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ABSTRACT 

 
The supervised control of complex event-driven Discrete Event 

Systems (DESs) such as those present in manufacturing 

systems, or the communication processes involved therein, 

continue to pose a challenge to system designers. To a certain 

extent this complexity can be reduced by applying existing 

modular control approaches to large-scale DES design. These 

solutions divide the system into different sections in such a way 

that its overall behavior is given by a suitable arrangement of 

the different sections. However, if the system is reconfigured 

frequently, the overall plant models and control specifications 

computed earlier would no longer be valid. Thus a new 

controlled system will have to be computed. We propose a new 

methodology, for ensuring that the new controlled plant will 

meet any valid control specifications taken from the existing 

modules. Being built on the framework of Supervisory control 

theory, this method is guaranteed to work even as the system is 

being dynamically reconfigured. 

 

Keywords: Supervisory Control Theory, Adaptive supervisors, 

Discrete Event System, Automata, Control specifications. 

 

 

1.  INTRODUCTION 
 

In many complex systems, such as those found in 

manufacturing and communication, the evolution of the system 

behavior is characterized by abrupt changes corresponding to 

the occurrences of events. Such systems are commonly termed 

as Discrete Event Systems (DESs) [8, 9]. Of the event 

transitions occurring in the system, also called the plant, certain 

events can be disabled by a supervisor controlling the plant 

behavior. Such events are called controllable events, and all 

other events are called uncontrollable events. This behavior of 

the system can be described by a language model and 

equivalently represented by an automaton as well. Prior to 

controlling the system a model which accurately represents all 

possible behavior starting from an initial state is required. The 

overall plant behavior is obtained by tracking a succession of 

events, both controllable and uncontrollable ones, originating 

from a single initial state. A supervisor acting in conjunction 

with the plant restricts its behavior in order to achieve some 

control objectives. In doing so the supervisor may delete 

controllable events. Such deletions may make certain states of 

the plant unreachable from the initial state. Hence the 

reachability of any state in the plant is usually checked with 

reference to the initial state as part of the supervision 

procedure.  

 

Instead of creating a large and complex plant model, frequently 

the system might be split into sub-models and the interaction of 

these sub-models provides an overall model of the system. In 

this paper we discuss scenarios wherein a complex system 

composed of several sub-models is reconfigured, and it is 

required that a new supervisor for the reconfigured plant be 

obtained adaptively based on the changes made to the system 

structure. All the events in the sub-models are regarded as 

controllable, and the overall plant is obtained by including all 

possible interactions of the sub-models. As the system is being 

reconfigured some of the sub-models will no longer be needed 

whereas other new sub-models might need to be included.  

 

We propose an automata theory based solution to the above 

problem and provide an algorithm which uses the power of 

existing supervisory control theory (SCT) [1, 6, 10] for making 

sure that events from sub-systems which are no longer part of 

the reconfigured system are eliminated in such a way as to 

maintain linkages between original states of the control 

specification. If the events which are no longer part of the 

reconfigured plant are simply deleted in the control 

specification, this could cause various parts of the supervised 

plant to become unreachable, and this in turn this might lead to 

the control objective no longer being feasible. 

 

A two-part solution to the above problem is described in this 

paper: one part applied to the plant sub-models, and the second 

part applied to the control specification. Since the overall 

model of the plant is formed by the interaction of sub-models, 

the events from the sub-model which is dropped can be 

eliminated either by deleting them in the overall model 

followed by finding a reachability of all states from the initial 

state; or by finding a new overall interaction model for the 

plant after eliminating the sub-model which has been dropped. 

 

For reconfiguring the control specification which now should 

no longer contain events which belong to the sub-model that 

has been dropped, we replace these events by silent or ε events. 

The ε event trace represents the absence of any event, or 

alternately signifies that if an event exists its occurrence cannot 

be observed. Instead of causing a break where the event from 

the dropped sub-model formerly was, it now gets seamlessly 

connected via the ε event to the next state in the control 

specification. The notion of ε is especially important when 

dealing with such automata models which can abruptly change 
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state apparently without the occurrence of an event, thereby 

causing non-determinism in the system. This non-determinism 

can be removed easily by creating an equivalent deterministic 

version of the specification automaton. Once the reconfigured 

plant and control specifications are available, a new supervisor 

for the plant can be obtained using existing SCT algorithms. 

Doing so will ensure that the reconfigured supervisor does 

indeed meet all the specifications. 

 

The rest of the paper is arranged as follows: Section 2 provides 

an overview of several important concepts used in the 

modeling and supervisory control of DESs, as well as a review 

of the literature related to adaptive supervisory control. Section 

3 illustrates the plant-control specification reconfiguration 

problem through the use of an example drawn from a DES. In 

Section 4 we provide an adaptive supervisory control solution 

for dealing with the reconfiguration problem of DESs in the 

presence of uncertainty regarding changes in system or control 

specifications. Section 5 provides conclusions of the work and 

Section 6 contains bibliographic references. 

 

 

2.  OVERVIEW OF AUTOMATA AND 

SUPERVISORY CONTROL THEORY 
 

In order to express the behavior of a system, a language model 

and equivalently automata may be used. These models are 

created using the events in the system. 

 

Automata  
Automata [5, 10] can be used for representing the un-timed 

behavior of language models and of the qualitative 

specifications needed for its control. Formally, an automaton G 

is represented as a 5-tuple: G = (X, Σ, δ, x0, Xm), where X 

denotes the set of states, Σ denotes the finite set of events, δ: X 

x (Σ U {ε}) → 2X is the partial state information function, and 

x0 ∈X is the initial state, and Xm denotes the set of marked 

states.  

 

G is called a deterministic automaton if the transition function 

is a partial function of the form: δ: X x Σ→ X, signifying that 

from any state in the automaton, the transition function of any 

event defined at that state may take it to exactly one state. G is 

is called a non-deterministic automaton if the partial transition 

function is of the form: δ: X x Σ→ 2X, signifying that within the 

automaton there are states, from which the transition function 

of some events defined at that state take it to more than one 

state. Not all events might be possible at all the states of the 

automaton and the transition function defines which events are 

possible at which states. A triple formed by (x, σ, x') � X x (Σ U 

{ε}) x X is called a transition of G where x'∈δ(x, σ). A 

transition is said to be an epsilon-transition if σ = ε, that is, the 

transition can occur on the ε (or unobservable) event. 

 

Removal of non-determinism 
The finite set of events is denoted by Σ, and different 

arrangements of these events forms a string of events, also 

called a trace. A language is defined as a set of traces. If we let 

Σ* represent the set of all finite traces of events in Σ including 

the empty trace ε, then it can be seen that any language over the 

same event set, is a subset of Σ*. The ε event trace represents 

the absence of event, or alternately signifies that if an event 

exists its occurrence cannot be observed. When only some of 

the events in a system can be observed, the system is said to be 

operating under partial observability. 

 

If we let a subset of events, ΣS ⊂  Σ, be the set of events which 

can be observed, then given a trace s∈  Σ*, the projection of s 

on ΣS, denoted s↑ΣS, is the trace obtained by erasing the events 

not belonging to ΣS from s. In such a trace the unobservable 

events are mapped to ε. 

 

Non-determinism may be caused either by ε events or by one 

event at a state leading to two or more states. In such cases an 

equivalent deterministic version of the automaton can be 

obtained using the following steps modified from [10]: 

 
Algorithm 1 Removal of non-determinism 

 
Step 1: The initial state of the deterministic automaton 

corresponds to all the states which are reachable on ε events 

from the initial state of the non-deterministic automaton. 

 
Step 2: Add a new state labeled Ф to the deterministic 

automaton. If there are no event transitions on a particular 

event leading out of a state in the non-deterministic automaton, 

in the deterministic version this is signified by such events 

leading to the Ф state. 

 
Step 3: Consider each state in turn from among the set of states 

which form the new initial state in the deterministic automaton. 

Find the union of the states which can be reached by an event 

followed by an arbitrary number of ε events in the non-

deterministic automaton. All the events in the plant are 

evaluated in turn, and events which do not have outgoing 

transitions from any of the set of states that constitute the initial 

state in the deterministic automaton are directed to the Ф state. 

 
Step 4: Repeat Step 3 for all the new states added, and proceed 

until no further new states can be added. At most the number of 

states in the deterministic automaton will be number of states in 

the power set based on the number of states in the non-

deterministic automaton. 

 

Synchronous composition 
When a complex discrete event system is modeled using sub-

models, the overall behavior of the plant can be obtained using 

an interaction scheme termed as synchronous composition. 

Synchronous composition models the overall behavior of two 

interacting DESs which share events. Given two deterministic 

automata G = (X, ΣG, δG, x0, Xm), X = (Y, ΣS, δS, y0, Ym), the 

synchronous composition [4] of G and S is denoted R = G || S 

= (Z, Σ, δ, z0,Zm), where Z = X x Y,  Σ= ΣG U ΣS, z0 := (x0, 

y0), Zm := Xm x Ym, and the transition function δ: Z  x Σ → Z is 

defined as: ∀ z = (x, y) ∈Z, σ ∈  Σ, 

 

  (δG(x, σ), δS(y, σ)) 

        if δG(x, σ), δS(y, σ) defined 

        Σ ∈  ΣG ∩ ΣS 

 (δG(x, σ), y) 
δ ((x,y), σ) = 

       if δG(x, σ) defined, σ ∈  ΣG – ΣS 

  (x, δS(y, σ)) 

        if δS(y, σ) defined, σ ∈  ΣS – ΣG 

  undefined     otherwise 

 

When G and S are composed through synchronous 

composition, the common events occur synchronously, while 

the other events occur asynchronously. 
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Supervisory Control of DESs 
A supervisor, denoted S, may be defined as a map S : L(G) → 

SΣ−Σ
2 that determines the set of events Q(s) ⊆  (Σ-ΣS) to be 

disabled after the occurrence of trace s ∈  L(G). 

 

Since restriction in the behavior of a plant can also be achieved 

by synchronous composition, the action of control may also be 

achieved by taking a synchronous composition of plant 

automaton G and supervisor automaton S. 

 

When the DES being controlled includes uncertainty about the 

exact model of the system to use or if the design of the system 

is subject to frequent change, the computation of supervisors 

becomes increasingly complex to design. Extensions of 

supervisory control in such areas include robust and adaptive 

schemes [2, 7, 11]. Robust control attempts to supervise system 

behavior without resolving uncertainty about the model, and 

adaptive control proceeds by incorporates new information 

about the plant obtained by taking successive observations, 

thereby helping reduce uncertainty. This is particularly useful 

in cases when systems are modeled as sub-systems and if one 

of the sub-systems goes offline. Using an algorithm for 

learning in [3] the events related to the failed subsystem can be 

deleted and the original supervised system patched. 

 

 

3.  PLANT-SPCIFICATION RECONFIGURATION 

PROBLEM 

 

Consider the overall plant automaton model of DES shown in 

Figure 1 obtained by the synchronous composition of three 

sub-models which are shown in Figure 2. 

 

        
               

Figure 1: Automaton for overall plant model 
 

The behavior of the plant is to be controlled using a sample 

specification given in Figure 3. The initial state of the 

automaton is indicated by the state which has a single ended 

arrow leading into it from no other state. Controllable event 

transitions are represented by marking them with small 

perpendicular dashes, indicating that these events can be 

pruned as needed by a supervisor synthesized for the plant 

using supervisory control theory. Filled double circles in the 

automaton represent goal or target states, which designate that 

certain tasks in the system have been performed. 

 

 
 

Figure 2: Automata for plant sub-models 
 

 
 

 

Figure 3: Automaton for control specification 
 
As is often the case with modern manufacturing systems, 

different products are often produced using a few core pieces of 

equipment, aided by auxiliary equipment, specific to different 

product processing-line setups, which are frequently shuffled. 

The new system or specification after reconfiguration should 

contain only events belonging to the sub-models in use, else it 

might deadlock waiting for events which never occur, as would 

happen when the events are from modules that have been 

dropped. For example if sub-model II is dropped during 

reconfiguration based on this the events {c, d} are simply 

deleted in the plant and control specification. In Figure 3 after 

executing the event a at state 1 and reaching state 2, the system 

would halt waiting for event c which cannot be executed. A 

method for connecting the events which have become 

disjointed in the specification after reconfiguration is needed. 

Regardless of the algorithm used to heal the specification, the 

automatically reconfigured specification should also be verified 

by the designer in the context of the control it will have on the 

behavior of the plant. 

 

 

4.  ADAPTIVE SUPERVISORY CONTROL 
 

We provide algorithms for obtaining a reconfigured overall 

model of the plant and of the specification after sub-models 

which constitute either are dropped.  

 

Algorithm 2 computes the reconfigured overall plant 

automaton. 

 
Algorithm 2 Computation of reconfigured plant automaton 

 
Step 1: In the initial overall plant model delete the events taken 

from the sub-model which has been dropped. 
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Step 2: Compute the states which are reachable from the initial 

state on the execution of events from existing sub-models, 

resulting in the new reconfigured overall plant automaton. 

 

This algorithm is applied to obtain the reconfigured overall 

plant model shown in Figure 4. It is extracted from the initial 

system model shown in Figure 2 after dropping sub-model II 

and its associated events {c, d}.  

 

 
 

Figure 4: Reconfigured overall plant model 
 

Algorithm 3 computes the reconfigured control specification. 

 

Algorithm 3 Computation of reconfigured specification 

 

Step 1: Replace all the events taken from the sub-model which 

has been dropped with ε events. This step in general will result 

in a non-deterministic automaton. 

 

Step 2: Remove the ε events using Algorithm 1. This step will 

make specification automaton a deterministic one. 

 

Step 3: Since the specifications we are considering consists 

only of controllable events, all controllable event transitions to 

the Null or Ф state can be eliminated, resulting in the new 

reconfigured specification automaton. 

 

This algorithm is applied to obtain the reconfigured control 

specification shown in Figure 5. It is extracted from the 

original control specifications shown in Figure 3, after 

replacing the events {c, d} associated with sub-model II, with 

ε. 

 

 
 

Figure 5: New control specification 
 

Using supervisory control algorithms, the supervised plant 

which meets these specifications is computed and is shown in 

Figure 6. It should be noted that the event f following the event 

trace {a.c} in the original control specification has been deleted 

in the supervised plant. This is because it violates the sub-

model behavior which requires that the event e be executed 

before event f (refer Figure 2). 

 

 
 

Figure 6: Reconfigured supervised plant 

 

This adaptive method of dynamically incorporating information 

regarding reconfigurations in the plant can be used for 

computing an updated supervisor for the plant. The supervisor 

for the reconfigured plant obtained next using SCT is 

guaranteed to reach a target state in the supervised plant 

without violating any of the newly reconfigured control 

specifications. 

 

 

5.  CONCLUSIONS 

 

In this paper we develop self-healing algorithms which readily 

adapt to changing configurations of a discrete event system. 

These algorithms can be used for obtaining a new overall 

model of the plant and control specification after 

reconfiguration. It is performed in a way which safely extracts 

events which are no longer part of the reconfigured system. 

The use of the algorithms is illustrated with an example drawn 

from a discrete event system composed of interacting sub-

systems. 

 

 

 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 4 - NUMBER 2 63ISSN: 1690-4524



6.  REFERENCES 
 

[1]  C. G. Cassandras, Discrete Event Systems: Modeling and 

Performance Analysis, Boston, MA: Aksen Associates, 

1993. 

[2] D. Gordon and K. Kiriakidis, "Adaptive supervisory control 

of interconnected discrete event systems", IEEE 

Conference on Control Applications, Anchorage, AK, 

Sept. 2000. 

[3] D. Gordon and K. Kiriakidis, "Design of adaptive 

supervisors for discrete event systems via learning", ASME 

Dynamic Systems and Control Division, International 
Mechanical Engineering Congress and Exposition, 

Orlando, FL, Nov. 2000. 

[4] C. A. R. Hoare, Communicating Sequential Processes, 

Englewood Cliffs, NJ: Prentice-Hall Pub., 1985. 

[5] J. E. Hopcroft and J. D. Ullman, Introduction to 

Automata Theory, Languages and Computation, 

Reading, MA: Addison-Wesley, 1979. 

[6] R. Kumar and V. K. Garg, Modeling and Control of 

Logical Discrete Event Systems, Boston, MA: Kluwer 

Academic Pub., 1995. 

[7] F. Lin, "Robust and adaptive supervisory control of discrete 

event systems", IEEE Transactions on Automatic 

Control, Vol. 38, No. 12, 1993, pp. 1842-1852. 

[8] P. J. Ramadge and W. M. Wonham, "On the supremal 

controllable sublanguage of a given language", SIAM 

Journal of Control and Optimization, Vol. 25, No. 3, 

1987, pp. 637-659. 

[9] P. J. Ramadge and W. M. Wonham, "Supervisory control of 

a class of discrete event processes", SIAM Journal of 

Control and Optimization, Vol. 25, No. 1, 1987, pp. 206-

230. 

[10] M. Sipser, Introduction to the Theory of Computation, 

Boston, MA: Brooks Cole, Inc., 1996. 

[11] S. Young and V. K. Garg, "Model uncertainty in discrete 

event systems", SIAM Journal of Control and 

Optimization, Vol. 33, No. 1, 1995, pp. 208-226. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 4 - NUMBER 264 ISSN: 1690-4524


	P487532

