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ABSTRACT 

      In this paper we examine the impact of channel fading on 
the bit error rate of a DS-CDMA communication system.  The 
system employs detectors that incorporate neural networks 
effecting methods of independent component analysis (ICA), 
subspace estimation of channel noise, and Hopfield type neural 
networks. The Rayleigh fading channel model is used. When 
employed in a Rayleigh fading environment, the ICA neural 
network detectors that give superior performance in a flat fading 
channel did not retain this superior performance.  We then 
present a new method of compensating for channel fading based 
on the incorporation of priors in the ICA neural network 
learning algorithms. When the ICA neural network detectors 
were compensated using the incorporation of priors, they give 
significantly better performance than the traditional detectors 
and the uncompensated ICA detectors. 
 
Keywords: CDMA, Multi-user Detection, Rayleigh Fading, 
Multipath Detection, Independent Component Analysis, Prior 
Probability Hebbian Learning, Natural Gradient 
 
 

1.    INTRODUCTION 

As DS-CDMA communication systems continue to be 
developed and deployed for widespread multiuser commercial 
applications, channel equalization for purposes of interference 
suppression is an important area of study. One problem that 
quickly becomes apparent in the use of DS-CDMA systems is 
the so-called “near/far” problem, a result of a situation in which 
multiple users are transmitting at the same power, but are 

located at different distances from the receiver. Under these 
conditions the use of a multiuser detector (MUD) becomes 
essential. 

 
A mathematical formulation of the optimal MUD problem 

was achieved by Verdu [1]. Lupas [2] showed the optimal MUD 
was near/far resistant and Verdu [3]  proved that the optimal 
MUD was NP-hard in the number of users. This implies that 
work should concentrate on sub-optimal approaches, such as 
neural networks.  

 
Independent Component Analysis (ICA) has been 

developed in recent years to solve the most general type of blind 
signal separation (BSS) problem [4],[5].  In this paper we 
extend work that was reported in [6], in which we applied linear 
and nonlinear neural network approaches to the CDMA MUD 
problem in flat fading channels, and we obtained very good 
results. Specifically, here we present a new method for 
compensating ICA neural network detectors based on prior 
knowledge of the mixing process, in this case the Rayliegh 
fading channel model.  

 
We first develop a channel model for a DS-CDMA system 

in Section 2. Section 3 describes the multiuser detectors, and 
Section 4 describes how the learning algorithms can be 
modified to include prior knowledge. The detectors are 
implemented in Section 5, and the results are presented in 
Section 6.  Finally, conclusions are given in Section 7. 
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2.    CHANNEL MODEL 

In a DS-CDMA system the user’s transmitted bit 
information is spread in the frequency domain via the 
modulation of the data signal with a unique signature waveform 
code.  The transmitted user waveforms are of the form 
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where βk(0),βk(1),...,βk(N-1), βk(i)∈{+1,-1} is the unique 
pseudo-random noise sequence assigned to the kth user, also 
represented as vector ββββk

 = [βk(0) βk(1) … βk(N-1)]T, and the 
chip waveform for the kth user over the lth path is given by 
ψkl(t)=Acos(ωct+θ),   θ∈[0,π].              

 
If we have a synchronous, multi-user spread-spectrum 

communication system, the received signal can be modeled as 
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where K is the number of users, k�j
keA  is the received 

amplitude and phase of the carrier relative to the local oscillator 
at the receiver, bk(i): i = 0, ±1, … , ± P: bk(i)∈{+1,-1} is the 
symbol stream of the kth user, 2P+1 is the frame length, sk(t) : 0 
≤ t ≤ T is the modulation waveform of the kth user as defined in 
Eq (2.1), L is the number of propagation paths, ckl is the 
complex channel fading gain of the kth user over the lth path, n(t) 
is zero-mean Gaussian noise with unity power and σ2 is the 
noise power. 

 
We express Eq (2.2) in matrix form by defining the N x L 

matrix Tk = [�k1ββββk  �k2ββββk … �kLββββk]. The matrix Tk represents a 
symbol bit sent by user k over each of the L multiple 
propagation paths.  We then define the N x KL matrix S as S = 
[T1 ... TK],  which modulates a symbol bit sent by all users over 
each of the L multiple propagation paths. We call the matrix S 
the code spreading matrix.  

 
Also, it is useful to collect the bit streams of all users as the 

KL vector b(i) given   by b(i) = [b11(i), b12(i),…, b1L(i),   b21(i),  
b22(i),…b2L(i),   bK1(i), bK2(i),….bKL(i)]T.  These bit streams are 
assumed to be independent and identically distributed (I.I.D.) 
random variables with mean value equal to zero. Thus, the 
product Sb(i) is the modulated bit-stream of all users over all 
paths. 

 
For each user we define the transfer function for each of 

the L multiple propagation paths. Thus, the vector hk given by 
hk =[hk1 ...hkL]T represents each of the L channel transfer 
functions faced by the kth single user.  We then create the KL x 
KL diagonal matrix H = diag(h1,…hk), which represents the 
channel transfer functions faced by all users over all paths.  
Finally, define a KL x KL carrier  matrix A, as A = Diag[A1IL ... 
AK IL] where IL is an identity matrix of dimension L and Ak is 
an L x L diagonal matrix containing the received powers and 
phases of each path for a single user. Collecting all terms, the 
received signal becomes  

 
r(i) = SHAb(i) + σn(i)     (2.3)       

 
To generalize this model to allow for an FIR channel of 

length M, we must reformulate the matrix H to include the 

convolution matrix of each of the paths.  In the discrete case, 
each of the KL channels is modeled as an FIR filter of length M 
and we can define the M x 1 channel vector as hkl=[hkl(0) hkl(1) 
... hkl(M-1) ]

T . We define an M x 2M-1 Toeplitz convolution 
matrix Hkl  for the kth user over the lth channel as 
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To account for intersymbol interference we define the matrix  P  
as 
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Then, the received signal becomes 
   

r(i) = Pb(i) + σn(i)          (2.4) 
 

Allowing for intersymbol interference requires that an entire 
frame of  2P+1 bits sent be processed. To do this, the vector b(i) 
= [b11(i), b12(i),…, b1L(i), ..., bK1(i), bK2(i),….bKL(i)]T can be 
extended to a KL x (2P+1) matrix B such that B = [b(1) … 
b(2P+1)]. Finally, define the noise matrix N as N = [n(1) … 
n(2P+1)], and define the received signal matrix R as  

 
R = PB + σN        (2.5) 

 
When formulated in this way, the multi-user detection 

problem can be viewed as that of a convolutive mixture, which 
can be unmixed with methods of Independent Component 
Analysis.  

 
 

3. MULTIUSER DETECTORS CONSIDERED 
 

In our investigations four detector types were used. The 
first was the conventional single-user detector. The second was 
a one-shot semi-blind LMMSE multiuser detector which, 
because of its well understood properties, is a useful 
benchmark.  The specific detector used here is an LMMSE 
detector with an enhancement in the form of a noise estimator 
based on subspace decomposition of the received signal 
autocorrelation matrix [7]. 

 
The third and forth detector types employed are based on 

neural networks and are described below. 
 

 
3.1 Multi-Stage Hopfield Neural Network Detector 
 

The Hopfield neural network can be applied to CDMA 
MUD by taking advantage of a-priori knowledge of the user 
spreading codes and using these as the stored patterns. The 
Hopfield net is essentially compensating for code cross-
correlation, since no practical code set will be completely 
orthogonal.   
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Kechriotis and Manolakos [8] and [9] noted that the 
optimal MUD formulation is essentially the same formulation as 
the Hopfield neural network. Varanasi and Aazhang [10] 
proposed a multistage detector that replicates the bi-directional 
associative memory principle employed in the Hopfield neural 
network. An extension of this detector that was developed and 
explored in [11] will be considered here.   

 
 

3.2 Independent Component Analysis Detector 
 

Independent Component Analysis (ICA) is a technique 
whereby the output data from some unknown process is 
transformed such that the transformed variables are statistically 
independent to the extent possible.  Because nothing needs to be 
known about the process, ICA is a blind technique. The only 
constraint on the input signals is that they be assumed 
independent.  Since the user bit streams in a CDMA 
communications system fit this assumption, ICA is a good 
technique to explore for multiuser detection.   

 
There are two major approaches to solving the ICA 

problem, statistical approaches and neural network approaches. 
In the statistical approaches, higher order cumulants of the 
observed signal are used to define an objective function that is 
then minimized, usually in batch mode. Comon [12] explores 
statistical approaches and presents a unified formulation based 
on the idea of maximum mutual information (infomax) which 
was defined by Linsker [13].  Bell [14] derived a self-
organizing ICA algorithm that maximizes the transmitted 
information. Lee [15] extended this work to create a unifying 
information theoretic framework that proves the infomax, 
maximum likelihood, and negative entropy approaches all lead 
to the same learning rule. 

 
In neural network approaches to ICA, the nonlinearity 

introduced by the neurons replaces the cumulants used in the 
statistical approaches.  In addition, the neural network 
approaches are suitable to recursive implementation.  Jutten 
[16] proposed such an approach. Karhunen [17] summarizes a 
number of approaches and algorithms and concludes that neural 
approaches to ICA have a wide range of applicability and show 
great promise.  

 
ICA can be formulated by considering a vector b of 

dimension M, where each element of b is an independent signal 
bi(t), and defining b(t)=[b1(t),...,bM(t)]T

.
   If we then define an 

output vector r as r(t)=[r1(t),...rN(t)]T such that  
 

r(t) = Pb(t)   (3.2.1) 
 

where the matrix  P is some “mixing” matrix, we will now have 
an output that no longer consists of independent signals.   

 
In discrete terms we can define b(i)=[b1(i),...,bM(i)]T and 

r(i)=[r1(i),...rN(i)]T.  If we define B = [b(1) b(2) … b(2P+1)] and 
R = [r(1) r(2) … r(2P+1)] then  

 
R=PB      (3.2.2) 

 
Notice that this is exactly the formulation of Eq(2.5) above. The 
goal of ICA is to restore B from R, by finding W, the pseudo-
inverse of P. 

 
The mixing matrix P may be linear or nonlinear.  In the 

linear case, often called principal subspace analysis, simple 

gradient descent is employed and there is no nonlinearity 
introduced into the solution in the form of a neural activation 
function. 

 
To solve the non-linear case Hyvärinen and Oja [18] 

investigated the use of neural networks employing both Hebbian 
and non-Hebbian learning rules.  This work was then extended 
by Hyvärinen and Pajunen [19] to the point where general 
existence and uniqueness results were developed for non-linear 
ICA.   

 
Since each element of b is an independent signal bi(t) we 

can write the probability distribution of b, p(b), as  
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The mutual information of the observed vector r is given 

by the Kullback-Leibler (KL) divergence I(r), which is defined 
as 
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I(r), is always greater than or equal to zero.  In the case where 
I(r), is equal to zero, perfect recovery of the signal has been 
achieved. 

 
The normalized log likelihood of a received signal of 

length M would be 
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where wi is a column of W.  We can reformulate Eq (3.2.5) by 
replacing the summation over M with the expectation operator 
to obtain 
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This log likelihood function then becomes the penalty function 
J(W).  The optimum W is found by maximizing J(W) with 
respect to W.  This is done via an iterative gradient ascent 
algorithm expressed as 
 

k
|)J(� kkk1k yyWWW =+ ∇+=    (3.2.7) 

 
Because  Eq (3.2.6) is expressed in terms of  detW we need to 
reformulate it by considering that  the gradient of detW can be 
expressed as 
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and, if W is an invertible matrix, then W-1 can be expressed as 
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Making use of Eq (3.2.8) and Eq (3.2.9) we have 
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where f(•) is a monotonic, odd, nonlinear function that is related 
to the probabilty distributions of the independent sources. 

 
We can eliminate the expectation operator in Eq(3.2.10) 

when the ascent algorithm is performed iteratively.  If we do 
this, as well as multiply the right hand side of Eq (3.2.10) by 
WTW, we obtain the result that  

 
 ∆W∝ [ I - f (r )rT ]W    (3.2.11) 

 
which can be used in the gradient assent algorithm given by 
 

W q + 1  = W q+µ[ I - f (r )rT ] Wq       (3.2.12) 
 

Since, in general, we do not know the probability 
distributions of the sources at the receiver, the essence of the 
blind separation of sources problem becomes one of identifying 
either an acceptable mapping function f(•) or modifying the 
basic gradient assent algorithm.  The natural gradient method 
described below does the former and the various other neural 
learning structures, like the non-linear Hebbian algorithm do the 
latter. 

 
Some work has been done on the application of ICA to the 

CDMA detection problem. Joutsensalo [20], [21] and Cristescu 
[22], for example, have made use of the fast fixed point ICA 
algorithm based on higher order statistics, specifically fourth-
order cumulants.  Their work illustrates good results and 
motivates additional investigation into the use of ICA 
algorithms for blind detection in CDMA systems. The approach 
that we took to applying ICA to multiuser detection is unique in 
two ways.  The first is that we used the neural network 
formulations rather than cumulants.  The second is that our 
detector is a hybrid, making use of classical detector methods 
for preprocessing. The detectors described in [7] and [11] were 
used for initial processing, followed by additional processing by 
ICA. The bit error rate (BER) performance with several learning 
algorithms was examined. In each algorithm z is a whitened 
version of the received signal vector r and y = Wz. 

 
The principal subspace algorithm is a linear algorithm 

[23] that makes no use of an activation function. Its main 
advantages are simplicity and ease of implementation. The 
update function used is  

 
Wq+1(i) = Wq(i)+µy(i)zH(i)   (3.2.13)   

 
This algorithm rarely converged in this application. 
 
The modified principal subspace algorithm, proposed by 

Karhunen and Oja [24], employs the algorithm  
 

Wq+1(i) = Wq(i) +µ[y(i)zH(i) - y(i)yH(i)Wq(i)]    (3.2.14) 
 
The addition of the term y(i)yH(i)Wq(i) tends to stabilize 

the algorithm. As with the unmodified principal subspace 
algorithm, this is a linear algorithm.  

 
A Hebbian learning algorithm can, in general, be any 

algorithm in which the gradient of the weight matrix is 

proportional to the input multiplied by some function of the 
input plus some feedback terms, with a learning rule: ∆W ∝ 
f(y)zT  + ... [feedback].  

A non-linear Hebbian algorithm has been proposed [18] 
that employs  

 
Wq+1(i)=Wq(i)-µf[y(i)]zH(i)+α[I-Wq(i)Wq

H(i)]Wq(i)  (3.2.15)  
 
where f(y) is the neural activation function. This algorithm was 
selected for application to the CDMA MUD problem because of 
its generality and success in its original application of feature 
extraction in images [25], which is close to that of CDMA 
MUD.  

 
The natural gradient algorithm is a variant of classical 

optimzation based on Newton’s method in which the neural 
activation function is serving as a Riemannian metric tensor that 
transforms the problem from one of optimization in a Euclidean 
N-Space to one of optimization on a Riemannian manifold [26]. 
It employs Wq+1(i) = Wq(i)-µ[I-f{y(i)}yH(i)] Wq(i). 

 
  

4. PRIORS IN ICA DETECTION 
 

Recalling the general formulation of the ICA problem 
presented in Eq (3.2.1), if we define a new variable Ω to 
represent any prior knowledge, and use Bayes theorem, we can 
express this prior knowledge as 
 

p(P, b|r, Ω) ∝ p(r|P,b, Ω) p(P|b, Ω) p(b|Ω) (4.1) 
 
If the properties of the mixing matrix P do not depend on the 
properties of the source signal, as is the case in a CDMA 
communication system, we can replace the term p(P|b, Ω)  with 
p(P|Ω) and rewrite Eq (5.1.1) as 
 

p(P, b|r, Ω) ∝ p(r|P,b, Ω) p(P|Ω) p(b|Ω)    (4.2) 
 
Since P, b, and r are related by Eq (3.1.1) we can express Eq 
(4.2) as 
 

bbbPrPrP d)|p( ) , ,|p()|p() ,|p( ΩΩ Ω∝ Ω �     (4.3) 

 
Essentially, Eq (4.3) says that the likelihood of a mixing model 
given the received signal and incorporating any prior 
information, is proportional to the product of our prior 
knowledge of the mixing process, the likelihood of the received 
signal given the mixing process, source signals, and prior 
information, and our prior knowledge of the sources.   

 
In the case where we have no knowledge of the mixing 

process, p(P| Ω) = 1, i.e., a  uniform prior.  When we have no 
knowledge of the sources, other than that they are statistically 
independent, p(b|Ω) is p(b).  Finally, when the mixture is 
instantaneous and linear, the term p(r|P,b, Ω) becomes a delta 
function.  The combined result of this ignorance of all priors is 
the formulation for log L expressed in Eq (3.2.5) and Eq (3.2.6).  
This then leads to the general formulation of the update 
algorithm in Eq (3.2.12). 

 
When we have some knowledge of the problem, we can 

make use of this knowledge to derive an update algorithm that 
takes this knowledge into account. For example, if we know the 
probability distributions of the elements Pij of the mixing matrix 
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P, and know that the elements of P are independent, then we 
can express p(P| Ω) as 

 

∏=
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ij )�|(p)�|p( PP      (4.4) 

 
The normalized log likelihood of a received signal of length M 
would then be 
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where wi is a column of W.  We can reformulate Eq (5.1.5) by 
replacing the summation over M with the expectation operator 
to obtain  
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Recalling that Eq (3.2.10) defined the gradient of log L without 
the use of prior information, we will concentrate on the gradient 
for the last term of Eq (4.6) only.  The gradient of this term can 
be expressed as 
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We now define a new matrix M, the prior knowledge matrix, in 
which each element is calculated using Eq (4.7). The natural 
gradient algorithm, when expressed to include M becomes 
 
W q + 1 ( i )=W q ( i ) -µ[ I - f{y ( i )}y H( i )+WH ( i )M Wq ( i )   (4.8) 

 
The modified principle subspace algorithm is 
 
W q + 1 ( i )  = W q ( i )+µ[M y ( i )z H( i ) -y ( i )y H ( i )W q ( i ) ]  (4.9) 
 
and the non-linear Hebbian learning algorithm is 
 
Wq+1(i)=Wq(i)-µMf[y(i)]zH(i)+α[I-Wq(i)Wq

H(i)]Wq(i) (4.10) 
 

 
4.1  Application to Channel Models  
 

The flat fading channel is perhaps the simplest form of 
statistical model.  In order to incorporate a flat fading channel 
assumption we assume a form for an element Pij of the mixing 
matrix as Pij = aij where aij represents the channel attenuation. 
Since the attenuation is between a user and the base station, we 
express the probability of aij as p(ai | Ω) = (b2 – b1); b1 ≤ ai ≤ b2 ; 
0 otherwise, where, b1 and b2 are the maximum and minimum 
fade respectively. Incorporating the assumption that the prior 
probability is uniform allows us to formulate the prior for Pij as   
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If we assume that b2 = 1 and b1 = 0, representing a spread 

between no attenuation and complete loss of signal, then we can 
express the prior probability as p(Pij | Ω) = ai,  and each element 
of the prior knowledge matrix M will be  
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Because M = 0, the problem will reduce to the base 

algorithms of Section 3.  The prior assumption of flat fading 
adds no information.  This is consistent with the well-known 
result [4] that the maximum a posteriori estimator equals the 
maximum likelihood estimator when the prior is uniform. When 
the ICA detectors were examined in a flat fading channel [6] 
they displayed very good results without any compensation. Our 
aim here is to formulate a prior knowledge matrix M that can be 
applied to the harsher Rayleigh fading channel. 

 
 
4.2  Rayleigh Distribution 
 

A common model for wireless channels is Rayleigh fading. 
The Rayleigh distribution is related to the chi-square 
distribution. Considering X to be a Gaussian distribution, letting 

2
2

2
1 XXY += , then the pdf of Y is  
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If we define a new statistical variable R as 
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2
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the pdf of R, the Rayleigh distribution, is 
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In order to formulate the matrix M for the Rayleigh 

channel, we first define a form Pij as Pij = airij where rij is the 
distance between the transmitter and the receiver and ai is the 
power.  The equivalent form to Eq (4.1.1) is expressed as  
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ijijiiji
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where the delta term reflects our confidence in the form of the 
mixing matrix. Evaluating the integral with respect to rij we 
have 
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We use the distribution for ai, as in Section 4.1. We then 

assign the Rayleigh distribution to r.  Noting that rij = Pij/ ai ,  the 
probability  then becomes 

 

( )
( )

i
0

2
ij2

iij

12i
ijij daqe

�

 a/ P

bba
1

P)�|P(p �
∞

−

−
=    (4.2.6) 

 
 
where qij = Pijσ/sqrt(2)ai.  Evaluating the integral in Eq (4.2.6) 
we obtain 
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The derivative of Eq (4.2.7) may then be evaluated as 
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Finally, the elements Mij, are expressed as 
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Notice that in order to implement an update algorithm it is 

necessary to work with the gradient of W rather than P.  
Because we pre-whitened the signal, we are able to use the 
conjugate transpose of P for W.   

 
 

 
5.    IMPLEMENTATION 

 
Explicit calculation of bit error rates for nonlinear multi-

user detectors is mathematically intractable.  Therefore, the 
detectors described above were  simulated and bit error rate 
performance analysis was based on this simulation. The various 
learning algorithms for ICA were implemented independently. 

 
The chip modulation is BPSK using a sinusoidal 

pulse sampled at a rate of 8 samples per pulse.  The use 
of such a sampled pulse represents a more accurate 
approximation of physical systems than does the square 
pulse often employed. The spreading codes were derived 

from Walsh functions. A spreading gain of eight (N=8) 
was used. The frame size is 267 (P=133), corresponding 
to rate set two, which supports a bit rate of 14,400 bits 
per second in the IS-95 standard. 

Three users were modeled (K=3), each transmitting over a 
Rayleigh fading channel that included two paths per user (L=2). 
We explored mildly asynchronous scenarios through the use of 
phase delay in the primary path up to one chip period, but 
longer asynchronous delays in the primary path are possible.  
Also, for simplicity, we used the same secondary channel for 
each user. The channel model allows for any arbitrary number 
of paths per user and for each path to have its own FIR 
properties.  However the goal was comparative among the 
various detectors, and it was decided that extensive diversity of 
channels would yield little additional benefit.   

 
The detectors were simulated in a variety of noise 

conditions and user power ratios.  
 
The blind detector employing the ICA learning algorithms 

used the output of the Hopfield-based semi-blind detector to 
establish an initial starting point. It should be noted however 
that this type of preprocessing is not necessary.  The ICA neural 
network detectors can be used in both semi-blind applications, 
where they will be effective in harsh channel conditions and in 
environments of significant noise and interference, and in blind 
applications. 

 
 
 

6.    RESULTS 
 

The bit error rate performance of the ICA detectors in the 
Rayleigh channel was compared with that of the conventional 
detector and the Hopfield-based detector described in [11].  

 
The BER results are presented in Chart 1.  In Chart 1, for 

example, we can see that the bit error rate obtained at a power 
ratio of 1 and noise power of 1, is 0.0707 for the conventional 
detector, 0.0395 for the multi-stage Hopfield neural network 
detector, 0.0173 for the uncompensated ICA detector employing 
the modified principal subspace algorithm, 0.0179 for the 
uncompensated ICA detector employing the nonlinear Hebbian 
learning algorithm, and 0.0525 for the uncompensated ICA 
detector employing the natural gradient algorithm. The results 
of the compensated detectors are presented in Chart 1 as well 
(PSO-C, NG-C and NLH-C), where we see that the bit error rate 
results obtained at a power ratio of 1 and noise power of 1, are 
0.0178 for the compensated modified principal subspace 
algorithm, 0.0179 for the compensated nonlinear Hebbian 
algorithm, and 0.0513 for the compensated natural gradient 
algorithm.  

 
These results are also given graphically in Figure 1, with 

the bit error rates of the compensated ICA detectors plotted as 
solid lines and the bit error rates of the uncompensated ICA 
detectors plotted as dotted lines.  Figure 2 displays results bit 
error rate results when the power ratio equals 2. 

 
Upon examining Chart 1 and Figures 1 and 2 we notice 

that the Rayleigh fading channel has a negative impact on the 
bit error rate results at low noise power. There is also a 
degradation in the relative performance of the ICA detectors 
compared to the conventional and Hopfield neural network-
based detectors.  If we examine Figure 1, this degradation in 
relative performance becomes apparent.  In the higher-noise 
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cases, the ICA detectors employing the non-linear Hebbian and 
the modified principal subspace algorithms retain their relative 
advantage in bit error rate performance over the two non-ICA 
detectors.  Notice, however, that the ICA detector employing 
the natural gradient learning algorithm retains a relative 
advantage only over the conventional detector. Notice also that 
in the low noise cases, the relative bit error rate performance of 
the ICA detectors employing all three learning algorithms 
degrades badly. In the case where the noise power is equal to 
0.25, all three ICA detectors lose their bit error rate performance 
advantage and the ICA detectors employing the natural gradient 
and principal subspace algorithms also lose their relative 
advantage even over the conventional detector.  Only the ICA 
detector employing the non-linear Hebbian learning algorithm 
retains its bit error rate performance advantage over the 
conventional detector. 

 
When the user power ratio is increased to two, as displayed 

in Figure 2, little changes. The ICA detectors do retain an 
advantage over the conventional detector, but this is only 
because the conventional detector has such poor near/far 
performance. 

 
When the new compensation scheme, via the use of the 

prior knowledge matrix M, is applied to the ICA learning 
algorithms, the bit error rate results improve. In Figure 1, notice 

the significant result that the relative bit error rate performance 
advantage of the ICA detectors employing all three learning 
algorithms against both the conventional detector and the multi-
stage Hopfield neural network-based detector has been restored 
under all conditions of noise power.  The ICA detectors 
employing the modified principal subspace algorithm and the 
non-linear Hebbian learning algorithm display the best bit error 
rate performance, with the natural gradient learning algorithm 
performing a bit worse. When the user power ratio is increased 
to two, similar relative advantages result, as shown in Figure 2. 

 
 

 
 

7.    CONCLUSION 
 
The new method of compensation presented here, through 

the use of a prior knowledge matrix in the neural network 
learning algorithm, demonstrates that the ICA neural network 
detectors are extremely powerful and represent a very attractive 
way of achieving blind detection of CDMA signals in Rayleigh 
fading channels.  It is worth noting that in this investigation, the 
neural network detectors yielded superior bit error rate results 
when operating without knowledge of the user spreading codes 
and outperformed the Hopfield neural network-based detector, 

Noise 
Power CON MS NG NG-C PSO PSO-C NLH NLH-C

0.25 9.15E-04 0 0.0094 0.0013 0.0012 8.32E-05 5.83E-04 1.00E-05
0.5 0.0161 2.20E-03 8.70E-03 8.01E-03 8.32E-04 0.0010 9.16E-04 9.15E-04

1 0.0707 0.0395 0.0525 0.0513 0.0173 0.0178 0.0179 0.0179
2 0.1677 0.1574 0.1680 0.1610 0.1001 0.1008 0.1000 0.1000
4 0.2916 0.2970 0.2955 0.2965 0.2802 0.2798 0.2772 0.2774

CON MS NG NG-C PSO PSO-C NLH NLH-C
0.25 0.0260 3.10E-03 1.28E-02 1.85E-02 0.022 0.0065 0.0132 0.0036

0.5 0.0591 0.0231 0.0283 0.0403 0.0193 0.0143 0.0216 0.0131
1 0.1195 0.0963 0.1066 0.1163 0.0666 0.0617 0.0607 0.0574
2 0.2275 0.2280 0.2330 0.2302 0.1818 0.1868 0.1848 0.1815
4 0.3379 0.3457 0.3264 0.3416 0.3402 0.3408 0.3389 0.3359

CON MS NG NG-C PSO PSO-C NLH NLH-C
0.25 0.1592 0.0381 0.0751 0.0716 0.1714 0.1042 0.0907 0.0375

0.5 0.1564 0.0890 0.1094 0.1088 0.1384 0.1203 0.0865 0.0747
1 0.1881 0.1728 0.1897 0.1914 0.1771 0.1676 0.1528 0.1520
2 0.2855 0.2883 0.2892 0.2891 0.2632 0.2628 0.2593 0.2598
4 0.3756 0.3843 0.3772 0.3779 0.3672 0.3748 0.3667 0.3686

CON = Conventional   NE = LMMSE with Noise Estimator   MS = Multi-stage   MPS = Modified Principal 
Subspace   NLH = Non-linear Hebbian    C = Compensated   

Chart 1 - Bit Error Rates With Cosine Pulse - Rayliegh Channel
Power Ratio = 1 (1,1,1)

Power Ratio = 2 (1.0,0.75,0.5)

Power Ratio = 4 (1.0,0.5,0.25)
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even though the Hopfield detector was operating with 
knowledge of the user spreading codes. 

 
When employed in the Rayleigh fading channel, the 

performance of the uncompensated ICA detectors degraded. 
This degradation eliminated much of the BER advantage of the 
ICA detectors. Through the use of a prior knowledge matrix in 
the learning algorithms, the performance of the ICA detectors 
was restored. 

 

Opportunities for future research in the application of ICA 
neural networks to multiuser detection in CDMA systems 
appear to be very rich. There are additional learning algorithms 
that have not yet been investigated. There are also a number of 
other system mixing statistics, such as those related to the pulse 
shape employed, and those of the spreading codes, that could be 
incorporated into the prior knowledge matrix. 

 
 

 

Figure 1
Power Ratio = 1;  Rayleigh Channel
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