
A Distributed Multi-Agent Framework for Intelligent Environments

Charles HANNON

and

Lisa BURNELL

Crescent Lab for Intelligent Systems
Department of Computer Science
Texas Christian University (TCU)

Fort Worth, Texas 76129, USA

ABSTRACT

Biologically inspired models (BIM), i.e. complex models for
organization and communication based on biological systems,
consider the heterogeneous and dynamic nature to which
entities must adapt. This makes such models appropriate for the
design and implementation of smart home systems. The Gold
Seekers Project, a BIM developed by one of the authors, has
been used to study the mechanisms for realizing intelligence in
natural and artificial systems. Two of the project components,
Goal Mind and Alchemy, provide a framework in which to
develop distributed multi-agent architectures. Goal Mind is used
to define the application architecture, including agent structure
and communications needs. Reasoning within the agents is
multi-modal, with current support for rules, semantic networks,
neural networks, and procedures. Alchemy provides the
mechanism to distribute the system. We describe Goal Mind
and Alchemy and the smart home application being created with
these components.

Keywords: distributed multi-agent systems, intelligent
environments, biologically inspired computing models, smart
homes.

INTRODUCTION

To achieve the "Pervasive Intelligence" [1] needed for
intelligent environments, such as smart homes, new approaches
are needed in the organization and deployment of systems.
Ethnographic studies [8] and other reports [7] clearly reveal that
just because a smart home technology is created does not mean
that it will be widely adopted. Technologies must provide a
clear benefit, fit into the social culture and architecture of the
home, be aesthetically acceptable, and consistently work
properly.

Additionally, the complexity of the sensors, actuators, and
control systems within even a modest smart home environment
will require a multi-vendor solution where the system must be
forged from conflicting and overlapping standards. This
requires the control systems to adapt to not only inhabitants'
behavior, but also the availability and utility of its interfaces to
the environment.

One way to realize such adaptive control is to use an agent-
based strategy that relies on something like a servant analogy.

Since such an analogy is hierarchical, these agents can be
designed to adapt to each other as well as the environment.

Like the best human workers, our smart home agents must
arrive with general knowledge about what work needs to be
done, and how to do it. They must be able to make decisions
based on this knowledge and the context or environment. They
must know when to take the initiative to perform a task and
when to ask for assistance. They must be able to continue their
work in spite of missing information or other resources. And
finally, they must be able to learn the goals, needs, and
preferences of the particular beings they serve and adapt their
efforts based on this knowledge.

There are different tasks and priorities inhabitants will desire
from a smart home. One household may just want to easily view
media programs on demand without having to search large
program guides. Another may need help in managing household
tasks related to maintenance and other routine chores, like
keeping the kitchen pantry stocked. A caregiver may desire a
system to aid in the supervision of an elderly parent.
Occasionally perhaps, a household may desire every possible
feature available. Even then, the acquisition of components may
occur over an extended period of time and usage may fluctuate
as the inhabitant's interests and other activities change.

Biologically inspired models (BIM), i.e. complex models for
organization and communication based on biological systems,
consider the heterogeneous and dynamic nature to which
entities must adapt. This makes such models appropriate for the
design and implementation of smart home systems. In this
article, we begin by describing a BIM development framework
that has been used for both the scientific study of natural
intelligence and for developing complex applications systems.
Next, we show how this framework is being used to iteratively
develop major portions of a distributed, multi-agent smart home
system. Following an overview of the smart kitchen agent and
event handling in the system, we conclude with current status of
the system and future work.

GOLD SEEKERS

The Gold Seekers Project aims to study the mechanisms for
realizing biologically-inspired reasoning methods in natural and
artificial systems. The relationship of this project to other
cognitive and computer science research is provided in Figure 1.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 1 1ISSN: 1690-4524

Neurobiology

Experimental
Psychology

Linguisitics

Philosopy
of the Mind

Software
Engineering

Theoretical
Computer Science

Neurophysical
Based Models

Performance
Based Models

Introspection
Based Models

Working Brain/Mind Theories

Alchenmy
Goal Mind

Computational
Models

Agent
Components Agents

Multiagent
Applications

The Gold Seekers Project

Figure 1. Computational models are used to produce the
agent components making up agents within a multiagent
application. Components’ design, construction, testing and
operation are supported by Goal Mind. The distribution,
migration and control of component processes and the
resulting agent multi-processes across multiple processors
are supported by Alchemy.

The Project seeks to allow a direct connection between research
in cognitive modeling, parallel/distributed processing, and
multi-agent architectures; and thus, allow the direct use of
cognitive task fusion for application development, and
improvement of the component models by exploring their utility
in solving to real-world problems. To support its goal, Gold
Seekers provides a set of tools for both general distributed
application and multi-agent intelligent system design and
implementation.

The two main tools of Gold Seekers are Alchemy and Goal
Mind. Alchemy is a distributed processing environment which
supports: 1) the asynchronous processing model needed by our
cognitive-based approach, 2) a GUI-driven dynamic generation,
operation and testing environment, and 3) a multi-level security
facility for safe operation over the Internet or other public
networks [3, 4]. Goal Mind is the next generation of our
AMEBA architecture [5]. While AMEBA used an integrated
processing model, Gold Mind is built on top of Alchemy.

Based on a brain model, Alchemy architecture divides an
application into a set of asynchronous processing elements that
process messages received from other processing elements via
either a client-side or server-side connection. Being inherently
distributed, concurrency is the only mechanism by which an
application can be implemented. Each connection instance in an
Alchemy application runs in its own process thread within a
heavyweight container called a node.

Alchemy is totally dynamic. Each node can support any number
of server and client connections and any number of message
handlers that perform the event-driven processing of the
application. Thus, the number of nodes in an application, the
number of server and client connections maintained by a node,
and the mapping between handlers and connections can all be
changed at any time during the application’s life.

Goal Mind attempts to capture the explanatory force of a
connectionist neural model while allowing the use of the better-
understood representation and reasoning methods of symbolic
AI [6]. Goal Mind models draw their explanatory depth from
the environment’s ability to support hierarchical cognitive
processing. Using adaptive distributed processing and
generalized inter-process communication, cognitive functions
can be modeled at different levels of abstractions without
changing the logical relationship between these functions. Thus,
a function like the conceptual reasoning about the world and
self can be simulated with a reasoning and knowledge storage
system that has far less capacity than that of a real human. This
allows us to preserve the overall model’s explanatory depth, as
long as we preserve explanatory relationships between cognitive
components.

From a system perspective, Gold Mind provides processor
transparency within a parallel system and a flexible method of
process and knowledge management. The key element that
supports these requirements is the etheron which supports: 1) a
standard way to load and store knowledge, 2) interfaces to a set
of predefined management tools and 3) a generalized set of
communication channels for talking with other etherons. Since
Goal Mind applications runs within the Alchemy environment,
the number of etherons and the way they are connected can be
dynamically reconfigured; and thus, the application can
completely change its functionality while running. Since,
Alchemy supports multiple applications running at the same
time, a Gold Mind application can similarly affect other
executing Gold Mind applications.

Applications built using Gold Seekers fall into two basic
groups, those that are primarily designed to explore cognition
and those that attempt to use the resulting knowledge of this
exploration to address real-world problems. Using both
Alchemy and Goal Mind, models of the first group have been
developed for language use and leaning in young children, the
effect of semantic/spatial concept mapping on automaticity of
tasks, attention/arousal mechanisms in animals, and the
emotional control of attention and arousal.

Gold Seeker applications that attempt to address real-world
problems are supported by a loose set of tools and concepts
called Eldorado. The Eldorado framework is suitable for
applications as diverse as semantic web search engines and
autonomous robots. One major focus of Eldorado is the
development of an architecture for a smart home.

For the smart home application, Goal Mind provides
development tools, inference engines, and database support for
cognitive modeling. The Alchemy environment in which Goal
Mind models execute supports distributed platform design,
implementation and testing. Eldorado provides a smart home
simulator called SimHouse.

GOLD MIND AGENTS

Unlike some computational theories that see a biological entity
as a society of agents, Gold Mind views the whole entity as an
agent made up of relatively independent components. This
agent view is based on the cognitive theory of Hebbian brain
areas, in which cognition can be viewed as composed of
interacting functional components at varying levels of
decomposition. However, both the inference within a
component and the basic interface method between components
is allowed to be symbolic. The components making up an agent

2 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 1 ISSN: 1690-4524

Figure 2. The 3 layers of a Goal Mind agent.

are logically subdivided into three layers: perceptual, medial,
and higher order (Figure 2).

An agent in Goal Mind is a collection of components realized as
Alchemy nodes. Goal Mind components, also known as
etherons (Figure 3), are specializations of general-purpose
Alchemy nodes. The etheron model places restrictions on the
way its underlying node can be connected and how it can
function. Special interface components provide inter-agent
communication and the perceptual interface to the outside
world. Other component types support a standardized way of
intra-agent communication using a stimuli routing network that
attempts to capture, at a high level, the way the brain controls
communication between neurons and brain areas. Reasoning
within agents is supported by other etherons that support multi-
modal methods including reasoning via rules, semantic
networks, neural networks, and procedures in C++.

Interaction between modeled entities and their surroundings are
implemented as agents within a distributed multi-agent model.
There is no limit to the number of agents that can exist within a
Gold Mind application, but most of the complexity within an
application is normally contained within the number of
components making up each agent, not in the number of agents
being modeled. Agents are free to communicate with each other
using a formal language like KQML, but most of the existing

Control

To Control
Daemon View/

Edit

Trace

System
Parent

Agent
Parent

Process/
Inference Children

To Knowledge Tool

To Trace Tool

To System
(a parent
Etheron)

To Agent
(a parent
Etheron)

Listen for
connections

To other
Etherons

Figure 3. An etheron is a Goal Mind component.

Agent
Decision Layer
 Processing (planning, learning, deciding…)
Information Layer
 Data storage, active DB.
Communication Layer
 Interface to other agents, inhabitants
Physical Layer
 Interface to physical devices

Figure 4. Abstract Structure of an Agent.

work with Gold Mind has focused on using an agent
communication language developed to support to natural
language research.

To build a Gold Mind application, the designer defines the
number and relationship between agents using a Graphical User
Interface (GUI). The component structure of each agent can
then be defined using the same GUI. While the user is free to
define new component types, normally an agent is created using
pre-defined components that are simply loaded with the
required knowledge using the appropriate format for the type of
reasoner supported by that component. Once this is done, the
Alchemy support layer is responsible for distributing the
application and balancing its load with all of the other
applications running on a defined cluster of processors connect
via a LAN or a WAN.

SMART HOME ARCHITECTURE

A smart home can be modeled as a collection of intelligent
agents that perform tasks to improve the safety, comfort and
economy of inhabitants. Each agent acts with autonomy
whenever possible, yet has the ability to communicate with
other agents to coordinate actions or acquire information.
Agents must be distributed to consider communications
requirements and processor loading.

The abstract structure of an individual agent is layered (Figure
4). The physical layer exists only in those agents that need to
interface to physical devices such as light sensors, thermostat
controls, or bar code readers. The communications layer handles
the formatting, transmission and receipt of messages to or from
other agents as well as agent registration. The information layer
maintains local storage needs and, where needed, an active
database. The decision layer exists in agents that need to
perform processing beyond the basic queries and event-
condition-action rules of the active database in the information
layer. Planning, learning, decision-making, conflict resolution
and other complex reasoning tasks are implemented in this
layer. Examples of tasks the smart home needs to perform are:

• Generate a shopping list of kitchen inventory items that are
below their reorder point.

• Retrieve a recipe that can be made from items available in
the kitchen.

• Display a list of current or previously recorded TV
programs that an inhabitant might be interested in.

• When the inhabitant resets the wake-up time, adjust the
start timer for the coffee maker, hot water heater and towel
warmer.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 1 3ISSN: 1690-4524

DATA WAREHOUSE
supports learning

functions

KITCHEN
inventory, recipes, menu

planning

INHABITANTS
preferences, interests,

location, priorities

CONTROL SYSTEMS
lighting, water, HVAC,

alarm & alerts,…

INTERFACES
multimodal I/O (speech,

GUIs), internet

ENTERTAINMENT
media inventory, select

shows to record

MANAGER
policies, task assignment,

resource acquisition

ActionsActions

Events

ActionsActions

Events

Figure 5. Package diagram for the Goal Mind smart home architecture.

The layers of the agents map onto the Goal Mind processing
categories of higher order, medial and perceptual processing.
These correspond to the decision layer (higher order),
information layer (medial) and the communication and physical
layers (perceptual). Processing occurs asynchronously through
the layers. Each agent is defined as a collection of one or more
nodes, with one or more special message handler nodes.
Messages are defined for an application and the message
handlers are written to exchange and process those messages.
Broadcast or multicast communication is supported. A message
handler accepts only messages it understands and has time to
handle. Written in C++, these handlers can be integrated with a
semantic network, production system, or neural network created
with the Goal Mind supported tools for these reasoning
methods.

The smart home architecture (Figure 5) is decomposed into
collections of agents that perform related tasks. These agents
will vary in their complexity based on 1) the amount of
information they can acquire about the environment from the
existing sensors, 2) the level of control they exert on the
environment through existing actuators, and 3) the level of
communication and control allowed between agents. As
hardware and software components in the environment change,
these agents will need to adapt to maximize the use of the
available sensor, actuators and network connectivity. Using
Gold Mind such changes to the functionality and scope of
agents can be added (or deleted) with little or no impact on the
system as a whole.

The kitchen agent is responsible for inventory control, recipe
management, and menu planning. Communication between
these components is frequent. The menu planner must request
inventory availability when an inhabitant has requested a menu
that can be made from in-stock items. Inter-agent
communication is defined as needed. Examples are 1) recipe
management requests inhabitant food preferences and allergies,
2) the data warehouse receives messages about inventory usage

to use for predicting consumption rates, thus allowing items to
be placed on a shopping list before they will likely be needed.

The entertainment agent maintains a media inventory, controls
devices such as televisions or DVD players, and learns
inhabitants viewing patterns from the interactions that are
captured and sent to the data warehouse. Two simple predictors
have been created to date. One is based on a simple scoring
scheme that counts how often a show is watched; as the time
since the last viewing increases, the score is decremented. The
second uses a rule-based system that matches contents of the
television guide listing to inhabitant interests (retrieved from the
inhabitant agent) to predict shows that an inhabitant may like
but has not viewed before. These schemes will be replaced with
more sophisticated predictors, most likely by integrating with
Tivo-like services.

The interfaces agent receives requests for communication with
inhabitants and devices outside the system (e.g., the Internet,
PDA's). This functionality is decoupled from the other agents
because of the expected degree of change of human-machine
interaction and the potentially large number of communication
modalities. The current system supports interaction through
Unix and Windows PC's, a Sharp Zaurus personal digital
assistant, a Microsoft speech recognition and synthesis engine,
and a wireless bar code scanner used for input of kitchen
inventory. We expect future interaction devices to include RFID
readers and touch screens. Other agents send messages that
describe the data to be output and, when required, the expected
return data. The requesting agent also specifies the required or
preferred communication mode. The initial interface to the
system is a speech-enable avatar created with Haptek's avatar-
generator, called Kate, which is currently being integrated with
the smart kitchen agent. As inhabitants request various
functions on devices that have display capability, the interface
changes appropriately, for example to the recipe search screen.

4 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 1 ISSN: 1690-4524

The other agents each perform their specialized tasks. The
control systems agent is intended to interact with physical
devices (thermostat, hot water heater, etc.) and to monitor
conditions for which an alarm (emergencies like fire) or alert
(warnings and reminders like changing the air conditioning
filter) should be generated. The data warehouse is the primary
repository for historical inhabitant, system and device
interactions from which the other agents collect data needed for
their specific prediction or decision-making tasks. The
inhabitant agent's purpose is to keep track of the inhabitants'
current location, and to store acquired and learned inhabitant
preferences, interests, and priorities. The entertainment agent,
for example, could be notified when Sarah enters the den so that
her favorite music genre could be played. The manager agent's
purpose is to use encoded general policies and heuristics for
selecting appropriate actions when conflicts occur between
agents and for reallocating resources and tasks among the
agents when the environment changes, such as when a device
fails.

A complex and critical function within a smart home is event
handling. Challenges include recognizing interesting event
sequences, long-term transactions, and error handling. None of
these challenges have fully been addressed in our system, but
the literature suggests mechanisms that can be employed.
Recognition of event sequences may be performed by domain
independent methods that use pattern matching over strings or
using domain-dependent representations of prototypical
sequences of inhabitant-device interactions. We have developed
a prototype of the later using case-based reasoning. Long term
transactions, such as those involving queries over sensors, can
be addressed using methods described in [1]. Error handling is
designed using contingency-theoretic principles for propagating
un-handled errors to specialized agents [2]. In the next section,
we illustrate some of the important aspects of event handling as
performed in one of the smart home databases we have
developed.

Smart Home Event Handling
Within the smart home system, active databases store, filter and
analyze data to perform actions when events occur. Four

categories of events, each of which may be primitive or
composite, include 1) data manipulation events, 2) temporal
events, 3) exception events, and 4) behavioral events [11].
Event class diagrams are shown in Figure 6.
Data manipulation events correspond to standard updates in the
relational database model. For example, in an application used
to predict television-viewing patterns by a particular member of
the household, interface nodes collect information about the
television viewing session such as channels, duration and genre
of what was viewed. This data is recorded in the warehouse
agent to support learning performed in the entertainment agent.
Another example, from the systems agent, shows the basic
format of active rules in a database as being a specification of
an event, zero or more conditions, and the action to be
performed:

Description: Lighting upon Inhabitant Entry to House
Event: One or more inhabitants enter though the house

doors
Condition: Lights luminosity is below a certain point
Action: Adjust the light luminosity to pre-determined

value

Temporal events occur based on a specified pattern with time.
This category may include events that occur periodically within
a schedule, or events that occur at a specific time. For example,
inhabitants may desire to have the environmental temperature in
the living room set at 70 degrees at 7:00 AM, when inhabitants
awaken every morning. In contrast, an instant event example is
the recording of a television show occurring at 8:00 PM on
Sunday, February 10, 2003. The first example relies on a
specified schedule, while the second event relies on recognizing
a specific instance in time. In event-condition-action (ECA)
form, a rule that protects the safety of the inhabitants might be

Description: Unattended Stove
Event: Stove has remained on for 5 minutes
Condition: No adult inhabitant is in the room
Action: Signal alert to an adult inhabitant AND turn

burner off if heat threshold is exceeded

Figure 6. Abstract and composite event class diagrams

Composite Event
-mEvents:List
+CompositeEvent(name:String,mode:CouplingMode,
 eMode:ExecutionMode,events:Event[]):CompositeEvent
+CompositeEvent():CompositeEvent
+getChildEvents():List
+addEvent(event Event)
+run(ces:CESemaphore, secSem:CESemaphore)
+run(ces:CESempahore)
createSequentialRunThread(sem:CESempahore)
+createCompositeEvent():CompositeEvent
+createPrimitiveEvent():PrimitiveEvent
+createCouplingMode(coupling:String):CouplingMode
+createExecutionMode(execStr:String):ExecutionMode

Event
-mname:String
-mID: int
-mExecutionMode:Object
-mCouplingMode:Objecy
+Event(name:String:mode:CoupingMode):Event
+Event(name:String, mode:CouplingMode,
 execMode:ExecutionMode):Event
+Event():Event
+changeStatus(status:EventStatus)
+getMode():couplingMode
 (other getter methods…)
+setFact()
+getFact()

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 1 5ISSN: 1690-4524

Exception events deal with failures or unexpected behavior and
actions must be carefully designed to handle these conditions.
One example of an exception event is a power failure. What
actions should the system take when power is restored?
Anticipated to be the most difficult event category, these are not
yet modeled in the current implementation. Autonomic
computing [8] concepts and techniques appear to be appropriate
and will be the evaluated in future work.

Behavioral events represent actions taken by a particular
inhabitant. Events in this category frequently include events that
require recording for interpretation by the decision layer. For
instance, the system may record when the children arrive home
from school, or when dinner for a particular household is
served.

Events can originate from three sources: as an external event in
the physical environment, through the firing of a matched rule
and through a message received from the interfaces agent. The
event-condition-action rules are implemented using an
integrated rule-based expert system. Actions are performed
upon an initial rule triggering by an event for which conditions
are met. The right-hand-side (RHS) of the rules contains actions
that are generally reflection calls to software device controllers.
Additionally, retraction or modification of facts is another
operation performed in the RHS of rules.

FUTURE WORK

While the SimHouse simulator provided by Eldorado allows us
to test many of the concepts of the smart home research with a
very realistic environment, we plan to take an iterative approach
to improving our multi-agent framework that relies on both
simulation and implementation in a real environment. One
aspect of this approach is the ‘pushing down’ of the framework
into a microcontroller based processing environment. We are
currently developing a SX-based microcontroller network for
analyzing how much of the framework can run in the firmware
level of processing that would most likely exist in a smart home
environment. This work will give us some useful data in
scoping exactly what type of computational resources will be
needed for high-level smart home control and
monitoring.Another area of work is the way in which conflict
resolution is best addressed in a fully connected smart home
where the data of every sensor can be accessed by every agent
and multiple agents can control the same set of actuators.
Improvements to our agent communication and control
approach will first be tested using SimHouse, and then tested in
a physical smart home environment. While we expect this work
to require minor changes to the framework, the complexity of
existing Gold Mind models demonstrates that these changes are
well within the capacity of the modeling tools to support.

CONCLUSIONS

We have described a distributed, intelligent multi-agent system
framework that is suitable for implementing intelligent
environment applications. Building on the adaptive nature of
biological systems, this framework is being used to develop a
smart home system in which capabilities can be added
incrementally. The current system supports kitchen activities,
entertainment, a virtual human interface, and a lighting control
sub-system. Active databases record events, perform actions,
and aid the learning/adaptation of inhabitant preferences.

ACKNOWLEDGEMENTS

This work was sponsored in part by the National Science
Foundation under grant EIA-0203499. Special thanks to the
student research assistants, especially Edwin Wong, Steven
Johnston, Nihir Patel, and Russ Tribble.

REFERENCES

[1] P.Bonnet, J.Gehrke, and P.Seshadri. "Towards Sensor

Database Systems". 2nd Int. Conference on Mobile Data
Management, Hong Kong, Jan. 2001, ww.cs.cornell.edu/
johannes/papers/2001/MDM2001-sensor.pdf.

[2] J.R. Durrett, L.J. Burnell, and J.W. Priest. "A Virtual
Advisor Utilizing Multi-Agent Software Teams and
Contingency Theoretic Coordination Models". Virtual
Education: Cases in Learning and Teaching
Technologies Part I, Chapter 4, Fawzi Albalooshi editor,
IRM Press, Hershey PA, Spring, 2003, pp 50-63.

[3] C. Hannon, "A Geographically Distributed Processing
Environment for Intelligent Systems", Proc. of the 15th
Int. Parallel and Distributed Systems Conference, Sept.
19-21, 2002 pp. 355-360.

[4] C. Hannon and R. Rinewalt, "Addressing Security Issues in
Geographical Distributed Systems", 4th Mexican Int.
Conf. on Computer Science, Sept. 8-12, 2003 pp. 182-
189.

[5] C. Hannon and D. J. Cook. "Developing a Tool for
Unified Cognitive Modeling using a Model of Learning
and Understanding in Young Children." The Int. Journal
of Artificial Intelligence Tools, 10 (2001): 39-63.

[6] C. Hannon, "Emotion-based Control Mechanisms for
Agent Systems", ISE 2003, July 20-25, 2003 pp. 10-15.

[7] L. Keeley, "Smart Homes? A stupid idea". Context, Dec.
2000/Jan. 2001, www.contextmag.com/archives/
200012/thegreatlie.asp.

[8] J.O. Kephart and D.M. Chess, "The Vision of Autonomic
Computing". IEEE Computer. Jan. 2003, pp 41-50.

[9] J. O'Brien, T. Rodden, M. Rouncefield, and J. Hughes, "At
Home with the Technology: An Ethnographic Study of a
Set-Top-Box Trial". ACM Transactions on Computer-
Human Interaction, 6(3), Sep. 1999, pp 282-308.

[10] D. Servant and A. Drogoul, "Combining Amorphous
Computing and Reactive Agent-Based Systems: A
Paradigm for Pervasive Intelligence?" AAMAS '02, July
15-19, 2002 pp. 441-448. .

[11] E. S. Wong, L.J. Burnell and C. J. Hannon, "An Active
Architecture for Managing Events in Pervasive Computing
Environments", FLAIRS 2004, Miami Beach, FL. May
17-19, 2004, CD-ROM

6 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 1 ISSN: 1690-4524

	P446593

