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Abstract— The paper deals with a new problem of physical
correctness detection in the area of strictly causal system
representations. The proposed approach to the problem solution
is based on generalization of Tellegen’s theorem well known from
electrical engineering. Consequently, mathematically as well as
physically correct results are obtained. Some known and often
used system representation structures are discussed from the
developed point of view as an addition.

Index Terms— Power, Energy, Minimality, Equivalence

I. INTRODUCTION

It is familiar that there are two basic approaches to system
modelling. The first one consists in using mathematical for-
mulas and physical tools (a causality principle, different forms
of conservation laws, power balance relations, etc.) in order
to describe appropriate system behavior. It has successfully
been used in many fields of science and engineering so far.
However, there are also situations where physical laws are
not known or cannot be expressed in a proper mathematically
exact form. In that case the second basic approach to system
modelling can be turned. It is based on identification methods
working in terms of experimentally gained data [1], [2]. It is
possible to divide the methods into two groups: parametric and
non-parametric, respectively. If any prior information about a
system structure is not assumed then non-parametric methods
are used for system identification. On the other hand, imagine
that a physical structure of an investigated system is known
then parametric methods will be used and subsequently more
adequate results should be expected [3]. Unfortunately, any
reliable explicit knowledge about a physical system structure
is more likely an exception than a rule. Therefore, a system
structure is mostly chosen on behalf of heuristic arguments
and then it is verified whether obtained quantitative results
are not in conflict with obvious qualitative expectations con-
cerning regular system behavior and/or results of additional
experiments performed on a real system.

The main aim of the contribution is to formulate a fun-
damental problem of physical correctness detection of system
representations and in the sequel propose its possible solution.
The approach starts from the assumption that any physically
correct system representation should not be at variance with
not only measured data but also a form of an energy con-
servation principle. It is shown in the paper that introducing
the principle as the attribute of a causal system representation
seems to be the most natural way as it can be done.

II. TELLEGEN’S THEOREM AND ITS GENERALIZATION

In order to explain essential features of the theorem [4],
consider an arbitrarily connected electrical network with n
components and choose associated reference directions for
branch voltages vk and currents ik. Let Kirchhoff’s laws be
given by the following equations:

Ai(t) = 0, Bv(t) = 0 (1)

where A is a node incidence matrix, B is a loop incidence
matrix and i(t), v(t) are defined as follows:

i(t)=[i1(t), . . . , in(t)]T , v(t)=[v1(t), . . . , vn(t)]T .
(2)

Let the vectors i(t), v(t) be the elements of an Euclidean
space En and invoke the inner product:

〈i(t), v(t)〉 =
n∑

k=1

ik(t)vk(t). (3)

Let I be the set of all the vectors i(t) and V the set of all
the vectors v(t) satisfying the equations (1).
Theorem 1: (Tellegen’s theorem)
If i(t) ∈ I and v(t) ∈ V then it holds that:

〈i(t), v(t)〉 = 0. (4)
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Remark 1: It can also be expressed in the difference form:

N∑

k=1

N∑

j=1

(wkv
′
jk−w

′
kvjk)+

N∑

k=1

(wkx
′
k−w

′
kxk)=0

(5)

using for digital filter design where N is a number of nodes
and wk, vjk, xk, w

′
k, v

′
jk, x

′
k are node variables, branch

outputs and source node values of the first and second oriented
graphs with the same topological structure [5], [6].
Remark 2: The sets I , V are orthogonal subspaces of En.
Moreover, they span En.

It is worth noticing a close relation between physical cor-
rectness and Tellegen’s theorem. It is also important to realize
that the branch currents and voltages are chosen arbitrarily
complied only with Kirchhoff’s laws. It implies that different
sets Ī , V̄ of the branch currents and voltages satisfying the
laws can be selected and the relation:

〈̄i(t), v̄(t)〉 = 0, ī(t) ∈ Ī , v̄(t) ∈ V̄ (6)

still holds. The last deduction will be used later as motivation
for introducing a group of system equivalence transformations
on which generalization of Tellegen’s theorem is based.

A. Generalized Tellegen principle

Consider the representation R(S) of a system S in the form:

R(S) :
dx(t)

dt
= f [x(t), u(t)] (7)

where x(t) ∈ X is a state, X ⊂ Rn is a smooth manifold
and f : X → Rn is a smooth vector field parameterized by
an input u(t). Let E : X → R be a smooth scalar field. It is
well known that the Lie derivative of the scalar field E with
respect to the vector field f is defined as follows [7]:

Lf{E[x(t)]} = 〈dE[x(t)], f [x(t), u(t)]〉 =

=
n∑

i=1

∂E[x(t)]
∂xi(t)

fi[x(t), u(t)]. (8)

Remark 3: The only difference between the relations (4) and
(8) is that both the factors are column vectors in the first one.
Theorem 2: (generalized Tellegen principle)

∃E, f, E[x(t)] =
n∑

i=1

Ei[xi(t)],

dx(t)
dt

= f [x(t), u(t)] : Lf{E[x(t)]} = 0.

(9)

Proof:
∀E, f, dE ⊥ f : Lf{E[x(t)]} = 0. (10)

Trivially,

E[x(t)] = E ⇔ ∀f : Lf{E} = 0. (11)

Corollary 1: (system representation structure)

∃ϕ, T, T−1, x∗(t) = T [x(t)], u(t) = ϕ[v(t), x∗(t)] :

〈x∗T

(t),
dx∗(t)

dt
〉 = 0. (12)

Proof: Consider a class of state and feedback equivalent
representations:

dx∗(t)
dt

= A∗x∗(t) + B∗K∗x∗(t) + B∗v(t) (13)

y(t) = C∗x∗(t). (14)

It can easily be shown that if the algebraic structure of the
matrices A∗, B∗, C∗, K∗ is as follows:

A∗=




−α1 α2 0 · · · 0
−α2 0 α3 · · · 0

...
. . . . . . . . .

...
0 · · · −αk−1 0 αk

0 · · · 0 −αk 0




,B∗=




0
...
0
βk


,

(15)

C∗
T

=




γ1

0
...
0


,K∗=




0
...
0
κk


 , k = 2, . . . , n (16)

then the corollary 1 holds where x∗(t) = Tx(t), T =
H∗

c [(A∗, B∗)] ·H−1
c [(A,B)] in linear case.

III. PROBLEM FORMULATION

Consider the external representation of a strictly causal
system S in the form:

dny(t)
dtn

− u(t)=F [y(t),
dy(t)
dt

, . . . ,
dn−1y(t)
dtn−1

, Θ]

(17)

where Θ = [Θ1, . . . , Θn]T and a function F is known. The
aim is to find an equivalence class of functions S̄ for any given
parametrization Θ in such a way that an internal representation
induced by the equation:

dny(t)
dtn

+ S̄[x̄(t), Θ̄] = u(t) (18)

will not be in conflict with the signal power balance relation
and a corresponding energy function will have the additivity
property. Such an input-state-output representation will be
called physically correct.

IV. CORRECT SYSTEM REPRESENTATIONS

It seems to be quite obvious that two different issues should
be distinguished. Mathematical correctness being equivalent
to a state minimality property of a system representation and
physical correctness closely related to energy additivity and a
certain form of a signal power balance relation.
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A. Mathematically correct system representations

Consider the representation R(S) of a system S in the form:

R(S) :
dx(t)

dt
= A(t)x(t) + B(t)u(t) (19)

y(t) = C(t)x(t) (20)

where x(t) ∈ Rn is a state, u(t) ∈ Rr is an input, y(t) ∈ Rp

is an output, 1 ≤ r ≤ n, 1 ≤ p ≤ n, and matrices A(t), B(t),
C(t) are known. Assume that the system S is asymptotically
stable and its representation R(S) is of the minimum order n
(controllable and observable). It implies that controllability
and observability Grammian matrices Wc and Wo exist [8].
They are symmetric, positive definite and satisfy the following
Lyapunov-like equations:

A(t)Wc(t)+Wc(t)AT (t)+
dWc(t)

dt
=−B(t)BT (t)

(21)

AT (t)Wo(t)+Wo(t)A(t)+
dWo(t)

dt
=−CT (t)C(t).

(22)

Those representations induce an equivalence class of mini-
mum, controllable, observable and asymptotically stable rep-
resentations given by the state equivalence conditions:

Ā(t) = [T (t)A(t) +
dT (t)

dt
]T−1(t) (23)

B̄(t) = T (t)B(t) (24)
C̄(t) = C(t)T−1(t) (25)

produced by the state transformations:

x̄(t) = T (t)x(t), x(t) = T−1(t)x̄(t). (26)

B. Physically correct system representations

Consider the time-invariant case of the representation (19),
(20). A controllability Grammian matrix Wc at a time instant
t is defined as follows:

Wc(t) =
∫ t

t0

eAτBBT eAT τdτ, 0 < t0 < t (27)

and has two properties:

WT
c (t) = Wc(t) ≥ 0 (28)

Im[Wc(t)] = Im[Hc(A,B)] (29)

where Hc(A,B) is a controllability matrix. Supposing that
Wc(t) is invertible then the minimum energy input signal u(t)
exists and the minimum input signal energy Eu corresponding
to state transfer from an initial state x(t0) to x(t) is given by
the relation:

Eu(t) = xT (t)W−1
c (t)x(t). (30)

Consequently, the minimum input signal energy required for
state transferring from the initial state x(t0) to x(t1) for
t → ∞ is given by the relation:

Eu = xT (t1)W−1
c x(t1) (31)

under the assumption that the couple (A,B) is controllable
and the asymptotical stability property is held. Then the
Lyapunov equation:

AWc + WcA
T = −BBT (32)

expresses the form of an input-state energy transfer balance
relation.

Similarly, an observability Grammian matrix Wo at a time
instant t is defined as follows:

Wo(t) =
∫ t

t0

eAT τCT CeAτdτ, 0 < t0 < t (33)

and also has two properties:

WT
o (t) = Wo(t) ≥ 0 (34)

Ker[Wo(t)] = Ker[Ho(A, C)] (35)

where Ho(A,C) is an observability matrix. Further, output
signal energy Ey at a time instant t caused by an initial state
x(t0) is given by the relation:

Ey(t) = xT (t0)Wo(t)x(t0). (36)

Subsequently, the largest observation energy produced by the
initial state x(t0) for t →∞ is given by the relation:

Ey = xT (t0)Wox(t0) (37)

supposing that the couple (A,C) is observable and the asymp-
totical stability property is held. Then the Lyapunov equation:

AT Wo + WoA = −CT C (38)

expresses the form of a state-output energy transfer balance
relation. It follows from the energy additivity requirement:

E(t) =
n∑

i=1

δiEi[xi(t)], δi 6= 0 (39)

that only those system representations can be accepted as
physically correct whose Grammian matrices produced by the
triplet (A,B,C) are diagonal and non-singular:

Wc or Wo = W, W = diag{δ1, . . . , δn}. (40)

V. ILLUSTRATIVE EXAMPLES

Several simple examples are given in order to introduce
natural concepts of physically correct and incorrect system
representation structures.
Example 1: Let us have a real system with the following
physical structure:

R 1

R 2

I(t) A

L

C1

C2
R i

i(t)

R 4 R 3

Fig. 1. Physical structure of a real system
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where the physical meaning of the system parameters is
known. On the other hand, numerical values of the parameters
do not have to be known at all. Further, it is possible to get a
mathematical model of the system as the physical state-space
strictly causal representation:

R(S) :
dx(t)

dt
= Ax(t) + Bu(t) (41)

y(t) = Cx(t) (42)

when proper state variables are injected and then energy
conservation laws are used. Hence, the transfer function of
the system is given as follows:

F (s)=
Y (s)
U(s)

=C[sI−A]−1B=
k(s)

s3+a1s2+a2s+a3

(43)

where a1, a2, a3 depend on the real system parameters. k(s)
is given by input signal characteristics.
Example 2: Let us suppose for now that the only information
we have about the system is the transfer function without
knowing any algebraic structure of the matrices A, B, C. A
realization problem [9] is to find the matrices in such a way
that the relation (43) holds. It is known that the solution of the
problem is not unique because the specific algebraic structure
of the matrices depends on the choice of the state variables.
However, it is possible to determine the structure by carrying
the transfer function F (s) into the differential equation:

d3y(t)
dt3

+ S(t) = ku(t) (44)

where u(t)=b2
d2w(t)

dt2 +b1
dw(t)

dt +b0w(t) and a function S(t)
defined as the scalar product of a parameter vector and a state
vector:

S(t) = 〈Θ, x(t)〉 ⇒ S(t) =
3∑

k=1

Θkxk(t) (45)

describes a relation between the state variables and structure
of the system representation (41), (42). Since the parameter
vector Θ is specified by F (s), the natural choice of the state
variables follows from the form of the function:

S(t) = a1x1(t) + a2x2(t) + a3x3(t). (46)

Thus, the matrices are the following and imply the topological
structure of the system representation shown on the Fig. 2:

A=



−a1 −a2 −a3

1 0 0
0 1 0


 , B=




k
0
0


 , CT =




0
0
1


.

(47)

u(t) y(t)x 1
x 2 x 3

-a1

-a2

-a3

k

Fig. 2. Topological structure induced by A, B, C

Example 3: Let us take the orthonormal state transformation:

x̄(t) = Tx(t), T =




0 0 1
0 1 0
1 0 0


 . (48)

It produces another system representation with the different
algebraic structure of the matrices:

Ā=




0 1 0
0 0 1
−a3 −a2 −a1


 , B̄=




0
0
k


 , C̄T =




1
0
0




(49)
but with the same topological structure shown on the Fig. 3:

u(t) y(t)x 3 x 2 x 1

-a1

-a2

-a3

k

Fig. 3. Topological structure induced by Ā, B̄, C̄

It is easy to verify that the resulting system representation
structures are mathematically correct for any real values of the
parameters. Nevertheless, the structures cannot be accepted
as physically correct in the sense that both a signal power
balance relation and signal energy additivity are required to
hold simultaneously. To explain the situation, assume that the
parameters values make the system be dissipative. The output
signal power Po is defined by the following relation:

Po(t) = y2(t) = 〈x̄T (t)C̄T , C̄x̄(t)〉 = x̄2
1(t). (50)

Then the output signal power balance relation reads [10]:

dĒo[x̄(t)]
dt

= −Po(t) (51)

and holds if and only if the output signal energy Ēo[x̄(t)] has
the form:

Ēo[x̄(t)] = x̄2
1(t)+

∆1

∆2
[∆1x̄1(t)+x̄2(t)]2+

+
∆2

1

∆3
[
∆2

∆1
x̄1(t)+∆1x̄2(t)+x̄3(t)]2 (52)

where ∆1 = a1, ∆2 = a1a2−a3, ∆3 = a3(a1a2−a3) are
Hurwitz minors. It is obvious that the energy function does
not obey the additivity requirement.
Example 4: Consider the same system (43) but with another
algebraic structure of the matrices. For now the state variables
are chosen in such a way that the signal energy additivity
requirement:

E∗
o [x∗(t)]=δ1E

∗
1 [x∗1(t)]+δ2E

∗
2 [x∗2(t)]+δ3E

∗
3 [x∗3(t)]

(53)

as well as the signal power balance relation hold. Let us take
the following state transformation:

x∗1(t) = x̄1(t) (54)
x∗2(t) = ∆1x̄1(t) + x̄2(t) (55)

x∗3(t) =
∆2

∆1
x̄1(t) + ∆1x̄2(t) + x̄3(t) (56)

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 4 - NUMBER 3 41ISSN: 1690-4524



existing for ∆1,∆2, ∆3 6= 0. Then the energy function (52)
becomes to:

E∗
o [x∗(t)] = x∗

2

1 (t) +
∆1

∆2
x∗

2

2 (t) +
∆2

1

∆3
x∗

2

3 (t) (57)

and the matrices of the system representation have the fol-
lowing algebraic structure:

A∗=



−α1 1 0
−α2 0 1

0 −α3 0


 , B∗=




0
0
k


 , C∗

T

=




1
0
0




(58)
where α1 = ∆1, α2 = ∆2

∆1
, α3 = ∆3

∆1∆2
. The corresponding

topological structure of the representation is shown on the
Fig. 4:

u(t) y(t)
x 3 x 2 x 1k

-a
1

-a
3 -a

2

Fig. 4. Topological structure induced by A∗, B∗, C∗

Example 5: Let us have a real system with the following
physical structure:

L

C

Eo

R 1

R 2

i1
i2

Vu y

Fig. 5. Physical structure of a real system

Substituting the system parameters to (15), (16) we get for
n = 2:

α1 =
1

R2C
, α2 =

1√
LC

, β2 =
1√
LC

, γ1 = 1,

κ2 = −R1

√
C

L
. (59)

Then it holds that:

〈x∗T

(t),
dx∗(t)

dt
〉 = −α1x

∗2
1 (t) + β2x

∗
2(t)v(t) +

+ β2κ2x
∗2
2 (t)=PD(t) + PI(t)=0

(60)

where input power PI and output dissipation power PD are
given by the relations:

PI(t) = β2x
∗
2(t)v(t) + β2κ2x

∗2
2 (t) =

= E0i1(t)−R1i
2
1(t) (61)

PD(t) = −α1x
∗2
1 (t) = −u2

c(t)
R2

(62)

x∗1(t) = uc(t)
√

C, x∗2(t)= i1(t)
√

L, v(t)=E0

√
C.

(63)

Example 6: Physically correct structure of the system repre-
sentation (13), (14) is shown on the Fig. 6:

Fig. 6. Physically correct representation structure
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VII. CONCLUSIONS

The paper connects fundamental attributes of real-world
situations (causality, physical correctness, different forms of
conservation laws) with notions and results of electrical
network theory (signal power, signal energy, Tellegen’s the-
orem) as well as with basic approaches and concepts of
general system theory (state minimality, equivalence relation,
asymptotical stability, controllability, observability) and signal
filtering [11], [12], [13].
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