01 0 0 0
10 0 0 0
11 0 0 0

F

I
U C

I
I

 
 =  
 
  
 

Figure 2c demonstrates the result of the application of this
operator in Grover’s QSA. Entanglement operators of Deutsch
and of Deutsch-Jozsa’s algorithms have the same form.
Example 7: Entanglement operator for binary function:

{ } { }2 2: 0,1 0,1f → ,

such that:
01,11 01,11

() 10 00
x x

f x
= ≠

=

 00 01 10 11

 0 0 000
01 0 0 0
10 0 0 0
11 0 0 0

F

I I

U C I
I I

C I

⊗ 
 

= ⊗ 
 ⊗ 
 ⊗ 

Entanglement operators of Shor and of Simon’s algorithms have
the same form.

3. RESULTS OF CLASSICAL QA GATE SIMULATION

Analyzing quantum operators presented in the section 2 we can
do the following simplification for increasing performance of
classical QA simulations:
a) All quantum operators are symmetrical around main diagonal
matrices;
b) State vector is allocated as a sparse matrix;

c) Elements of the quantum operators are not stored, but
calculated when necessary using Eqs. (6), (10), (16) and (17);
d) As termination condition we consider minimum of Shannon
entropy of the quantum state, calculated as:

2

0
log

m n

Sh
i i

i
H p p

+

=

= −∑ (18)

Calculation of the Shannon entropy is applied to the quantum
state after interference operation [5].
Minimum of Shannon entropy Eq. (18) corresponds to the state
when there are few state vectors with high probability (states
with minimum uncertainty).
Selection of appropriate termination condition is important
since QAs are periodical. Figure 4 shows results of the Shannon
information entropy calculation for the Grover’s algorithm with
5 inputs.

2 4 6 8 10 12 14 16 18 20

1.5

2

2.5

3

3.5

4

4.5

5

5.5

H

Iteration h
Figure 4: Shannon entropy analysis of Grover’s QSA dynamics

with five inputs

Figure 4 shows that for five inputs of Grover’s QSA an optimal
number of iterations, according to minimum of the Shannon
entropy criteria for successful result, is exactly four. After that
probability of correct answer will decrease and algorithm may
fail to produce correct answer. Note that theoretical estimation

for 5 inputs gives 5
4 2 4.44π = iterations.

Simulation results of fast Grover QSA are summarized in Table
2. Numbers of iterations for fast algorithm were estimated
according to termination condition as minimum of Shannon
entropy of quantum state vector. The following approaches
were used in simulation:
Approach 1: Quantum operators are applied as matrices,
elements of quantum operator matrices are calculated
dynamically according to Eqs. (6), (10), and (17). Classical
Hardware limit of this approach is around 20 qubits, caused by
exponential temporal complexity.
Approach 2: Quantum operators are replaced with classical
gates. Product operations are removed from simulation
according to [4]. State vector of probability amplitudes is stored
in compressed form (only different probability amplitudes are
allocated in memory). With second approach it is possible to
perform classical efficient simulation of Grover’s QSA with
arbitrary large number of inputs (50 qubits and more).
With allocation of the state vector in computer memory, this
approach permits to simulation 26 qubits on PC with 1GB of
RAM. Figure 5 shows memory required for Grover algorithm
simulation, when whole state vector is allocated in memory.
Adding one qubit require double of the computer memory
needed for simulation of Grover's QSA in case when state
vector is allocated completely in memory.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 3 67

Table 2: Temporal complexity of Grover’s QSA simulation on
1.2GHz computer with two CPUs

Temporal complexity, seconds
n Number of

iterations h Approach 1
(one iteration)

Approach 2
(h iterations)

10 25 0.28 ~0
12 50 5.44 ~0
14 100 99.42 ~0
15 142 489.05 ~0
16 201 2060.63 ~0
20 804 - ~0
30 25.375 - 0.016
40 853.549 - 4.263
50 26.353.589 - 12.425

Figure 5: Spatial complexity of Grover QA simulation

Temporal complexity of Grover's QSA is presented in Figure 6.
In this case state vector is allocated in memory, and quantum
operators are replaced with classical gates according to [3, 4].
Fastest case is when we compress state vector and replace
quantum operator matrices with corresponding classical gates
according with [3,4]. In this case we obtain speedup according
to Approach 2.

4. CONCLUSIONS

Efficient simulation of QAs on classical computer with large
number of inputs is difficult problem. For example, to operate
only with 50 qubits state vector directly, it is necessary to have
at least 128TB of memory (for the moment largest
supercomputer has only 10TB [6]). In present report, for
concrete important example as Grover’s QSA [1], it is
demonstrated the possibility to override spatio-temporal
complexity, and to perform efficient simulations of QA on
classical computers. Comparison with sparse matrix based

approaches [2] give us new effective possibility for simulation
of quantum control algorithms using classical computers.

Figure 6: Temporal complexity of Grover's QSA

5. REFERENCES

[1] P. Shor, Why haven't more quantum algorithms been
found?, Journal of the ACM (JACM), Vol. 50, Issue 1, pp. 87-
90, 2003; L. G. Valiant, Quantum circuits that can be
simulated classically in polynomial time, SIAM J. of
Computing, Vol. 31, No 4, pp. 1229-1254, 2002; L. Grover,
Quantum mechanics helps in searching of the needle in a
haystack, Phys. Rev. Lett., Vol. 79, No 2, pp. 325-328, 1997;
M. Nielsen and I. Chuang, Quantum Computation and
Quantum Information, Cambridge Univ. Press, 2002
[2] J. Niwa, K. Matsumoto and H. Imai, General-purpose
parallel simulator for quantum computing, Phys. Rev. A,
Vol. 66, 062317, 2002
[3] S.V. Ulyanov, F. Ghisi, S. Panfilov, I. Kurawaki and L.V.
Litvintseva, Simulation of quantum algorithms on classical
computers, Università degli Studi di Milano, Polo Didattico e
di Ricerca di Crema Note del Polo Vol. 32, Crema, 1999
[4] P. Amato, S. Ulyanov, D. Porto, S.A. Panfilov and G.
Rizzotto, Hardware architecture system design of quantum
algorithm gates for efficient simulation on classical
computers, in Proc. SCI 2003, Vol. 3, pp. 398-403, Orlando,
2003
[5] S.V. Ulyanov, S.A. Panfilov, I. Kurawaki, A.V. Yazenin,
Information analysis of quantum gates for simulation of
quantum algorithms on classical computers, in Proc.
QCM&C2000, Kluwer Academic/Plenum Publ., pp.207-214,
2001
[6] http://www.es.jamstec.go.jp

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 368

