
Multigradient for Neural Networks for Equalizers1

Chulhee Lee, Jinwook Go and Heeyoung Kim

Department of Electrical and Electronic Engineering

Yonsei University
134 Shinchon-Dong, Seodaemun-Ku, Seoul 120-749, Korea

1 The Korea Science and Engineering Foundation partly supported the publication of this paper through
BERC at Yonsei University.

ABSTRACT

Recently, a new training algorithm, multigradient,
has been published for neural networks and it is
reported that the multigradient outperforms the
backpropagation when neural networks are used as
a classifier. When neural networks are used as an
equalizer in communications, they can be viewed
as a classifier. In this paper, we apply the
multigradient algorithm to train the neural
networks that are used as equalizers. Experiments
show that the neural networks trained using the
multigradient noticeably outperforms the neural
networks trained by the backpropagation.

Keywords: Equalizer, multigradient, neural
networks, training algorithm, pattern classification.

1. Introduction

Neural networks have been successfully applied in
pattern recognition, signal processing, and
communications. In particular, there has been a
great interest in using neural networks to
implement equalizers which can be viewed as
classification problems whose distribution
functions are unknown [1, 2]. Many researchers
reported that neural networks could be a promising
solution to equalization problems and proposed
various implementations. When neural networks
are used as an equalizer, one of the most frequently
used training algorithms is the backpropagation
algorithm. Recently, a new training algorithm,
which is called multigradient, has been proposed
[3]. The multigradient is a specialized training
algorithm when neural networks are used as a
classifier. It has been reported that the
multigradient outperforms the backpropagation

algorithm in pattern classification [3]. Since neural
networks are used as a classifier when they are
used as equalizers, the multigradient algorithm can
be used for such neural networks. In this paper, we
apply the multigradient algorithm to neural
networks that are used as equalizers and evaluate
the performance.

2. Channel Equalization Problem

If input signal is transmitted through a linear
dispersive channel of finite impulse response with
the coefficients , the received signal can
be modeled by

)(nx

ka)(ny

)()()(neknxany
L

Lk
k +−= ∑

−=

where is the additive white Gaussian noise
specified by the following statistics:

)(ne

[] [])()()(,0)(2 mnmeneEneE e −== δσ

where is noise variance. The input signal
is chosen independently from {-1, 1} with equal
probability and equalization is to estimate the
original input signal from the received signal

 in the presence of noise and interference.

2
eσ)(nx

)(nx
)(ny

Equalizers have been important in digital
communication systems to guarantee a reliable data
transmission and numerous equalization algorithms
have been proposed. Among various equalization
methods, linear equalization has been widely used
due to their speed and simplicity. The linear
equalizer is frequently implemented using the least
mean square (LMS) algorithm as follows:

nnn YcWW λ+=+1

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 3100

where
, T

n nynynynynyY)]2(),1(),(),1(),2([++−−= λ
is the learning rate, c is 1 if signal 1 is transmitted
and –1 if signal –1 is transmitted. The linear
equalizer can perfectly reconstruct the original
input signal if the received signal is linearly
separable. However, the decision boundary for
equalization is highly nonlinear in many cases and
neural networks which can form an arbitrary
nonlinear decision boundary can be better adopted
for equalization.

3. Multigradient [3]

A typical neural network has the input layer, a
number of hidden layers, and the output layer. Fig.
1 shows an example of 3-layer feedforward neural
networks for a 2 pattern-class problem. The
decision rule is to choose the class corresponding
to the output neuron with the largest output [4]. In
Fig. 1, X represents the input
vector, the output vector, and

 the bias vector. We may include the
bias term in the input layer as follows:

in = (x1, x2 ,..., xM)T

Y = (y1, y2)T

B = (b1, b2)T

X = (x1, x2 ,..., xM ,1)T = (x1, x2 ,..., xM , xM +1)T

where xM +1 = b1 = 1.

Assuming that there are K neurons in the hidden
layer, the weight matrices and for the 2
pattern class neural network can be represented by

1W 2W

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

+

+

+

hi
MK

hi
MK

hi
K

hi
K

hi
M

hi
M

hihi

hi
M

hi
M

hihi

wwww

wwww
wwww

W

1,,2,1,

1,2,22,21,2

1,1,12,11,1

1

...
::...::

...

...

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

+

+
oh

K
oh

K
ohoh

oh
K

oh
K

ohoh

wwww
wwww

W
1,2,22,21,2

1,1,12,11,1
2 ...

...

where is the weight between input neuron i

and hidden neuron j and is the weight
between hidden neuron j and output neuron k. In
order to train the neural network, we need to find

matrices and that produce a desirable

sequence of output vectors for a given sequence of
input vectors.

hi
ijw ,

oh
jkw ,

1W 2W

Let be the vector containing all weights. In
other words,

W

W = (w1,1
hi , w1, 2

hi ,..., wK, M +1
hi , w1,1

oh ,w1,2
oh , ...,w2,K +1

oh)T

= (w1, w2, w3,..., wL)T

where L=((M+1)K+2(K+1)) and K is the number of
hidden neurons. Then, we may view W as a point
in the L dimensional space. In the above example,
there are ((M+1)K+2(K+1)) weights to adjust. Let

 be the vector containing all the elements of
and :
W 1W

2W
W = (w1,1

hi , w1, 2
hi ,..., wK, M +1

hi , w1,1
oh ,w1,2

oh , ...,w2,K +1
oh)T

= (w1, w2, w3,..., wL)T

where L=((M+1)K+2(K+1)). Then, W can be
viewed as a point in the L dimensional space. In
this paradigm, the learning process can be viewed
as finding a solution point in the L dimensional
space.

Σ

Σ

Σ

Σ

Σ

F

F

F

F

F

...
...

...
...

x1

x2

xM

bias

y1

y2

Xin X Z’ Z Y’ Y

W1 W2

Fig. 1. An example of 3-layer feedforward neural

networks
(2 pattern classes).

In multilayer feedforward neural networks, the
output vector Y can be represented as a function of
X and W :

Y =
y1

y2

⎡
⎣ ⎢

⎤
⎦ ⎥ =

F1(X ,W)
F2 (X, W)

⎡
⎣ ⎢

⎤
⎦ ⎥

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 3 101

assuming a 2 pattern-class classification problem.
During learning phase, if X belongs to class ω1 ,
we move W in such a direction that y increases
and decreases. We can find the direction by
taking the gradients of y and with respect to

:

1

y2

1 y2
W

∇yi =
∂yi
∂w1

w 1 +
∂yi
∂w2

w 2 + ... +
∂yi
∂wL

w L

where {w i} is a basis of the L-dimensional space.
Thus, if we update W in the direction of
α∇y1 − β∇y2 , where α, β > 0 , y will increase and

 will decrease. In general, we update the weight
vector W as follows:

1
y2

W updated = W + γ (c1∇y1 + c2∇y2) (1)

where γ is the learning rate. This procedure is
illustrated in Fig. 2. If there are N output neurons,
then the weight vector W is updated as follows:

)...(2211 NN
updated ycycycWW ∇++∇+∇+= γ

where c if i ≥ 0 X belongs to class ωi and ci ≤ 0
otherwise.

Assuming the sigmoid function is used as the
activation function, it can be shown that
differentiating with respect to the weights
between the hidden layer and the output layer can
be obtained as follows:

y1, y2

∂y ′ k

∂wk, j
oh =

y ′ k (1 − y ′ k)z j (′ k = k)
0 (′ k ≠ k)

⎧
⎨
⎩

where w is the weight between hidden neuron j
and output neuron k and

k , j
oh

zj is the output of hidden
neuron j. Similarly, differentiating y with
respect to weights between the input layer and
hidden layer yields

1, y2

 ∂yk
∂w j,i

hi = yk(1 − yk)wk , j
oh z j (1− z j)xi

where is the weight between input neuron i
and hidden neuron j and w is the weight between
hidden neuron j and output neuron k. There are a

number of possibilities to set c in (1). If we setc
to be the difference between the target value and
the output value, the multi-gradient algorithm is
equivalent to the backpropagation algorithm. In [3],
assuming that the target value is either 0.1 or 0.9,

 was set as follows:

w j, i
hi

k , j
oh

i i

ci

⎪
⎩

⎪
⎨

⎧
>=−
<=−

=
otherwise

yandtvaluetargetifyt
yandtvaluetargetifyt

c iiii

iiii

i

0
1.01.0
9.09.0

In other words, we ignore the output neurons that
exceed the target values and concentrate on the
output neurons that do not meet the target values,
updating weights accordingly. Since the
classification accuracy is the most important
criterion when neural networks are used as a
classifier, this weight update strategy can be
effective, providing better classification accuracies.

∇y1

∇y2

−∇y2

α∇y1 − β∇y2

Fig. 2. Adjusting weights by adding the gradients.

4. Experiments and Results

Experiments were conducted for a symmetric
channel and a non-symmetric channel. In the first
experiment, we generated 10,000 samples for the
following symmetric channel:

y(n) = ak
k = − L

L

∑ x(n − k) + e(n)

where L=2, a1 = a5 = 0.5 , , a2 = a4 = 0.7 a3 = 1 ,
and . Among the 10,000 samples, the first
1000 samples are used for training and the rest are
used for testing. Fig. 3 shows the performance
comparison of the multigradient and the
backpropagation algorithms. As can be seen, the
multigradient noticeably outperforms the
backpropagation. When the backpropagation was

σ e = 0.1

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 3102

used, the classification accuracies for the training
and test data are 87.8% and 86.5%, respectively.
When the networks are trained by the multigradient,
the classification accuracies for the training and test
data are 90.1% and 88.3%, respectively.

In the second experiment, we generated 10,000
samples for the following channel:

y(n) = ak
k = − L

L

∑ x(n − k) + e(n)

where L=2, , , a , aa1 = 0.2 a2 = 0.8 3 = 1 4 = 0.7 ,
 and . It is noted that the channel

is non-symmetric. As previously, the first 1000
samples are used for training and the rest are used
for testing. Fig. 4 shows the performance
comparison. With the backpropagation, the
classification accuracies for the training and test
data are 93.9% and 93.9%, respectively. When the
networks are trained by the multigradient, the
classification accuracies for the training and test
data are 95.6% and 94.9%, respectively. As in the
symmetric channel, the multigradient outperforms
the backpropagation. The multigradient also
converges faster the backpropagation.

a5 = 0.3 σ e = 0.2

5. Conclusions

In this paper, we applied the recently published
multigradient training algorithm to neural networks
that are used as an equalizer. It was reported that
the multigradient algorithm outperforms the
backpropagation when neural networks are to be
used as a classifier. Experiments with symmetric
and non-symmetric channels showed that the
multigradient algorithm provided noticeable
improvements over the conventional
backpropagation.

References

[1] G. J. Gibson, S. Siu and C. F. N. Cowan,

"Multilayer perceptron structures applied to
adaptive equalizers for data
communications," Proc. IEEE ICASSP’89, pp.
1183-1186, May 1989.

[2] S. Chen, B. Mulgrew, and P. M. Grant, "A
clustering technique for digital
communications channel equalization using
radial basis function networks," IEEE Trans.
Neural Networks, vol. 4, no. 4, pp. 570-579,
July 1993.

[3] J. Go, G. Han, H. Kim and C. Lee,
"Multigradient: a new neural network
learning algorithm for pattern classification,"
IEEE Trans. Geoscience and Remote Sensing,
vol. 39, no. 5, pp. 986-993, May 2001.

[4] R. P. Lippmann, "An Introduction to
Computing with Neural Nets," IEEE ASSP
Magazine, vol. 4, no. 2, pp. 4-22, 1987.

(a)

500040003000200010000
83

84

85

86

87

88

89

90

91

No. Iter

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (%

)

MG

BP

(b)

500040003000200010000
83

84

85

86

87

88

89

90

91

No. Iter

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (%

)

MG

BP

Fig. 3. Performance comparison for a symmetric
channel.

(a) training data, (b) test data.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 3 103

(a)

500040003000200010000
84

85

86

87

88

89

90

91

92

93

94

95

96

No. Iter

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (%

)

MG

BP

(b)

500040003000200010000
84

85

86

87

88

89

90

91

92

93

94

95

96

No. Iter

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (%

)

MG

BP

Fig. 4. Performance comparison for a non-

symmetric channel.
(a) training data, (b) test data.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 3104

	Multigradient for Neural Networks for Equalizers
	Chulhee Lee, Jinwook Go and Heeyoung Kim
	References

