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ABSTRACT 

Meta-heuristics are commonly used to solve combinatorial 
problems in practice. Many approaches provide very good 
quality solutions in a short amount of computational time; 
however most meta-heuristics use parameters to tune the 
performance of the meta-heuristic for particular problems and 
the selection of these parameters before solving the problem can 
require much time. This paper investigates the problem of 
setting parameters using a typical meta-heuristic called Meta-
RaPS (Metaheuristic for Randomized Priority Search.). Meta-
RaPS is a promising meta-heuristic optimization method that 
has been applied to different types of combinatorial 
optimization problems and achieved very good performance 
compared to other meta-heuristic techniques. To solve a 
combinatorial problem, Meta-RaPS uses two well-defined 
stages at each iteration: construction and local search. After a 
number of iterations, the best solution is reported. Meta-RaPS 
performance depends on the fine tuning of two main 
parameters, priority percentage and restriction percentage, 
which are used during the construction stage. This paper 
presents two different dynamic parameter setting methods for 
Meta-RaPS.  These dynamic parameter setting approaches tune 
the parameters while a solution is being found. To compare 
these two approaches, nonparametric statistic approaches are 
utilized since the solutions are not normally distributed. Results 
from both these dynamic parameter setting methods are 
reported.  
 
Keywords: Dynamic Parameter Setting, Meta-RaPS, 0-1 
Multiple Knapsack Problem, Early Tardy Single Machine 
Scheduling Problem, Reactive Search.  
 
 

1.  INTRODUCTION 
 
Almost all meta-heuristics have a number of parameters which 
need to be fine tuned. A general purpose meta-heuristic’s 
performance, such as SA, GA, Tabu Search and Meta-RaPS, is 

dependent on the values chosen of these parameters. As an 
example, meta-heuristics that have been used to solve the 
Vehicle Routing Problem (VRP) contain several parameters; 
from 4 parameters to 25 parameters depending on the type of 
meta-heuristic [1]. Coy [1], in his heuristic parameter setting 
literature review, states that there are many different procedures 
to find effective parameter settings. Also the complexity of 
procedures are various, from simple trial-and-error procedures 
to more sophisticated sensitivity analysis and use of other meta-
models. 
 
Ideally the parameter selection method should be fast, efficient 
and should be capable of enhancing the performance of the 
heuristic method with respect to using a simpler parameter 
search or random parameters. The amount of human effort, 
expertise and experience required for the parameter setting 
procedure and the computational time used to set parameters 
should be minimal. Apart from these attributes, a parameter 
setting procedure can be dynamic or static which is also called 
online or offline and adaptive or not-adaptive. A dynamic, 
online, or adaptive parameter setting procedure merges the 
parameter setting and solution building phases for a meta-
heuristic. Dynamic parameter setting methods sample different 
parameter setting levels and then converge on the “best found” 
parameter setting level and ultimately report the best solution 
found by the meta-heuristic. Meta-heuristics using static, 
offline, or non-adaptive methods initially require a parameter 
setting phase in which the best parameter level is found and 
then the meta-heuristic is run again for the solution building 
phase using the best found parameter setting level. The flexibly 
and ease of use of dynamic parameter settings provides an 
advantage over the non-dynamic parameter setting techniques. 
 
For the experimentation of dynamic parameter setting 
procedures in this research, the Meta-RaPS meta-heuristic is 
applied to two combinatorial optimization problems: 0-1 
Multiple Knapsack Problem and Early Tardy Problem. 
Although only Meta-RaPS is used in this paper for the 
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comparison of two dynamic parameter setting techniques, both 
of these techniques are applicable to other meta-heuristics as 
well. 
 
 

2.  META-RAPS 
 

Meta-heuristic for Randomized Priority Search (Meta-RaPS) is 
a generic, high level strategy used to modify greedy algorithms 
based on the insertion of a random element. Meta-RaPS 
integrates priority rules, randomness, and sampling in each 
iteration. As with other meta-heuristics, the randomness 
represents a device to avoid getting stuck in local optima [2]. 
Meta-RaPS has been successfully applied to many classical 
combinatorial optimization problems such as: 0-1 
Multidimensional Knapsack Problem [2], Set Covering Problem 
[3], Traveling Salesman Problem [4] and Resource Constraint 
Project Scheduling Problem [5]. 
 
In general, Meta-RaPS includes two stages during one iteration: 
construction and improvement. In the construction stage a 
feasible solution is built by adding elements to a solution based 
on a priority rule. The construction stage ends after no possible 
elements can be added to solution. If the construction stage 
solution is found promising (i.e., the construction stage solution 
passes the improvement stage criteria) then it is improved, 
otherwise the construction stage solution is reported.  
 
In the improvement phase, a local search is applied. The local 
search may use a similar priority rule as the construction stage 
priority rule or a completely different search procedure such as 
2-opting [3]. After a number of iterations Meta-RaPS report the 
best solution found. 
 
The Meta-RaPS technique involves the use of four parameters: 
number of iterations, I, the priority percentage, %p, the 
restriction percentage, %r, and the improvement percentage %i. 
For a number of iterations I, Meta-RaPS constructs feasible 
solutions and the best solution from I iterations is reported. 
During each iteration, the parameter %p is used to determine the 
percentage of time the next activity will be scheduled using the 
base or unmodified priority rule. The remaining 100-%p of the 
time, the priority rule is modified by the restriction percentage, 
%r, parameter. In 100-%p of the time the next element added is 
randomly chosen from the feasible elements whose priority 
values are within %r of the best priority value. The 
improvement percentage, %i, decides if the solution created at 
the construction stage is worthy to be improved. The solution 
from the construction stage is improved if the solution value of 
the construction stage is within %i of the best unimproved 
solution value found so far, i.e. the best to-date construction 
solution value [6]. The solution quality of Meta-RaPS depends 
on the number of iterations I, priority %p, restriction %r and 
improvement %i  parameters. For Meta-RaPS parameter setting 
purposes, the higher values of I and %i parameters are always 
preferred and the value of these parameters depend on the 
availability of the computation time. However the %p and %r 
parameters should be tuned for the specific applications and 
problems.  Since it has been demonstrated empirically that good 
construction solutions produced good improvement solutions, 
these %p and %r are the key parameters to produce good quality 
solutions [2].  
 

For this research, Meta-RaPS is applied to two combinatorial 
optimization problems: 0-1 Multiple Knapsack Problem and the 
Early Tardy Problem.  
 
0-1 Multi Dimensional Knapsack Problem (0-1 MKP) 
The 0-1 Multidimensional Knapsack Problem (0-1 MKP) is one 
of the most studied combinatorial optimization problems. The 
objective of the problem is to maximize the profit or the total 
worth of the objects in the knapsack within its restrictions or 
capacity. The items to be selected are different in weight and 
profit. The knapsack has a set of m capacity constraints. The 
knapsack constraints can be thought of as size or weight 
constraints which are of less than or equal to some upper limit. 
For any particular 0-1 MKP instance, to fill the knapsack there 
are n different types of items available. Each item has one profit 
(ci) value for the knapsack and one weight (aij) value for each 
constraint. The decision to include or exclude an item is 
formulized by binary decision variables. The formulation of 0-1 
MKP is as follows: 
 

{ }

)3(
0
1

,,11,0

)2(,,1

)1(

1

1

⎭
⎬
⎫

⎩
⎨
⎧

=

=∀∈

=∀≤∑

∑

=

=

otherwise
includedif

xwhere

nix

mjbxatoSubject

xcMaximize

i

i

n

i
jiij

n

i
ii

K

K

 
There are many simple greedy heuristics available for 0-1 MKP 
in literature. The priority rule selected for this Meta-RaPS 0-1 
MKP application ranks all items based on a profit/weight ratio. 
This ratio represents the desirability of an item to be included in 
the knapsack. This ratio, called the pseudo-utility ratio, is αi= 
ci/wi; where wi is the penalty factor (or weight) for item i. The 
wi is usually a function of aij. After the pseudo-utility ratios are 
calculated for each item, the items are ordered in decreasing 
ratio order and the ordered items are included in the solution 
one by one as long as they do not violate any constraints. 
 
In this application, the weights are calculated using the 
normalization of weights idea introduced by Cho [7]. This 
weighting scheme uses a lognormal point function for the 
weight vector. This transformation gives more weight to the 
constraint with the least resource remaining. In this way the 
priority rule selects items that use the scarce constraints 
(resources) more effectively. The idea from Cho [7] is 
combined with a new weight ratio which has the following 
weight formula: 
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In Eq. 4, Φ-1 is the inverse of standard normal cumulative 
density function and the σ parameter, which determines the 
shape of the lognormal point function, is set as 3 by trial and 
error. The term inside the Φ-1 function (CWj/ bj) is normalized 
by dividing the amount of resources used by the initial capacity 
of the knapsack constraints. In other words, CWj is the amount 
of jth resource consumed by the items assigned so far. aij is the 
weight of item i for the constraint j.  
 
For the 0-1 MKP Meta-RaPS implementation, during each 
iteration, the parameter %p is used to define the percentage of 
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time the next item to be included in the knapsack is selected 
based on the greedy rule, which is the pseudo-utility ratio. In the 
remaining 100-%p of the time the items that are %r close to the 
item with the highest pseudo-utility ratio value are included in a 
candidate list and next item to be added to knapsack is 
randomly selected from this list. 
 
For the Meta-RaPS improvement stage, the exchange 
neighborhood search is used. The exchange neighborhood 
improvement tries exchanging all possible combinations of 
items in the solution with the items that are not in solution. The 
improvement stage in Meta-RaPS 0-1 MKP application has two 
different exchange improvement procedures; two-way and one-
way exchange improvement. Initially any possible two items 
which are already included in the solution are exchanged with 
any two items that are not in the solution. If the solution value 
improves the exchange is accepted, otherwise the exchange is 
rejected. After two-way exchange, a one-way exchange 
improvement procedure is conducted. 
 
Early/Tardy Single Machine Scheduling Problem 
The second Meta-RaPS application is for the Early/Tardy Single 
Machine Scheduling Problem with Common Due Date and 
Sequence-Dependent Setup Times (ETP). The objective of this 
machine scheduling problem is to minimize the sum of earliness 
and tardiness of the jobs which are assigned to a single machine 
at a common due date [8]. The objective function of ETP is 
given in Eq. 5. 
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The conditions and assumptions of the problem are as follows: 
all jobs are available to be assigned at time zero, each job has a 
processing time pj, a common due date d, and a sequence-
dependent setup time sji which depends on the predecessor job. 
The machine is able to work on one job at a time without 
preemption. Eq. 5 Cj calculates the completion time of a job. 
 
Unlike 0-1 MKP, ETP does not have many simple priority rules 
available. For the Meta-RaPS ETP application, Shortest 
Adjusted Processing Time (SAPT) heuristic [9] is used as the 
underlying priority rule for Meta-RaPS. SAPT is a simple, 
effective multi-start heuristic. Similar to Meta-RaPS meta-
heuristic, the SAPT heuristics constructs a number of schedules 
and reports the best solution. The SAPT heuristic is based on 
the solution of ETP without setup times [9]. 
 
The optimal schedule for the Early/Tardy problem without setup 
times follows Longest Processing Time (LPT) order for the 
early schedule and the Shortest Processing Time (SPT) order for 
the tardy schedule [9]. This type of a schedule is called V-
shaped schedule.  
 
For the sequence dependent setup time case, the V-shaped 
scheduling does not guarantee optimality because the sequence 
dependence may force a job to be scheduled that does not 
follow LPT rule before the due date or SPT rule after the due 
date for the optimal job schedule. However, even though a 
perfect V-shaped sequence may not be the optimal 
configuration, a V-shaped like or distorted V-shaped sequence 
will likely result in a better objective function value. Rabadi [9] 
based his heuristic on this concept and developed SAPT which 
builds V-shaped like solutions. 

 
The SAPT builds three different schedules, E, T and ET. In the 
case of the E schedule, initially jobs before the due date are 
scheduled (early schedule) and then the remaining jobs are 
scheduled after the due date (tardy schedule). In the T schedule, 
initially the tardy schedule is built and then the early schedule is 
constructed. The ET schedule starts building solutions from the 
due date. The early or tardy jobs are added to the solution one 
by one depending on which job increases the objective function 
the least. In other words ET schedule simultaneously builds 
both Early and Tardy schedule directions at the same time.  
 
In Meta-RaPS ETP application, Instead of using three different 
types of schedule forming strategies (E, T and ET schedules), 
only the ET scheduling is implemented. Rabadi [1] reports that 
in the SAPT procedure one third of the best solutions come 
from each of the E, T and ET schedules. It is expected that the 
randomness introduced by Meta-RaPS will be able to construct 
the E and T schedule solutions as well as the ET schedule 
solutions. Furthermore, the use of a single priority rule can 
demonstrate the search capability of Meta-RaPS without 
complicating the solution procedure.  
 
In the Meta-RaPS ETP application, %p of the time the greedy 
SAPT ET rule is used. In the remaining 100-%p of the time the 
job to be assigned is randomly selected from the list of 
candidate jobs which are %r close to the job with the smallest 
Adjusted Processing (AP) time, which is the sum of processing 
time and setup time for a job. Incorporating randomness in 
SAPT in this manner does not further necessitate running the 
heuristic n different times starting with a job combination that 
has a different AP. Instead Meta-RaPS is run for a large number 
of iterations and the randomness produces a variety of different 
starting job combinations. 
 
Generalized Pairwise Interchange (GPI) improvement is used 
for the local search as part of the SAPT heuristic to enhance the 
solution quality further. GPI goes through all the possible two-
job swap combinations and checks if the objective function 
improves, if this is the case, jobs are swapped. This type of local 
search heuristic searches n(n-1)/2 different neighborhoods for a 
problem size of n jobs [8]. The Meta-RaPS ETP application also 
uses GPI after the SAPT heuristic. Using the same local search 
provides a basis for a fair comparison of SAPT and Meta-RaPS 
if both heuristics are run for same number of iterations. The 
interested reader is referred to [10] for more details regarding 
this Meta-RaPS ETP application. 
 
Testing on 0-1 MKP and ETP 
The Meta-RaPS 0-1 MKP and the Meta-RaPS ETP applications 
are coded in C++ and tested on a P4 2.2 GHz PC.  
 
For 0-1 MKP the application is tested on 270 large-sized test 
problems from OR-Library [11] which were generated by Chu 
and Beasley [12]. This problem suite has 9 different problem 
sets of different sizes. The number of constraints (m) in these 
problems is set to 5, 10 and 30 and the number of items (n) is 
set to 100, 250 and 500. For each n-m combination, 30 problems 
were generated by Chu and Beasley [12] for a total of 270 
problems. Meta-RaPS 0-1 MKP is run for 1000 iterations for 
these test problems. 
 
The ETP test problems are generated by Rabadi [13]. These 
problems have 15 and 25 jobs and 3 different settings (low, 
medium, and high) of adjusted processing times, which is the 
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sum of the processing time and the setup time for each job. For 
each setting and number of job combination, 15 problems are 
generated by Rabadi [13]. Meta-RaPS 0-1 MKP is run for 3000 
iterations for these test problems. Both Meta-RaPS applications 
are able to give competitive results compared to the literature. 
 
 

3.  BEST SOLUTION DISTRIBUTION FOR 0-1 MKP 
AND ETP 

 
Before discussing the dynamic parameter setting techniques in 
section 4, an approach to compare different parameter setting 
levels of a meta-heuristic is introduced. Almost all the meta-
heuristics have a number of parameters to be set [1] and 
therefore should benefit from the parameter setting techniques 
developed in this research.   
 
Coy [1] provides a good survey of parameter setting methods. 
In his review, some of the procedures such as response surface 
methodology and ranking and selection, assume that the best 
solutions are normally distributed. This assumption is tested for 
the ETP and 0-1 MKP problem.  Each ETP and 0-1 MKP 
problem was run for 3000and 1000 iterations respectively and 
the best solution was recorded.  This process was repeated 100 
times for each problem.  Histograms of the 100 best solutions 
for all ETP and 0-1 MKP problems were then studied.  Sample 
histograms for an ETP and a 0-1 MKP problem are shown in 
Figures 1 and 2 respectively.  Review of all the best solution 
histograms for both the Meta-RaPS ETP and 0-1 MKP 
applications show that the best solution distribution does not 
follow any particular distribution. In most cases, both 
Kolmogorov-Smirnov and Chi-Square tests reject the normal 
distribution fit. In other words, a normal distribution is rarely 
able to represent the best solution distribution for the two 
applications studied. The best solution distribution is dependent 
on the problem used, type of application and type of algorithm 
used. 
 
In fact it is desired for a well designed meta-heuristic to give 
non-symmetrical solution distribution. For the maximization 
problems it is better for the meta-heuristics solution distribution 
to be skewed to the right since this indicates the meta-heuristic 
is producing the majority of solutions near the optimal 
(maximum).  Similarly, for minimization problems, a 
distribution skewed to the left is preferred.  
 
Figure 1 shows the best solution distribution for ETP problem 
25-7-high. Note this distribution is skewed to the left indicating 
the meta-heuristic is producing many solutions near the optimal, 
minimum solution. The other ETP test set problems produced 
similarly shaped distributions. In general, the best fitting 
distributions were a beta type distribution. 
 
Figure 2 shows the best solution distribution of the first MKP 
problem with 5 constraints and 100 items. Almost all the 
problems in the 0-1 MKP test set show a similar shaped 
distribution as Figure 2 which is skewed to right. A normal 
distribution rarely represents the best solution distribution for 
the OR-Library [11] problems. In the vast majority of cases 
tested, normality is rejected based on statistical tests. 
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Figure 1: Meta-RaPS ETP 25-7-high Problem Best Solution 
Distribution  
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Figure 2: Meta-RaPS 0-1 MKP 5-100-1 Problem Best Solution 
Distribution 
 
Because the best solutions do not seem to be normally 
distributed and because the best solutions distribution is 
dependent on the problem, the use of parametric techniques may 
not be appropriate for parameter setting purposes. Therefore a 
robust parameter setting method should make a comparison 
between parameter setting performances with a distribution-free 
or nonparametric method. Although normality assuming 
techniques may work and be able to suggest good parameter 
settings for some cases, in general they are not the proper 
techniques to represent, or model, the solution distribution of a 
parameter setting of a meta-heuristic. 
 
 

4.   DYNAMIC PARAMETER SETTING TECNIQUES 
 
This research investigates two different dynamic parameter 
setting techniques: the Reactive Search (RS) and the Genetic 
Algorithms (GA). 
 
Reactive Search 
The Reactive Search (RS) method uses feedback from the meta-
heuristic to set the parameters. RS incorporates a history-based 
adaptive procedure in the meta-heuristic search for dynamic 
determination of the parameter levels. History-based learning 
gradually investigates a variety of parameter settings and 
determines a probability of selecting each parameter setting for 
future iterations. Eventually the parameters which lead to the 
best solutions have a higher probability of being selected by 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 5 - NUMBER 5 49ISSN: 1690-4524



having higher probabilities. The dynamic setting of parameters 
eliminates the need for a parameter setting procedure and 
determines the parameter settings as the meta-heuristic is run. 
RS procedure has been applied to GRASP [14], which is a 
meta-heuristic similar to Meta-RaPS. 
 
In the RS procedure, a parameter setting is randomly selected in 
each iteration from a candidate set of parameters and the meta-
heuristic is run with the selected parameter combination. At the 
end of some predefined fixed number of iterations the 
probability of selecting a particular parameter setting is 
calculated based on the performance of that parameter setting 
with respect to the best performing parameter setting 
performance found so far. The RS procedure stops when there is 
no improvement (change in the values of probabilities) for a 
number of iterations.  
 
Reactive Search had been used as the parameter selection 
technique within the GRASP heuristic and was found to 
improve solution performance [14]. Gomes [14] reports that RS 
procedure gives better results than the GRASP heuristic alone 
because it is able to determine appropriate values of the 
parameter(s). Delmaire [15] reports that for some test problems 
of the Single Source Capacitated Plant Location Problem, RS 
incorporated GRASP reduced the average deviation from 
optimal of the best solution obtained with GRASP by at least 
50%. For a specific set of test problems, the RS applied GRASP 
average mean deviation never exceeds 0.5% while pure GRASP 
is always above 1% deviation. The Reactive Search seems to 
provides a good parameter selection procedure since it is a 
distribution free method and because of its performance on the 
GRASP heuristic which is a similar meta-heuristic to Meta-
RaPS. 
 
The RS procedure applied to Meta-RaPS is as follows: 

1. Candidate parameter selection: 9 levels of both %p and %r 
parameters, both starting from 10 to 90, with 10 
increments.  Therefore 81 %p and %r combinations in 
total.    C={c1,  …, c81} 

2. Each parameter setting combination in set C is set to have 
equal probability of being selected 

81181
1 ≤≤= ip i

 (6) 

 
3. Meta-RaPS is run for 1000 iterations. At each iteration 

parameters are randomly selected from set C based on their 
probabilities (pi) and the best solution value for all the 
parameter combinations that are run are stored in array 

 Ā= {a1, …, an} 
4. After every 1000 iterations qi, values are updated 

according to Eq. 7. 
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6. The procedure is terminated at 5000 iterations. It may also 
be terminated when there is no change in pi values for a 
predefined number of iterations. 

 
Non-Parametric Based Genetic Algorithms (NPGA) 
Genetic algorithms (GA) are approaches to solve combinatorial 
optimization problems based on natural selection and evolution 
mechanisms. GA can also be used as a parameter setting 
procedure [16, 17]. Grefenstette [16] points out that for the 
parameter search if the response surface is fairly simple, 
conventional nonlinear optimization or control theory 
techniques may be suitable, however for many applications the 
response surface may be difficult to search e.g., a high-
dimensional, multimodal, discontinuous, or noisy function of 
parameters. For these types of applications GA is able to 
perform well. GA was originally developed by John Holland at 
University of Michigan to mimic natural selection and 
evolution. The main theme of the GA is robustness. Nature laws 
and evolution are thought to be the key element of robustness 
where survival of the fittest is of primary priority.  
 
Different from most other optimization methods, GA uses a 
population of solutions to evaluate the performance of a system 
based on a fitness function value and screens the population for 
fit individuals that are more likely to survive. The underlying 
idea is that the mating of fit individuals will result in a yield of 
better fit offspring. The local optimum is avoided and search 
diversity is maintained by “genetic operations” which are 
random selection procedures, crossover and mutation [18].  
 
The type of GA proposed in this research as a dynamic 
parameter setting procedure is called Non-Parametric Based 
Genetic Algorithm (NPGA). NPGA uses similar genetic 
operations as real value coded GAs. The difference between 
NPGA and the regular GA is in the selection of parents for 
reproduction, which is usually done using tournament selection. 
In the case of NPGA, when two different individuals, 
representing two parameter settings, are compared to be parents 
in tournament selection, the winner is selected using a statistical 
comparison of the distribution of fitness values which is the best 
solution value distribution of the combinatorial optimization 
problem. The reason for this type of comparison is as follows: 
for a given parameter setting level, Meta-RaPS may give 
different answers when it is run multiple times because of 
randomness, and therefore the quality of a parameter setting 
combination can only be represented by a distribution of values. 
Furthermore, to be able to conclude that one parameter setting 
level gives higher or lower values than another setting level, the 
comparison has to be made by comparing the distribution of 
solution values taken by these parameters due to randomness 
incorporated within Meta-RaPS. NPGA compares parameter 
settings with each other to determine if they are statistically 
better than each other by using non-parametric methods. Again, 
a non-parametric method is used is because the best solution 
distribution for a parameter setting level may not be normally 
distributed as was discussed in section 4. The Mann-Whitney 
nonparametric test is used to compare two individuals 
(parameter settings) from 10 best solutions selected out of 100 
iterations.  
 
After the tournament selection, the NPGA continues the regular 
GA’s genetic operations. NPGA also uses blend cross over and 
random mutation [19]. These two procedures are shown to be 
common and effective procedures for the Real-coded GA [19]. 
 
For the experimentations, the NPGA used in this study uses 30 
individuals for the population with 90% crossover and 50% 
mutation rates. These parameters are taken from literature [19] 
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and they are verified by experimentation. The trials made using 
NPGA parameters showed that performance of the NPGA 
parameter tuned Meta-RaPS is robust to small changes in the 
NPGA parameters’ values. In other words, NPGA yields 
consistent results even if the NPGA parameters used are varied 
in a narrow range from the literature. 
 
It should be noted that the importance of this new GA method 
(NPGA) comes from both the quality of results (i.e. the 
performance of the parameter setting methods) as well as its 
theoretical soundness in that the distribution of the best solution 
values is rarely normal distributed. 
 
NPGA can be used for any type of meta-heuristic. The NPGA 
method can be extended to more than two parameters and the 
parameter values do not have to be expressed as percentages as 
was the case for Meta-RaPS. The flexibility of GA enables 
different types of parameters to be set by NPGA for any meta-
heuristic procedure that requires parameter tuning. 
 
 

5.  RESULTS 
 
The two dynamic parameter setting techniques: NPGA and RS 
are tested for both the 0-1 MKP and ETP problem sets. Tables 1 
and 2 compare the results of different parameter techniques for 
the 0-1 MKP and ETP problems respectively. For the 
experimentation, both the 0-1 MKP and ETP problems are run 
for 20 replications of 1000 iterations for each parameter setting 
considered. The best solution is recorded for each replication 
and in this way a distribution of best solutions can be calculated 
for each parameter setting level. The comparison between 
different parameter methods is done using the Mann-Whitney 
test. While doing this comparison, a significance level of 
α=0.05 is selected for the tests.  
 
Tables 1 and 2 indicate which parameter setting technique gives 
statistically better solution values based on the Mann-Whitney 
test. If both methods suggested the statistically same parameter 
levels then the Best method is indicated as “Both.” and no 
method is seen in the Inferior column. If the methods are not 
statistically equivalent, then the method that gives statistically 
better solution values is placed in Best column and the method 
giving worse solution values is placed in Inferior column. 
 
Table 1: Parameter Setting Methods for 0-1 MKP 

m N Problem # Best Inferior 
5 100 9 NPGA RS 
5 100 14 Both - 
5 250 12 Both - 
5 250 6 Both - 
5 500 8 NPGA RS 
10 100 9 Both - 
10 100 25 Both - 
10 250 1 Both - 
10 500 5 NPGA RS 
30 100 17 Both - 
30 250 9 NPGA RS 
30 500 10 Both - 

 

The results of the Table 1 suggest the NPGA parameter set 
Meta-RaPS results are statistically better or similar to the RS 
technique.  
 
Table 2: Parameter Setting Methods for 0-1 ETP 

Size Level Problem # Best Inferior 
15 High 1 NPGA RS 
15 High 7 Both - 
15 Med 8 Both - 
15 Med 9 NPGA RS 
15 Low 5 Both - 
15 Low 8 Both - 
25 High 4 NPGA RS 
25 High 12 NPGA RS 
25 Med 1 NPGA RS 
25 Med 8 Both - 
25 Low 5 Both - 
25 Low 4 Both - 

 
Similarly, Table 2 also suggests the NPGA is consistently able 
to set better or similar parameters than RS. For both 
combinatorial optimization problems tested, NPGA never 
resulted in worse performing parameters than RS  
 
 

6.  CONCLUSIONS 
 

In this paper two dynamic parameter setting techniques, 
Nonparametric Genetic Algorithms (NPGA) and Reactive 
Search (RS) are compared. The parameter setting techniques are 
used to set the parameters of Meta-RaPS meta-heuristic and for 
experimentation purposes two combinatorial optimization 
problems are used: 0-1 MKP and ETP.  
 
This research effort is based on the premise that the best 
solution value distribution for a combinatorial optimization 
problem will, most likely, not follow a normal distribution. 
Therefore any statistical comparison of parameter setting levels 
should be made using nonparametric techniques. 
 
Comparing the two dynamic parameter setting techniques 
considered, NPGA performed better than RS. The parameter 
setting levels set by NPGA yielded better solution values for 
both ETP and 0-1MKP problem sets. The dynamic parameter 
setting techniques have an advantage over static parameter 
setting techniques in that they make the procedure more robust. 
They eliminate parameter setting phase and merge this phase 
with the meta-heuristic’s solution building phase.  
 
Future research can be directed to the application of NPGA to 
different meta-heuristics and investigation of the best solution 
behavior of different meta-heuristics and applications.  
 
 

7.  REFERENCES 
 
[1] Coy S. P., Golden B. L., Runger G. C., Wasil E. A., “Using 

Experimental Design to Find Effective Parameter Settings 
for Heuristics”, Journal of Heuristics, Vol. 7, 2001, pp. 
77-97. 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 5 - NUMBER 5 51ISSN: 1690-4524



[2] Moraga, R. J., DePuy, G.W. and Whitehouse, G.E., “Meta-
RaPS approach for the 0-1 Multidimensional Knapsack 
Problem”, Computers and Industrial Engineering, Vol. 
48, 2005, pp. 83-96. 

[3] Lan, G., G.W. DePuy, and G.E. Whitehouse. “An Effective 
and Simple Heuristic for the Set Covering 
Problem,”European Journal of Operational Research, 
Vol. 176, 2007, pp. 1387-1403. 

[4] DePuy, G.W., R.J. Moraga, and G.E. Whitehouse, 2005, 
“Meta-RaPS: A Simple And Effective Approach For 
Solving The Traveling Salesman Problem,” 
Transportation Research Part E: Logistics and 
Transportation Review, 41(2), 115-130. 

[5] Whitehouse, G.E., DePuy, G.W., Moraga, R.J. Meta-RaPS 
“Approach for Solving the Resource Allocation Problem”, 
Proceedings of the 2002 World Automation Congress, 
June 9-13, Orlando, Florida. 

[6] Moraga R. J., Meta-RaPS An Effective Solution Approach 
for Combinatorial Problems. Ph.D. Dissertation. 
Orlando, FL, University of Central Florida, 2002. 

[7] Cho, Y. K., J. T. Moore, and R. R. Hill, “Insights Gained 
via an Empirical Analysis of Multidimensional Knapsack 
Problems”, Proceedings of the 2004 Industrial 
Engineering Research Conference, Houston, TX, May 
16-19, 2004. 

[8] Rabadi G., Mollaghasemi M., Anagnostopoulos G.C., “A 
Branch-and-Bound Algorithm for the Early/Tardy Machine 
Scheduling Problem with a Common Due-Date and 
Sequence- Dependent Setup Time”, Computers & 
Operations Research, Vol. 31, 2004, pp. 1727-1751. 

[9] Rabadi, G ., Anagnostopoulos, G., and Mollaghasemi, M., 
“A Heuristic Algorithm For The Just-In-Time Single 
Machine Scheduling Problem With Setups: A Comparison 
With A Simulated Annealing”, International Journal of                  
Advanced Manufacturing Technology, Vol 32, 2007, pp. 
326-335. 

[10] Hepdogan, S., R. Moraga, G.W. DePuy, and G.E. 
Whitehouse. “A Meta-RaPS Solution for the Early/Tardy 
Single Machine Scheduling Problem,” to appear in 
International Journal of Production Research, accepted 
2007. 

[11] Beasley, J.E., “OR-Library: Distributing Test Problems by 
Electronic Mail”, Journal of the Operational Research 
Society, Vol. 41, 1990, pp. 392-404. 

[12] Chu, P.C. and Beasley, J.E., “A Genetic Algorithm for the 
Multidimensional Knapsack Problem”, Journal of 
Heuristics, Vol. 4, 1998, pp. 63-86. 

[13] Rabadi G., “Minimizing the Total Earliness and Common 
Due Date and Sequence-Dependent Setup Times”, Ph.D. 
Dissertation. Orlando, FL, University of Central 
Florida, 1999. 

[14] Gomes F. C., Pardalos P., Oliveira C. S., Resende M. 
G.C.,(2001), “Reactive GRASP with Path Relinking for 
Channel Assignment in Mobile Phone Networks,” 
Proceedings of the 5th International Workshop on 
Discrete Algorithms and Methods for Mobile 
Computing and Communications, 2001, pp. 60-67. 

[15] Delmaire H., Diaz J. A., Fernandez E., Reactive Grasp and 
Tabu Search Based Heuristics for the Single Resource 
Capacitated Plant Location Problem, INFOR., Vol. 37, 
1999, pp. 194-225. 

[16] Grefenstette, J. J., (1986), Optimization of Control 
Parameters for Genetic Algorithms, IEEE Transactions 
on Systems, Man and Cybernetics, Vol. SMC-16, No. 1, 
Jan-Feb, 1986,  pp. 122-128.  

[17] Golden B., Pepper J., Vossen T., Using genetic algorithms 
for setting parameter values in heuristic search, Intelligent 
Engineering Systems Through Artificial Neural 
Networks, Vol. 8, 1998, pp. 239-245. 

[18] Goldberg D. E., Genetic Algorithms in Search 
Optimization & Machine Learning, 2002, Addison 
Wesley. 

[19] Deb K., Multi-Objective Optimization Using 
Evolutionary Algorithms, John Wiley & Sons, 2001, 
West Sussex, England. 

 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 5 - NUMBER 552 ISSN: 1690-4524


	P498382

