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ABSTRACT 
 

Recently, a new training algorithm, multigradient, 
has been published for neural networks and it is 
reported that the multigradient outperforms the 
backpropagation when neural networks are used as 
a classifier. When neural networks are used as an 
equalizer in communications, they can be viewed 
as a classifier. In this paper, we apply the 
multigradient algorithm to train the neural 
networks that are used as equalizers. Experiments 
show that the neural networks trained using the 
multigradient noticeably outperforms the neural 
networks trained by the backpropagation. 

 
Keywords: Equalizer, multigradient, neural 
networks, training algorithm, pattern classification. 
 

1. Introduction 
 
Neural networks have been successfully applied in 
pattern recognition, signal processing, and 
communications.  In particular, there has been a 
great interest in using neural networks to 
implement equalizers which can be viewed as 
classification problems whose distribution 
functions are unknown [1, 2]. Many researchers 
reported that neural networks could be a promising 
solution to equalization problems and proposed 
various implementations. When neural networks 
are used as an equalizer, one of the most frequently 
used training algorithms is the backpropagation 
algorithm. Recently, a new training algorithm, 
which is called multigradient, has been proposed 
[3]. The multigradient is a specialized training 
algorithm when neural networks are used as a 
classifier. It has been reported that the 
multigradient outperforms the backpropagation 

algorithm in pattern classification [3]. Since neural 
networks are used as a classifier when they are 
used as equalizers, the multigradient algorithm can 
be used for such neural networks. In this paper, we 
apply the multigradient algorithm to neural 
networks that are used as equalizers and evaluate 
the performance. 
 

2. Channel Equalization Problem 
 
If input signal  is transmitted through a linear 
dispersive channel of finite impulse response with 
the coefficients , the received signal  can 
be modeled by 
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where  is the additive white Gaussian noise 
specified by the following statistics: 
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where  is noise variance. The input signal  
is chosen independently from {-1, 1} with equal 
probability and equalization is to estimate the 
original input signal  from the received signal 

 in the presence of noise and interference. 
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Equalizers have been important in digital 
communication systems to guarantee a reliable data 
transmission and numerous equalization algorithms 
have been proposed. Among various equalization 
methods, linear equalization has been widely used 
due to their speed and simplicity. The linear 
equalizer is frequently implemented using the least 
mean square (LMS) algorithm as follows: 
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where 
, T
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is the learning rate, c  is 1 if signal 1 is transmitted 
and –1 if signal –1 is transmitted. The linear 
equalizer can perfectly reconstruct the original 
input signal if the received signal is linearly 
separable. However, the decision boundary for 
equalization is highly nonlinear in many cases and 
neural networks which can form an arbitrary 
nonlinear decision boundary can be better adopted 
for equalization. 
 

3. Multigradient [3] 
 
A typical neural network has the input layer, a 
number of hidden layers, and the output layer. Fig. 
1 shows an example of 3-layer feedforward neural 
networks for a 2 pattern-class problem. The 
decision rule is to choose the class corresponding 
to the output neuron with the largest output [4]. In 
Fig. 1, X  represents the input 
vector,  the output vector, and 

 the bias vector. We may include the 
bias term in the input layer as follows: 

in = (x1, x2 ,..., xM )T

Y = (y1, y2 )T

B = (b1, b2 )T

 
X = (x1, x2 ,..., xM ,1)T = (x1, x2 ,..., xM , xM +1)T

 
where xM +1 = b1 = 1. 

 
Assuming that there are K neurons in the hidden 
layer, the weight matrices  and  for the 2 
pattern class neural network can be represented by  
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where  is the weight between input neuron i 

and hidden neuron j and  is the weight 
between hidden neuron j and output neuron k. In 
order to train the neural network, we need to find 

matrices and  that produce a desirable 

sequence of output vectors for a given sequence of 
input vectors.  
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Let  be the vector containing all weights. In 
other words,  

W

W = (w1,1
hi , w1, 2

hi ,..., wK, M +1
hi , w1,1

oh ,w1,2
oh , ...,w2,K +1

oh )T

= (w1, w2, w3,..., wL )T
 

where L=((M+1)K+2(K+1)) and K is the number of 
hidden neurons. Then, we may view W as a point 
in the L dimensional space. In the above example, 
there are ((M+1)K+2(K+1)) weights to adjust. Let 

 be the vector containing all the elements of  
and : 
W 1W

2W
W = (w1,1

hi , w1, 2
hi ,..., wK, M +1

hi , w1,1
oh ,w1,2

oh , ...,w2,K +1
oh )T

= (w1, w2, w3,..., wL )T
 

where L=((M+1)K+2(K+1)). Then, W  can be 
viewed as a point in the L dimensional space. In 
this paradigm, the learning process can be viewed 
as finding a solution point in the L dimensional 
space. 
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Fig. 1. An example of 3-layer feedforward neural 

networks  
(2 pattern classes). 

 
In multilayer feedforward neural networks, the 
output vector Y  can be represented as a function of 
X  and W : 

Y =
y1

y2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ =

F1(X ,W )
F2 (X, W)

⎡ 
⎣ ⎢ 

⎤ 
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assuming a 2 pattern-class classification problem. 
During learning phase, if X  belongs to class ω1 , 
we move W  in such a direction that y  increases 
and  decreases. We can find the direction by 
taking the gradients of y  and  with respect to 

:  
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where {w i}  is a basis of the L-dimensional space. 
Thus, if we update W  in the direction of 
α∇y1 − β∇y2 , where α, β > 0 , y  will increase and 

 will decrease. In general, we update the weight 
vector W  as follows:  

1
y2

 
W updated = W + γ (c1∇y1 + c2∇y2 )   (1) 

 
where γ  is the learning rate. This procedure is 
illustrated in Fig. 2. If there are N output neurons, 
then the weight vector W  is updated as follows: 
 

)...( 2211 NN
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where c  if i ≥ 0 X  belongs to class ωi  and ci ≤ 0  
otherwise.  
 
Assuming the sigmoid function is used as the 
activation function, it can be shown that 
differentiating  with respect to the weights 
between the hidden layer and the output layer can 
be obtained as follows:  

y1, y2
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where w  is the weight between hidden neuron j  
and output neuron k and 

k , j
oh

zj  is the output of hidden 
neuron j. Similarly, differentiating y  with 
respect to weights between the input layer and 
hidden layer yields 

1, y2
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where  is the weight between input neuron i 
and hidden neuron j and w  is the weight between 
hidden neuron j and output neuron k. There are a 

number of possibilities to set c  in (1). If we setc  
to be the difference between the target value and 
the output value, the multi-gradient algorithm is 
equivalent to the backpropagation algorithm. In [3], 
assuming that the target value is either 0.1 or 0.9, 

 was set as follows:  
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In other words, we ignore the output neurons that 
exceed the target values and concentrate on the 
output neurons that do not meet the target values, 
updating weights accordingly. Since the 
classification accuracy is the most important 
criterion when neural networks are used as a 
classifier, this weight update strategy can be 
effective, providing better classification accuracies. 
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−∇y2

α∇y1 − β∇y2

 
 

Fig. 2. Adjusting weights by adding the gradients. 
 

4. Experiments and Results 
 
Experiments were conducted for a symmetric 
channel and a non-symmetric channel. In the first 
experiment, we generated 10,000 samples for the 
following symmetric channel: 

y(n) = ak
k = − L

L

∑ x(n − k ) + e(n ) 

where L=2, a1 = a5 = 0.5 , , a2 = a4 = 0.7 a3 = 1 , 
and . Among the 10,000 samples, the first 
1000 samples are used for training and the rest are 
used for testing. Fig. 3 shows the performance 
comparison of the multigradient and the 
backpropagation algorithms. As can be seen, the 
multigradient noticeably outperforms the 
backpropagation. When the backpropagation was 

σ e = 0.1
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used, the classification accuracies for the training 
and test data are 87.8% and 86.5%, respectively. 
When the networks are trained by the multigradient, 
the classification accuracies for the training and test 
data are 90.1% and 88.3%, respectively. 
 
In the second experiment, we generated 10,000 
samples for the following channel: 

y(n) = ak
k = − L

L

∑ x(n − k ) + e(n ) 

where L=2, , , a , aa1 = 0.2 a2 = 0.8 3 = 1 4 = 0.7 , 
 and . It is noted that the channel 

is non-symmetric. As previously, the first 1000 
samples are used for training and the rest are used 
for testing. Fig. 4 shows the performance 
comparison. With the backpropagation, the 
classification accuracies for the training and test 
data are 93.9% and 93.9%, respectively. When the 
networks are trained by the multigradient, the 
classification accuracies for the training and test 
data are 95.6% and 94.9%, respectively. As in the 
symmetric channel, the multigradient outperforms 
the backpropagation. The multigradient also 
converges faster the backpropagation. 

a5 = 0.3 σ e = 0.2

 
 

5. Conclusions 
 
In this paper, we applied the recently published 
multigradient training algorithm to neural networks 
that are used as an equalizer. It was reported that 
the multigradient algorithm outperforms the 
backpropagation when neural networks are to be 
used as a classifier. Experiments with symmetric 
and non-symmetric channels showed that the 
multigradient algorithm provided noticeable 
improvements over the conventional 
backpropagation.  
 
 

References 
 
[1] G. J. Gibson, S. Siu and C. F. N. Cowan, 

"Multilayer perceptron structures applied to 
adaptive equalizers for data 
communications," Proc. IEEE ICASSP’89, pp. 
1183-1186, May 1989. 

[2] S. Chen, B. Mulgrew, and P. M. Grant, "A 
clustering technique for digital 
communications channel equalization using 
radial basis function networks," IEEE Trans. 
Neural Networks, vol. 4, no. 4, pp. 570-579, 
July 1993. 

[3] J. Go, G. Han, H. Kim and C. Lee, 
"Multigradient: a new neural network 
learning algorithm for pattern classification," 
IEEE Trans. Geoscience and Remote Sensing, 
vol. 39, no. 5, pp. 986-993, May 2001. 

[4] R. P. Lippmann, "An Introduction to 
Computing with Neural Nets," IEEE ASSP 
Magazine, vol. 4, no. 2, pp. 4-22, 1987. 

 
 
(a) 

500040003000200010000
83

84

85

86

87

88

89

90

91

No. Iter

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (%

)

MG

BP

 
(b) 

500040003000200010000
83

84

85

86

87

88

89

90

91

No. Iter

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (%

)

MG

BP

 
 

Fig. 3. Performance comparison for a symmetric 
channel.  

(a) training data, (b) test data. 
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Fig. 4. Performance comparison for a non-

symmetric channel. 
(a) training data, (b) test data. 
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