

 On the Design of Adaptive Supervisors for Discrete Event Systems

Vigyan CHANDRA

 Department of Technology, Eastern Kentucky University

Richmond, KY 40475, USA

and

Siddhartha BHATTACHARYYA

Division of Computer and Technical Sciences, Kentucky State University

Frankfort, KY 40601, USA

ABSTRACT

The supervised control of complex event-driven Discrete Event

Systems (DESs) such as those present in manufacturing

systems, or the communication processes involved therein,

continue to pose a challenge to system designers. To a certain

extent this complexity can be reduced by applying existing

modular control approaches to large-scale DES design. These

solutions divide the system into different sections in such a way

that its overall behavior is given by a suitable arrangement of

the different sections. However, if the system is reconfigured

frequently, the overall plant models and control specifications

computed earlier would no longer be valid. Thus a new

controlled system will have to be computed. We propose a new

methodology, for ensuring that the new controlled plant will

meet any valid control specifications taken from the existing

modules. Being built on the framework of Supervisory control

theory, this method is guaranteed to work even as the system is

being dynamically reconfigured.

Keywords: Supervisory Control Theory, Adaptive supervisors,

Discrete Event System, Automata, Control specifications.

1. INTRODUCTION

In many complex systems, such as those found in

manufacturing and communication, the evolution of the system

behavior is characterized by abrupt changes corresponding to

the occurrences of events. Such systems are commonly termed

as Discrete Event Systems (DESs) [8, 9]. Of the event

transitions occurring in the system, also called the plant, certain

events can be disabled by a supervisor controlling the plant

behavior. Such events are called controllable events, and all

other events are called uncontrollable events. This behavior of

the system can be described by a language model and

equivalently represented by an automaton as well. Prior to

controlling the system a model which accurately represents all

possible behavior starting from an initial state is required. The

overall plant behavior is obtained by tracking a succession of

events, both controllable and uncontrollable ones, originating

from a single initial state. A supervisor acting in conjunction

with the plant restricts its behavior in order to achieve some

control objectives. In doing so the supervisor may delete

controllable events. Such deletions may make certain states of

the plant unreachable from the initial state. Hence the

reachability of any state in the plant is usually checked with

reference to the initial state as part of the supervision

procedure.

Instead of creating a large and complex plant model, frequently

the system might be split into sub-models and the interaction of

these sub-models provides an overall model of the system. In

this paper we discuss scenarios wherein a complex system

composed of several sub-models is reconfigured, and it is

required that a new supervisor for the reconfigured plant be

obtained adaptively based on the changes made to the system

structure. All the events in the sub-models are regarded as

controllable, and the overall plant is obtained by including all

possible interactions of the sub-models. As the system is being

reconfigured some of the sub-models will no longer be needed

whereas other new sub-models might need to be included.

We propose an automata theory based solution to the above

problem and provide an algorithm which uses the power of

existing supervisory control theory (SCT) [1, 6, 10] for making

sure that events from sub-systems which are no longer part of

the reconfigured system are eliminated in such a way as to

maintain linkages between original states of the control

specification. If the events which are no longer part of the

reconfigured plant are simply deleted in the control

specification, this could cause various parts of the supervised

plant to become unreachable, and this in turn this might lead to

the control objective no longer being feasible.

A two-part solution to the above problem is described in this

paper: one part applied to the plant sub-models, and the second

part applied to the control specification. Since the overall

model of the plant is formed by the interaction of sub-models,

the events from the sub-model which is dropped can be

eliminated either by deleting them in the overall model

followed by finding a reachability of all states from the initial

state; or by finding a new overall interaction model for the

plant after eliminating the sub-model which has been dropped.

For reconfiguring the control specification which now should

no longer contain events which belong to the sub-model that

has been dropped, we replace these events by silent or ε events.

The ε event trace represents the absence of any event, or

alternately signifies that if an event exists its occurrence cannot

be observed. Instead of causing a break where the event from

the dropped sub-model formerly was, it now gets seamlessly

connected via the ε event to the next state in the control

specification. The notion of ε is especially important when

dealing with such automata models which can abruptly change

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 260 ISSN: 1690-4524

state apparently without the occurrence of an event, thereby

causing non-determinism in the system. This non-determinism

can be removed easily by creating an equivalent deterministic

version of the specification automaton. Once the reconfigured

plant and control specifications are available, a new supervisor

for the plant can be obtained using existing SCT algorithms.

Doing so will ensure that the reconfigured supervisor does

indeed meet all the specifications.

The rest of the paper is arranged as follows: Section 2 provides

an overview of several important concepts used in the

modeling and supervisory control of DESs, as well as a review

of the literature related to adaptive supervisory control. Section

3 illustrates the plant-control specification reconfiguration

problem through the use of an example drawn from a DES. In

Section 4 we provide an adaptive supervisory control solution

for dealing with the reconfiguration problem of DESs in the

presence of uncertainty regarding changes in system or control

specifications. Section 5 provides conclusions of the work and

Section 6 contains bibliographic references.

2. OVERVIEW OF AUTOMATA AND

SUPERVISORY CONTROL THEORY

In order to express the behavior of a system, a language model

and equivalently automata may be used. These models are

created using the events in the system.

Automata
Automata [5, 10] can be used for representing the un-timed

behavior of language models and of the qualitative

specifications needed for its control. Formally, an automaton G

is represented as a 5-tuple: G = (X, Σ, δ, x0, Xm), where X

denotes the set of states, Σ denotes the finite set of events, δ: X

x (Σ U {ε}) → 2X is the partial state information function, and

x0 ∈X is the initial state, and Xm denotes the set of marked

states.

G is called a deterministic automaton if the transition function

is a partial function of the form: δ: X x Σ→ X, signifying that

from any state in the automaton, the transition function of any

event defined at that state may take it to exactly one state. G is

is called a non-deterministic automaton if the partial transition

function is of the form: δ: X x Σ→ 2X, signifying that within the

automaton there are states, from which the transition function

of some events defined at that state take it to more than one

state. Not all events might be possible at all the states of the

automaton and the transition function defines which events are

possible at which states. A triple formed by (x, σ, x') � X x (Σ U

{ε}) x X is called a transition of G where x'∈δ(x, σ). A

transition is said to be an epsilon-transition if σ = ε, that is, the

transition can occur on the ε (or unobservable) event.

Removal of non-determinism
The finite set of events is denoted by Σ, and different

arrangements of these events forms a string of events, also

called a trace. A language is defined as a set of traces. If we let

Σ* represent the set of all finite traces of events in Σ including

the empty trace ε, then it can be seen that any language over the

same event set, is a subset of Σ*. The ε event trace represents

the absence of event, or alternately signifies that if an event

exists its occurrence cannot be observed. When only some of

the events in a system can be observed, the system is said to be

operating under partial observability.

If we let a subset of events, ΣS ⊂ Σ, be the set of events which

can be observed, then given a trace s∈ Σ*, the projection of s

on ΣS, denoted s↑ΣS, is the trace obtained by erasing the events

not belonging to ΣS from s. In such a trace the unobservable

events are mapped to ε.

Non-determinism may be caused either by ε events or by one

event at a state leading to two or more states. In such cases an

equivalent deterministic version of the automaton can be

obtained using the following steps modified from [10]:

Algorithm 1 Removal of non-determinism

Step 1: The initial state of the deterministic automaton

corresponds to all the states which are reachable on ε events

from the initial state of the non-deterministic automaton.

Step 2: Add a new state labeled Ф to the deterministic

automaton. If there are no event transitions on a particular

event leading out of a state in the non-deterministic automaton,

in the deterministic version this is signified by such events

leading to the Ф state.

Step 3: Consider each state in turn from among the set of states

which form the new initial state in the deterministic automaton.

Find the union of the states which can be reached by an event

followed by an arbitrary number of ε events in the non-

deterministic automaton. All the events in the plant are

evaluated in turn, and events which do not have outgoing

transitions from any of the set of states that constitute the initial

state in the deterministic automaton are directed to the Ф state.

Step 4: Repeat Step 3 for all the new states added, and proceed

until no further new states can be added. At most the number of

states in the deterministic automaton will be number of states in

the power set based on the number of states in the non-

deterministic automaton.

Synchronous composition
When a complex discrete event system is modeled using sub-

models, the overall behavior of the plant can be obtained using

an interaction scheme termed as synchronous composition.

Synchronous composition models the overall behavior of two

interacting DESs which share events. Given two deterministic

automata G = (X, ΣG, δG, x0, Xm), X = (Y, ΣS, δS, y0, Ym), the

synchronous composition [4] of G and S is denoted R = G || S

= (Z, Σ, δ, z0,Zm), where Z = X x Y, Σ= ΣG U ΣS, z0 := (x0,

y0), Zm := Xm x Ym, and the transition function δ: Z x Σ → Z is

defined as: ∀ z = (x, y) ∈Z, σ ∈ Σ,

 (δG(x, σ), δS(y, σ))

 if δG(x, σ), δS(y, σ) defined

 Σ ∈ ΣG ∩ ΣS

 (δG(x, σ), y)
δ ((x,y), σ) =

 if δG(x, σ) defined, σ ∈ ΣG – ΣS

 (x, δS(y, σ))

 if δS(y, σ) defined, σ ∈ ΣS – ΣG

 undefined otherwise

When G and S are composed through synchronous

composition, the common events occur synchronously, while

the other events occur asynchronously.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 2 61ISSN: 1690-4524

Supervisory Control of DESs
A supervisor, denoted S, may be defined as a map S : L(G) →

SΣ−Σ
2 that determines the set of events Q(s) ⊆ (Σ-ΣS) to be

disabled after the occurrence of trace s ∈ L(G).

Since restriction in the behavior of a plant can also be achieved

by synchronous composition, the action of control may also be

achieved by taking a synchronous composition of plant

automaton G and supervisor automaton S.

When the DES being controlled includes uncertainty about the

exact model of the system to use or if the design of the system

is subject to frequent change, the computation of supervisors

becomes increasingly complex to design. Extensions of

supervisory control in such areas include robust and adaptive

schemes [2, 7, 11]. Robust control attempts to supervise system

behavior without resolving uncertainty about the model, and

adaptive control proceeds by incorporates new information

about the plant obtained by taking successive observations,

thereby helping reduce uncertainty. This is particularly useful

in cases when systems are modeled as sub-systems and if one

of the sub-systems goes offline. Using an algorithm for

learning in [3] the events related to the failed subsystem can be

deleted and the original supervised system patched.

3. PLANT-SPCIFICATION RECONFIGURATION

PROBLEM

Consider the overall plant automaton model of DES shown in

Figure 1 obtained by the synchronous composition of three

sub-models which are shown in Figure 2.

Figure 1: Automaton for overall plant model

The behavior of the plant is to be controlled using a sample

specification given in Figure 3. The initial state of the

automaton is indicated by the state which has a single ended

arrow leading into it from no other state. Controllable event

transitions are represented by marking them with small

perpendicular dashes, indicating that these events can be

pruned as needed by a supervisor synthesized for the plant

using supervisory control theory. Filled double circles in the

automaton represent goal or target states, which designate that

certain tasks in the system have been performed.

Figure 2: Automata for plant sub-models

Figure 3: Automaton for control specification

As is often the case with modern manufacturing systems,

different products are often produced using a few core pieces of

equipment, aided by auxiliary equipment, specific to different

product processing-line setups, which are frequently shuffled.

The new system or specification after reconfiguration should

contain only events belonging to the sub-models in use, else it

might deadlock waiting for events which never occur, as would

happen when the events are from modules that have been

dropped. For example if sub-model II is dropped during

reconfiguration based on this the events {c, d} are simply

deleted in the plant and control specification. In Figure 3 after

executing the event a at state 1 and reaching state 2, the system

would halt waiting for event c which cannot be executed. A

method for connecting the events which have become

disjointed in the specification after reconfiguration is needed.

Regardless of the algorithm used to heal the specification, the

automatically reconfigured specification should also be verified

by the designer in the context of the control it will have on the

behavior of the plant.

4. ADAPTIVE SUPERVISORY CONTROL

We provide algorithms for obtaining a reconfigured overall

model of the plant and of the specification after sub-models

which constitute either are dropped.

Algorithm 2 computes the reconfigured overall plant

automaton.

Algorithm 2 Computation of reconfigured plant automaton

Step 1: In the initial overall plant model delete the events taken

from the sub-model which has been dropped.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 262 ISSN: 1690-4524

Step 2: Compute the states which are reachable from the initial

state on the execution of events from existing sub-models,

resulting in the new reconfigured overall plant automaton.

This algorithm is applied to obtain the reconfigured overall

plant model shown in Figure 4. It is extracted from the initial

system model shown in Figure 2 after dropping sub-model II

and its associated events {c, d}.

Figure 4: Reconfigured overall plant model

Algorithm 3 computes the reconfigured control specification.

Algorithm 3 Computation of reconfigured specification

Step 1: Replace all the events taken from the sub-model which

has been dropped with ε events. This step in general will result

in a non-deterministic automaton.

Step 2: Remove the ε events using Algorithm 1. This step will

make specification automaton a deterministic one.

Step 3: Since the specifications we are considering consists

only of controllable events, all controllable event transitions to

the Null or Ф state can be eliminated, resulting in the new

reconfigured specification automaton.

This algorithm is applied to obtain the reconfigured control

specification shown in Figure 5. It is extracted from the

original control specifications shown in Figure 3, after

replacing the events {c, d} associated with sub-model II, with

ε.

Figure 5: New control specification

Using supervisory control algorithms, the supervised plant

which meets these specifications is computed and is shown in

Figure 6. It should be noted that the event f following the event

trace {a.c} in the original control specification has been deleted

in the supervised plant. This is because it violates the sub-

model behavior which requires that the event e be executed

before event f (refer Figure 2).

Figure 6: Reconfigured supervised plant

This adaptive method of dynamically incorporating information

regarding reconfigurations in the plant can be used for

computing an updated supervisor for the plant. The supervisor

for the reconfigured plant obtained next using SCT is

guaranteed to reach a target state in the supervised plant

without violating any of the newly reconfigured control

specifications.

5. CONCLUSIONS

In this paper we develop self-healing algorithms which readily

adapt to changing configurations of a discrete event system.

These algorithms can be used for obtaining a new overall

model of the plant and control specification after

reconfiguration. It is performed in a way which safely extracts

events which are no longer part of the reconfigured system.

The use of the algorithms is illustrated with an example drawn

from a discrete event system composed of interacting sub-

systems.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 2 63ISSN: 1690-4524

6. REFERENCES

[1] C. G. Cassandras, Discrete Event Systems: Modeling and

Performance Analysis, Boston, MA: Aksen Associates,

1993.

[2] D. Gordon and K. Kiriakidis, "Adaptive supervisory control

of interconnected discrete event systems", IEEE

Conference on Control Applications, Anchorage, AK,

Sept. 2000.

[3] D. Gordon and K. Kiriakidis, "Design of adaptive

supervisors for discrete event systems via learning", ASME

Dynamic Systems and Control Division, International
Mechanical Engineering Congress and Exposition,

Orlando, FL, Nov. 2000.

[4] C. A. R. Hoare, Communicating Sequential Processes,

Englewood Cliffs, NJ: Prentice-Hall Pub., 1985.

[5] J. E. Hopcroft and J. D. Ullman, Introduction to

Automata Theory, Languages and Computation,

Reading, MA: Addison-Wesley, 1979.

[6] R. Kumar and V. K. Garg, Modeling and Control of

Logical Discrete Event Systems, Boston, MA: Kluwer

Academic Pub., 1995.

[7] F. Lin, "Robust and adaptive supervisory control of discrete

event systems", IEEE Transactions on Automatic

Control, Vol. 38, No. 12, 1993, pp. 1842-1852.

[8] P. J. Ramadge and W. M. Wonham, "On the supremal

controllable sublanguage of a given language", SIAM

Journal of Control and Optimization, Vol. 25, No. 3,

1987, pp. 637-659.

[9] P. J. Ramadge and W. M. Wonham, "Supervisory control of

a class of discrete event processes", SIAM Journal of

Control and Optimization, Vol. 25, No. 1, 1987, pp. 206-

230.

[10] M. Sipser, Introduction to the Theory of Computation,

Boston, MA: Brooks Cole, Inc., 1996.

[11] S. Young and V. K. Garg, "Model uncertainty in discrete

event systems", SIAM Journal of Control and

Optimization, Vol. 33, No. 1, 1995, pp. 208-226.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 264 ISSN: 1690-4524

	P487532

