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ABSTRACT 
 
The paper focuses on the efficiency of local search in a Hybrid 
evolutionary algorithm (HEA), with application to optimization 
problem frequently encountered in electronic imaging. 
Although HEA can significantly improve the overall 
performance of evolutionary search, the direct usage of methods 
of local optimization gives rise to a few performance problems 
including a noticeable additional cost of fitness evaluations 
attributed to local search; an excessive waste of computational 
resources on a particular chromosome that is later discarded by 
the global search; and a possible convergence to a sub-optimal 
solution when the actual distance from the global optimum is 
not  sufficiently small for the local search to successfully 
descend to the minimum point. Computational performance of 
local search can be potentially improved by applying the 
following techniques: using direct search that can better 
accommodate shape irregularities of fitness function; adding 
randomness and periodically re-positioning the search, thus 
preventing it from converging to a sub-optimal point; creating a 
tree-like structure for each local neighborhood that keeps track 
of the explored search space; using cyclic vs. complete local 
search, thus cutting down the excessive cost attributed to 
discarded chromosomes; incorporating image response analysis 
and providing the algorithm with a means of deriving problem-
specific knowledge that speeds up the solution. A two-phase 
cyclic local search is proposed that incorporates these 
techniques. A series of computational experiments with 2-
dimensional grayscale images provide experimental support for 
the proposed approach and show that computational 
performance of local search in imaging optimization with HEA 
can be significantly improved. 
 
Keywords: Hybrid Evolutionary Algorithm, Local Search, 
Stochastic Methods, Optimization Problem, Electronic Imaging. 
 
 

1. INTRODUCTION 
 
Electronic imaging is one of the indispensable areas of research 
and development in modern science and technology. Three 
important tasks frequently encountered in electronic imaging – 
image registration, object recognition, and content-based image 
retrieval – can be stated in the form of an inverse optimization 
problem. Essentially, all three seemingly different tasks attempt 
to map an image Img1 of an object or a scene onto an image 
Img0 of another (e.g., larger) scene. Since Img1 or Img0 are 
typically subject to some transformation A, e.g., perspective or 
affine, the actual problem reduces to finding a vector of 
parameters that define the transformation A. If F is a measure of 
the difference between the images during the mapping, then the 
optimization problem can be stated as follows. A feasible vector 

V* of parameters has to be found that minimizes the difference 
F between the images Img1 and Img0, so that 
 

F(V) > F(V*),  for all V ≠ V*, or V* = arg min (F(A)).      (1) 
 

The choice of the image difference measure F is dictated by the 
nature of the problem that one attempts to solve. Color palette 
and color distribution, image texture, and noticeable features 
like lines and corners, etc. can be used to define F. In the area of 
a grayscale imagery, measures based on the distribution of pixel 
gray values are frequently used to evaluate the difference 
between images. In this paper, the squared difference of the 
pixel values of the two images is utilized as a convenient 
measure of the difference F, due to its fairly high robustness and 
tolerance to noise: 
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where g1(x',y') and g0(x,y) are the pixel gray values of the 
images Img1 and Img0, respectively, and Ω is the area of their 
overlap [1]. 
 
In real world imaging applications, the optimization problem 
stated in Equations (1) and (2) is by no means a trivial task. The 
image difference F is usually a highly nonlinear function that 
does not have a closed analytical form; it has to be computed 
numerically for every trial parameter vector V. The images can 
represent complex multi-object scenes, cluttered, noisy, and 
significantly distorted by the transformation A, which makes the 
stated optimization problem a highly nonlinear, global, and 
multimodal, i.e., having an unknown number of local minima. 
Stochastic optimization methods have proved to be efficient 
approach to solving these types of problems [2]. In particular, 
evolutionary algorithms (EAs) are well suited for complex 
multi-dimensional and multi-modal, nonlinear real world 
problems [3] – [6]. 
 
Many researchers applied EAs to solving electronic imaging 
problems, including image registration [7] – [10], semantic 
scene interpretation [11] – [13], and feature selection [14] – 
[16]. Majority of the research utilizes different variants of the 
classical model of EAs, whereas a number of more efficient 
models have been developed over the last decade. One of the 
advanced models, a Hybrid evolutionary algorithm (HEA) 
incorporates traditional methods of local optimization into the 
global evolutionary search [17], [18]. 
 
This paper focuses on exploring some techniques that can 
potentially improve the computational performance of local 
search in HEA, with application to imaging optimization 
problem stated in Equations (1) and (2). Without loss of 
generality, 2-dimensional (2-D) grayscale images subject to a 
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partial affine transformation A are considered. The 
transformation A may include image translations DX and DY, 
rotation θ, and generally non-isotropic scaling factors SX and 
SY. A transformed vector p' = {x',y'}T of the original 
coordinates p = {x,y}T of a pixel P ∈ Img1 can be computed as 
 

p' = A(p) = SRp + T,  (3) 
 
where the matrices S, R, and T  represent scaling, rotation, and 
translation, respectively. For the purpose of optimization, the 
transformation A in Equation (3) can also be written in the form 
of a combination of global transformation defining the location 
of the object in the scene (i.e., the rigid body transformation), 
and local transformation defining the deformation (i.e., the 
distortion) of the object, as follows: 
 

A(p) = LG1 p + G2,   (4) 
 
where L is a local transformation caused by the matrix S of a 
non-isotropic scaling, G1 is a part of a global transformation G 

resulted from the object rotation defined by the matrix R, and G2 
is a part of the global transformation G resulted from the 
translations along the x- and y-axis defined by the matrix T. As 
one can see from Equation (4), the transformation A is non-
separable, i.e., the optimization search has to be conducted 
simultaneously in both global G and local L parameter spaces.  
 
The paper is organized as follows. Section 2 discusses some 
problems associated with the use of local search in HEA, and 
proposes their potential solutions. Section 3 details the 
implementation of a particular two-phase cyclic model of local 
search. Section 4 outlines the concept of image local response 
and its use for improving the performance of local search. 
Section 5 presents the results of computational experiments with 
2-D grayscale images utilizing the proposed techniques. Section 
6 summarizes the findings presented in the paper. 
 
 

2. PROBLEMS AND POTENTIAL SOLUTIONS FOR 
IMPROVING THE PERFORMANCE OF LOCAL 

SEARCH IN A HYBRID EVOLUTIONARY 
ALGORITHM 

 
Evolutionary algorithms (EAs) belong to the category of global 
optimization methods. The algorithms are based on observations 
of physical processes that occur in nature; they attempt to mimic 
the real physical processes in the artificial computational 
environment [19] - [22]. Following the analogy with the living 
organisms, the algorithms use the term chromosome to denote a 
single candidate solution (i.e., the sought parameter vector V) to 
an optimization problem. The algorithms work concurrently 
with the population of contending chromosomes. The quality of 
each chromosome is evaluated via its fitness corresponding to 
the objective function of the optimization problem. In this 
paper, the difference F between the images plays the role of the 
objective function of the optimization problem stated in 
Equations (1) and (2). The algorithms work in an iterative 
manner producing the next population (i.e., generation, in the 
evolutionary terminology) of chromosomes from the current 
population using various genetic operators, the most common of 
which are selection, crossover, and mutation. 
 
Being fairly general and versatile, the classical random model of 
EAs frequently exhibits slow convergence in solving many 
practical problems. In order to improve the EAs performance, 

hybridization with other computational methods is needed. One 
of the efficient directions is a Hybrid evolutionary algorithm. 
The latter augments the classical model of EAs with traditional 
methods of local search and optimization [17], [18]. The idea 
behind HEA is relatively simple, albeit, very fruitful. The local 
neighborhoods near the best chromosomes found by the global 
evolutionary search are further explored in a greater detail, in an 
attempt to find better individuals. The idea of the local 
improvement of the solution finds its theoretical support, e.g., in 
the concept of Lamarckian evolution. The latter states that the 
individual’s improvement achieved during the process of 
learning affects the individual’s genetic structure, and can be 
mapped back to the genetic structure of the entire population 
[18]. 
 
Although the hybrid model can significantly improve the overall 
performance of EAs, the direct usage of local search in HEA 
gives rise to a few efficiency problems. The first problem is 
related to the noticeable overall cost of the additional 
evaluations of the fitness function F attributed to local search. 
In a typical imaging application, the lion’s share of the 
computational cost of HEA belongs to the fitness evaluations. 
Every evaluation includes a transformation of the image 
according to Equation (3), a pixel-wise comparison of the 
images, and an evaluation of the difference F between the 
images according to Equation (2). The cost of the fitness 
evaluation grows as the size of the images increases.  
 
Another problem is related to the fact that in general case, the 
function F is multimodal, i.e., it can have several local optimum 
solutions. The algorithm can not guarantee that any of the best 
chromosomes produced at any intermediate step of the global 
evolutionary search is located in the close proximity to the 
global minimum point. Consequently, the additional 
computational resources spent on exploring the chromosome’s 
neighborhood will be wasted if the chromosome happened to 
belong to one of the local minima: the targeted chromosome can 
be replaced with some other, a better individual, at a later stage 
of the global search. 
 
The third problem is associated with the actual distance from 
the closely investigated chromosome to the global optimum 
point. The distance might not be sufficiently small for the local 
search to successfully take off and descend to the optimum. The 
higher the dimensionality of the search space, the more likely 
the local search converges to a sub-optimal solution defined by 
those components of the parameter vector V that are located 
farther away from their optimal values. 
 
This paper ivestigates the following means by which the 
aforementioned problems associated with local search in HEA 
can be potentially defied: 
 
• Using direct, as opposed to gradient-based methods of local 
search, 
• Adding randomness to the rigorously defined framework of 
a chosen local procedure, 
• Engaging bookkeeping operations similar to those used in 
Tabu search, 
• Engaging repetitive and partial, rather than complete local 
search, 
• Providing problem-specific knowledge, in the form of 
response analysis. 
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Potential candidates for a local search procedure in HEA have 
to be evaluated on the basis of two main criteria: robustness and 
performance. Robustness shows how readily the algorithm can 
accommodate itself to various irregularities of the shape of the 
objective function. It also determines how close to the optimum 
solution the starting point of the search has to reside, in order 
for the algorithm to successfully descend to the optimum. 
Performance defines the quality of the final solution found with 
the algorithm, and computational cost at which this quality has 
been achieved. 
 
There are two main categories of the traditional methods of 
local optimization that can be potentially utilized in HEA [23]: 
 
• Gradient-based methods engaging the derivatives of the 
objective function, 
• Direct search methods solely based on computing the values 
of the objective function.  
 
Methods belonging to the first group are most commonly used 
in hybrid models, largely due to the fact that their properties and 
performance are well studied and understood by the 
mathematical community. Relatively simple Steepest descend 
algorithm, and more sophisticated Conjugate gradient method 
(CGM) are among the popular choices in this category. Since 
these methods heavily rely on the accurate computation of the 
function derivatives, they pose certain, often severe demands on 
the shape and smoothness of the objective function and its 
derivatives. Optimization problems encountered in real world 
imaging applications can not guarantee that these demands can 
be satisfied. Fitness function F describing the difference 
between images has inherently random nature, can be non-
convex, and can exhibit shape singularities. Both the function 
and its derivatives have to be computed numerically, the latter 
using one of the known finite difference schemes.  
 
Direct search methods have not received the same amount of 
attention as their gradient-based counterparts, largely due to 
theoretical problems encountered by mathematicians who 
attempted to lay a coherent theoretical foundation for these 
methods. Only recently, direct search has seen a revival of 
interest, in light of the latest theoretical findings [24]. Among 
the optimization practitioners, however, these methods 
remained popular, because of their relatively low computational 
demands, high reliability, and often satisfactory final results. 
One of the popular choices of direct search has been the 
Downhill simplex method (DSM) [23], [25]. The method is an 
iterative procedure that maintains a non-degenerate (N+1) – 
dimensional simplex in the N – dimensional search space. The 
vertices of the simplex form a set of approximations to the 
parameter vector V and the objective function F. On each 
iteration, the algorithm attempts to move the worst vertex to a 
better location, so the value of the function at this vertex 
decreases. The simplex continuously changes its shape and 
moves in the parameter space, until it converges to a minimum 
point. The DSM search does not require additional function 
evaluations associated with computing partial derivatives of the 
function F, and is highly tolerant to shape irregularities of the 
latter, which makes it an ideal candidate for using in imaging 
optimization with HEA.  
 
Occasionally, the DSM search can converge to a sub-optimal 
solution, in which case it is recommended to re-define the 
intermediate location of the simplex [26]. The addition of the 
local random search to the rigorously defined DSM procedure 

can help re-position the simplex at a specified intermediate step 
in the most advantageous manner, and thus prevent it from 
falling into a sub-optimal point. Randomness, however, 
introduces a disturbance into the otherwise ordered and 
unambiguous simplex movement. Some of the points of the 
search space that have already been visited by the simplex can 
be re-visited, as the result of the added randomness. Moreover, 
the simplex movement can even slip into a repetitive loop over 
the same region. Monitoring the search space and keeping track 
of the locations already visited by the simplex becomes an 
important issue that requires the employment of an additional 
mechanism. Such mechanism can be borrowed from one of the 
popular heuristic methods, Tabu search [27]. 
 
The next section of the paper gives a detailed description of a 
local search procedure that implements the directions outlined 
in this section, in order to defy the problems associated with the 
usage of local search in a Hybrid evolutionary algorithm, with 
application to imaging optimization problem stated in Equations 
(1) and (2).  
 
 

3. TWO-PHASE CYCLIC LOCAL SEARCH IN A 
HYBRID EVOLUTIONARY ALGORITHM 

 
In order to increase the computational efficiency of local search 
in HEA, a two-phase cyclic procedure based on DSM and 
random search was designed that works in the following way. 
The algorithm maintains a variable-length global list LB of the 
fittest, i.e., having the lowest fitness values F chromosomes. 
The local neighborhood of each chromosome Vk in the list is 
explored in a greater detail, in an attempt to find a better 
individual. Firstly, a random search is performed with the radius 
of the locality rn(t) surrounding Vk, and the number of candidate 
neighbors nn(t), computed as linear functions of time t. The 
qualified neighbors are selected using the uniform probability 
distribution inside the N-dimensional hyper-parallelepiped built 
around Vk as a center, where N is the dimensionality of the 
search space. Figure 1 illustrates the mechanism of random 
local search on a sample 2-D model, where n neighbors of the 
current chromosome Vk are drawn at random from the 
expanding neighborhood.  
 

 
Figure 1. A sample 2-D model of the random search in the 
expanding neighborhood of the targeted chromosome Vk. 
 
 
Once a preset time threshold t = TRND has passed, the algorithm 
switches from the random search to the Downhill simplex 
method. The latter performs only a specified number nc of 
complete cycles of the iterative local search each time it is 
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called by the global procedure. During one complete cycle, the 
initial simplex shrinks, and all its vertices change their location, 
thus decreasing their respective function values. After a second 
preset time threshold t = ΤDSM has passed, the local procedure 
switches from DSM back to the random search. At specified 
intervals t = TSW, the simplex is re-positioned, as described 
below. 
  
The search procedure keeps track of the neighbors selected 
during the random search by building a binary tree with the 
chromosome Vk as the initial root. Once the specified number of 
neighbors has been evaluated, the tree is rotated to the right. An 
individual Vj with the lowest value of the fitness function Fj 
replaces the current chromosome Vk, and becomes a new root of 
the tree. When the procedure switches back to DSM, it chooses 
the chromosome Vj as the first vertex of the initial simplex. The 
other N vertices of the simplex are picked from the right brunch 
of the tree; these vertices have the next N lowest values of the 
fitness function. The selection technique ensures that the best-
known simplex in the local neighborhood is formed as the 
starting point for the re-positioned DSM search. Figure 2 
illustrates the mechanism that keeps track of the chromosomes 
located in the neighborhood of the current chromosome Vk. The 
boxes represent the visited chromosomes in the neighborhood; 
they are labeled in accordance with their respective fitness 
values. The left-most leaf of the tree corresponds to a 
chromosome with the best value of F that is to replace the 
targeted chromosome Vk during the next cycle of the search. 
 
 

 
 
Figure 2. A sample binary tree of the neighborhood around the 
current chromosome Vk. 
 
 
The proposed algorithm of a two-phase cyclic local search that 
alternates the random and the DSM search is summarized in 
Figure 3. The procedure helps defy the efficiency problems 
related to the usage of local search in HEA described in the 
previous section of the paper. The cyclic implementation of the 
DSM search reduces the potential waste of the computational 
resources spent by DSM, in the case where Vk is replaced by the 
global search with a fitter candidate located outside the current 
neighborhood. In addition, alternating the random and the DSM 
search around the individual Vk re-defines the initial 
configuration of the simplex, thus helping prevent it from 
converging to a sub-optimal point. Further reduction of the 
overall cost of fitness evaluations associated with the local 
DSM search can be achieved using problem-specific 
knowledge, in the form of a peculiar image transformation, 

image local response, which is described in the next section of 
the paper. 
 
 

 
 
Figure 3. Flow chart of the two-phase cyclic local search 
procedure. 
 
 

4. IMAGE LOCAL RESPONSE IN THE LOCAL DSM 
SEARCH 

 
One of the strong points of EAs is their ability to deal with 
complex real world problems without any a priori provided 
problem-specific knowledge. On the flip side, however, the 
generality of EAs can make them less efficient, in comparison 
with ad hoc methods that extensively rely on problem-specific 
knowledge, when the latter is available. Luckily, the flexibility 
of EAs allows for the problem specifics to be incorporated into 
the general evolutionary framework. There are two principal 
ways of such incorporation: 
 
• Providing the algorithm with the specific data about the 
problem, 
• Providing the algorithm with a fairly general method that 
can autonomously obtain needed information and seamlessly 
integrate it into the evolutionary search.  
 
Since the first approach leads to the apparent loss of the 
algorithm’s generality, and in most cases requires human 
intervention, the second approach looks more desirable. This 
approach is used in the paper; it is rooted in the general ideas of 
sensitivity analysis, and implemented in the form of image local 
response. 
 
The concept of image local response has a fairly simple 
underlying idea [28]. Since the statement of the optimization 
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problem in Equations (1) and (2) looks for a parameter vector V 
defining the unknown transformation A, it seems logical to 
explore the response of the image to this type of transformation. 
This task can be accomplished by mapping the transformed 
image Img  ́ into its original version Img, with the small 
transformation vector Vu. Thus, image local response RP at a 
point P is defined as the value of the difference F between the 
transformed Img  ́ and the original Img versions of the same 
image, where the transformation Au at the point P is small, i.e. 
the components of the parameter vector Vu have sufficiently 
small unit values. It can be shown that there is no need to 
compute the response RP over the entire image, since RP rapidly 
decreases, as the distance from the point P increases. It suffices 
to compute the response RP over a small pixel area ωP near P, 
chosen as a response area. For convenience and without loss of 
generality, a square with a side r, considered as a radius of ωP, 
can be chosen as the response area associated with the point P.  
 
In order to build the response matrix MR for the entire image 
Img, the local response RP is computed for every point P of the 
image as follows: 
 
1) Partial transformations An, n = 1,…,N, are applied to the 

response area ωP near the point P, such that each 
transformation An corresponds to a unit variation of one of 
the N parameters (e.g., DX, DY, θ, etc.). 

2) For each partial transformation An, the difference Fn 
between the pixel values of the initial ωP and the 
transformed ωP' areas is computed according to Equation 
(2), where Ω = ωP. 

3) The value of the response RP at the point P is computed as 
the averaged sum of all N differences Fn. 

 
From the algorithmic point of view, the operation of computing 
local response is similar to the operation of image filtering. 
Very much like filtering, computing local response also 
produces a new output image ImgR, which serves as the 
graphical representation of the image response matrix MR. Like 
filtering, computing local response is also a neighborhood 
operation, in which the value of any given pixel P in the output 
image ImgR is determined by the means of applying the 
described procedure to the values of the pixels in the local 
neighborhood ωP of the pixel P in the input image (i.e., the 
original image Img). 
 
It can be shown that image local response RP has the following 
important properties: 
 
1) As the radius r of the response area ωP increases, the value 

of the response RP rapidly decreases; it is bounded by the 
term O(1/r). 

2) For any two points P and Q that have similar pixel 
distributions over the corresponding response areas, the 
difference between their respective responses RP and RQ is 
fairly small. 

3) When the pixel values in the response area near P 
significantly vary (e.g., near the object edges in the image), 
the value of the response RP correspondingly increases. 

 
The first property assures that the value of the local response RP 
computed over a small area of the image can be used as a fairly 
good approximation to the response RImg computed over the 
entire image. But the value of RImg, in turn, corresponds to the 
value of the fitness function F computed for a small 
transformation Au of the image Img. Since Img itself constitutes 

the optimum solution to the problem of mapping the 
transformed version Img  ́ into its original version under the 
small transformation Au, the local response RP can be used as a 
fairly good approximation to the fitness function F computed at 
a point P in the vicinity of the optimum solution. 
 
The second and the third properties indicate that the values of 
local response reflect the degree of smoothness of the fitness 
function F in the vicinity of the optimum solution. When F is 
fairly smooth, the distribution of the response values is 
relatively flat. On the contrary, any noticeable variation of F 
will cause the corresponding significant variation of the 
response values. 
 
The aforementioned properties of image local response make it 
an efficient technique for reducing the overall computational 
cost of the fitness evaluations associated with the local DSM 
search. The drawback of the regular algorithm is that the step at 
which the simplex moves or changes its shape does not depend 
on the absolute values of the objective function (i.e., fitness 
function in HEA) at the vertices, nor does it depend on the 
differences between these values. The convergence of the 
simplex to the optimum solution is controlled only by the 
ranking order of its vertices, and by the values of four DSM 
coefficients - α1, α2, α3, α4 - that define reflection, expansion, 
contraction, and shrinkage of the simplex, respectively. The 
commonly used values of the coefficients are fixed, which 
makes the simplex move on a smooth landscape in the same 
way as on a rough landscape formed by the fitness function, as 
long as its vertices are aligned in the same ranking order.  
 
The convergence of the simplex to the optimum can be 
adaptively controlled in such a way that the simplex will move 
at its regular rate on a relatively smooth fitness landscape, and 
will slow down on a rough landscape. Such control, however, 
would require additional fitness evaluations within the area 
covered by the simplex. The computational cost associated with 
the additional evaluations can outweigh the relative gain 
obtained from the adaptation. This is where image local 
response comes to the rescue: it provides a fairly good 
approximation to the fitness function F in the vicinity of the 
optimum solution, while evaluating F only over a small 
response area. Response RP can sense the properties of the 
fitness landscape at a point P in the area covered by the DSM 
simplex, without the overhead of the expensive computation of 
the entire fitness function F at the specified point.  
 
Following the above reasoning, image local response is utilized 
to control the length of the vector α = {α1, α2, α3, α4} of the 
DSM coefficients. When the fitness landscape in the locality is 
sufficiently smooth, the distribution of the response values is 
nearly flat, and the components of the vector α take on their 
common fixed values. However, when fitness function 
significantly varies, the correspondingly changing response 
causes the contraction of the vector α. The new vector α′ of the 
coefficients can be found using the following expression [29]: 
 

ααα PQDT ==′ )( ,  (5) 

 
where α′ = {α1′, α2′, α3′, α4′} is the vector of the modified 
DSM coefficients, and DPQ is a diagonal matrix of the response 
coefficients CPQ associated with image points P and Q, and 
computed as follows: 
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))/ln(1( QPPQ RRC −= .  (6) 

 
Experiments presented in the next section of the paper provide 
necessary support for using image local response as a means by 
which the computational cost of fitness evaluations during the 
local DSM search can be reduced. 
 
 

5. COMPUTATIONAL EXPERIMENTS 
 
In order to evaluate the efficiency of the proposed approach to 
local search in a Hybrid evolutionary algorithm, computational 
experiments were conducted on different test sets of 2-D 
grayscale images. Each test set includes images of an object and 
a scene. The object represents a part of the scene that undergoes 
partial affine transformation A, and has to be mapped back onto 
the scene. 
 

       
  
Figure 4. Reference image (left), transformed noisy test image 
(center), and result of their correct mapping (right). 
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Figure 5. Performance of the classical (top) and the hybrid 
(bottom) model of evolutionary algorithms. 
 
 
The purpose of the first group of experiments is to show the 
effect of the local neighborhood search on the overall 
performance of evolutionary algorithm. The test set of two 
256×256 – pixel synthetic images computed according to 

formulae given in [1] is shown in Figure 4. The second image in 
the set is subject to the rigid body transformation defined by the 
a priori known translations DX and DY, and rotation θ; it has to 
be mapped onto the first image of the set. Firstly, the classical 
model of EAs was run using the conventional random genetic 
operators of crossover, mutation, and selection. Then the 
classical procedure was augmented with a simple version of a 
gradient descent local search, to form a hybrid model. During 
each iteration of the global evolutionary search, local search 
procedure is applied to every chromosome Vk in the current 
population in the following manner. A total of six neighbors are 
drawn at random from the local neighborhood of Vk having a 
radius of three units along each component of the parameter 
vector. If a neighbor is found with a better (i.e., smaller) value 
of the fitness function F, it replaces the targeted chromosome Vk 
in the current population, and algorithm continues the search.  
 
As one can see from the sample results presented in Figure 5, 
local search significantly improves the overall performance of 
the algorithm, and helps find a better value of the fitness 
function F* = 0.0581 in just 18 iterations, as opposed to the 
value F* = 0.0620 in 54 iterations of the classical EA. The best 
value found with the hybrid model is F* = 0.0387, at the 
iteration 39. 
 
 

   
 

    
 
Figure 6. Two sets of test images: a truck set (top row), and a 
wing set (bottom row). In each set an object (left column) has to 
be mapped onto a scene (right column). 
 
 
In the second group of experiments, a study is conducted to 
compare two customarily used local optimization techniques - 
the Conjugate gradient method and the Downhill simplex 
method – on the basis of their robustness and performance. Both 
methods were implemented as described in [23]. Experimental 
sets of two 286×286 – pixel images of a truck [28] and two 
290×290 – pixel images of an aircraft wing [30], [31] are shown 
in Figure 6. In both sets, the object is subject to similarity 
transformation in the 4-dimensional parameter space defined by 
translations DX and DY, rotation θ, and isotropic scaling S. In 
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the case of CGM, the first-order forward finite difference 
scheme is used to compute the gradient F’ of the fitness 
function F, with respect to each component of the parameter 
vector V. In five consecutive runs of CGM, the starting point of 
the search is placed at the distance of 1%, 3%, 6%, 8%, and 9% 
from the optimum solution, respectively. In the first run of 
DSM, the five vertices of the initial simplex are evenly placed at 
the distance of 7% - 11% from the optimum solution. In the 
second run of DSM, the vertices of the initial simplex are placed 
around the optimum solution at the equal radius of 10%. 
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Figure 7. Fitness function F along the y-axis near the optimum 
solution for a truck (top), and for a wing (bottom). 
 
 
Figure 7 shows sample graphs of the fitness function F along 
the y-axis in the vicinity of the optimum solution, for both 
objects. In the case of the truck, the function is convex and 
sufficiently smooth for evaluating the gradients. The shape of F 
becomes closer to parabolic, as the value of the translation DY 
approaches the optimum point. Based on these geometric 
properties of the function, one can expect that the derivative-
based CGM would exhibit good performance. On the contrary, 
the fitness function of the wing is significantly non-convex. 
Only if the point is very near the optimum solution, the shape of 
F becomes close to parabolic. Consequently, one can expect 
that CGM could perform well only if the starting point of the 
search would be very close to the optimum.  
 
The results of the computational experiments presented in 
Tables 1 and 2 support the preliminary arguments. As expected, 
CGM shows reasonable stability for the truck object, within the 
tested range of 1% - 9% of the placement of the starting point. 
The quality of the final solution degrades as the distance 
increases: the computed minimum fitness value grows from F* 
= 0.00398 at the 1% distance, to F* = 0.00812 at the 9% 
distance. In the case of the wing, the performance of CGM 

quickly deteriorates, as the starting point moves away from the 
optimum: the computed minimum value of the fitness function 
increases from F* = 0.00599 at the 1% distance, to F* = 
0.01604 at the 3% distance. The algorithm breaks down and 
quickly diverges beyond the 3% distance range. 
 
 

Truck Wing  
1% 3% 9% 1% 3% 9% 

Fitness (×10 5) 398 412 812 599 1604 fail 
Iterations 58 101 119 60 40 fail 
Evaluations: 
Function 
Derivative 
Total 

 
91 
61 
152 

 
132 
106 
238 

 
168 
125 
333 

 
78 
63 
141 

 
49 
42 
91 

 
fail 
fail 
fail 

 
Table 1. Performance of CGM at the initial distances 1%, 3%, 
and 9% from the optimum solution. 
 
 

Truck Wing  
7%- 
11% 

10% 7%-
11% 

10% 

Fitness (×10 5) 391 338 253 308 
Iterations 40 137 42 127 
Evaluations: 
Function 
Derivative 
Total 

 
46 
- 
46 

 
148 
- 
148 

 
50 
- 
50 

 
139 
- 
139 

 
Table 2. Performance of DSM at the initial distance range 7% - 
11%, and at the radial distance 10% from the optimum solution. 
 
 

    
 
Figure 8. Results of the successful mapping of objects onto 
original scenes for a truck (left), and for a wing (right). 
 
 
The Downhill simplex method is not sensitive to the shape of 
the fitness function, whether convex or non-convex; it displays 
noticeable robustness in both the truck and the wing cases. The 
algorithm provides good final results when the initial simplex 
vertices evenly placed at the 7% - 11% distance, and when the 
vertices are initially placed around the optimum value at the 
10% distance. The performance characteristics of DSM are 
significantly superior to that of CGM. The computed minimum 
values for the truck, F* = 0.00391 and F* = 0.00338, at the 7% 
- 11% and the 10% distance range, respectively, are even better 
than the value F* = 0.00398 at the 1% distance obtained with 
CGM. For the wing object, DSM finds very good optimum 
values F* = 0.00253 and F* = 0.00308 during both runs, 
whereas CGM fails to obtain any result beyond the 3% initial 
distance from the optimum. Moreover, the number of function 
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evaluations with DSM in all considered cases is significantly 
smaller than the total number of function evaluations obtained 
with CGM, e.g., 46 at the range 7% - 11%, against 333 at the 
distance 9%, for the truck object. The correct mapping between 
the test images found with DSM is shown in Figure 8. 
 
The results of this group of experiments are clearly in favor of 
using direct search methods, particularly the Downhill simplex 
method, over gradient-based methods like CGM, as the former 
can effectively deal with nonlinear, non-convex, numerically 
computed fitness functions that routinely arise in real world 
imaging applications.  
 
In the third group of experiments, a modified local search with 
the proposed two-phase (random / DSM) cyclic procedure is 
compared with the regular DSM procedure described in [23]. 
The same test set of a wing shown in Figure 6 is used, with the 
initial placement of the simplex vertices evenly within the 7% - 
11% range from the optimum solution. The results presented in 
Table 3 show a 32% reduction (from 50 to 34) of the total 
number of fitness evaluations, when the modified algorithm is 
used. The optimum value F* = 0.00216 found by the modified 
version is even slightly better than the value F* = 0.00253 
found by the regular DSM. These results indicate that the 
proposed two-phase modification of the local procedure that 
includes cyclic random re-evaluation of the simplex vertices, 
alongside with maintaining the record of the visited points in 
the simplex neighborhood can speed up the overall convergence 
of local search while retaining the high quality of the computed 
optimum values.  
 
 

 Regular DSM Modification 
Fitness (×10 5) 253 216 
Cycles 8 4 
Evaluations 50 34 

 
Table 3. Performance characteristics of the regular DSM, and its 
two-phase cyclic modification. 
 
 
The purpose of the last group of experiments is to show how 
utilizing image local response can improve the performance of 
the local DSM search. The test set includes a 256×256 – pixel 
image of a scene, and a 236×179 – pixel image of a transformed 
object [30], [31]. The object is subject to a partial affine 
transformation A defined by the a priori known 5-dimensional 
parameter vector V = {DX, DY, θ, SX, SY}. The transformation 
A includes the rigid body movement and a local distortion of the 
object caused by the different values of the scaling factors SX ≠ 
SY. Figure 9 presents the images of the scene and the object, as 
well as the image of the object local response. 
 
A series of 100 runs for the test set is performed, where for each 
run the vertices of the initial DSM simplex are placed at random 
in the vicinity of the optimum solution in the following manner. 
The value of each component of the vector V for each of the six 
vertices is independently drawn at random, with uniform 
probability from the (±10%) range of the corresponding domain 
centered at the component’s optimum value. For example, the 
translation DX for a 256×256 - pixel image has a domain range 
of 0 – 255. Correspondingly, the value of DX for the image is 
drawn at random, with uniform probability from the interval 

(40.0 ± 25.5), i.e., from the interval (14.5, 65.5), where DX = 
40.0 corresponds to the optimum value of the component DX. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Test image of the original scene (left); the transformed 
object (top, right); and the object local response (bottom, right). 
 
 
The series of 100 runs is performed for the regular (i.e., 
constant) values of the DSM coefficients, and for the modified 
(i.e., variable) DSM coefficients. The latter are computed 
according to Equations (5) and (6), using image local response 
as a means to adaptively control the values of the coefficients. 
The computed mean values of the search parameters for the test 
set over all runs are shown in Table 4. The regular algorithm is 
able to find almost exact parameter values, with the maximum 
relative error of 1.85%. The optimum values of the search 
parameters obtained with the modified version of the algorithm 
are almost identical (within the round-off error) to the values 
obtained with the regular version. The number of fitness 
evaluations for the regular and for the modified versions of 
DSM is presented in Table 5 and Figure 10. As one can see, the 
fixed values of the DSM coefficients require the most function 
evaluations, while the use of the response coefficients in the 
local DSM search results in a significant reduction of over 43% 
of the number of evaluations. This result clearly indicates that 
the proposed modified version of the algorithm utilizing the 
variable coefficients to control the search can improve the 
algorithm performance, in comparison with the regular version 
of DSM. 
 
 

 DX DY θ SX SY 
Regular  40.3 160.3 1.58 2.0 1.5 
Modified 40.3 160.3 1.58 2.0 1.5 
Exact 40 160 1.571 2.0 1.5 

 
Table 4. Mean values of the search parameters computed with 
the regular, and with the modified versions of DSM. 
 
 

 Evaluations Reduction 
rate, % 

Minimum 
fitness 

Regular 51 - 0.00235 
Modified 29 43.1 0.00257 

 
Table 5. Number of fitness evaluations (mean value), reduction 
rate, and minimum fitness values computed for the regular, and 
for the modified versions of DSM. 
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Figure 10. Number of fitness evaluations over 100 runs, for the 
regular, and for the modified versions of the DSM search. 
 
 

6. CONCLUSIONS 
 
The paper focuses on efficiency of local search in a Hybrid 
evolutionary algorithm, with application to optimization 
problem encountered in electronic imaging. Although the hybrid 
model can significantly improve the overall performance of 
evolutionary search, the direct usage of methods of local 
optimization as simple plug-ins gives rise to a few performance 
problems. One of the problems is related to a noticeable cost of 
additional evaluations of fitness function attributed to local 
search. Another problem stems from the fact that in real world 
imagery, fitness function commonly has an unknown number of 
local minima, in which case the computational resources spent 
on exploring the local neighborhood of a particular chromosome 
will be wasted if the chromosome happened to belong to one of 
such local minima. The third problem is associated with the 
actual distance from the investigated chromosome to the global 
optimum solution: the distance might not be sufficiently small 
for the local search to successfully take off and descend to the 
minimum point. 
 
Computational performance of local search can be potentially 
improved by applying the following techniques: 
 
• Using direct vs. gradient-based methods, in order to 
accommodate shape irregularities of fitness function arising in 
real world imaging applications, 
• Adding randomness to a chosen local procedure and 
periodically re-positioning the search, in order to prevent its 
convergence to a sub-optimal solution, 
• Creating a tree-like structure of local neighborhoods, and 
engaging memory bookkeeping operations, in order to keep 
track of the used search space,  
• Using cyclic vs. complete local search, in order to cut down 
on excessive computational cost of local operations, when a 
chromosome is discarded at a later stage of the global search, 
• Incorporating image response analysis, in order to provide 
the algorithm with a means by which it can autonomously 
derive problem-specific knowledge and speed up the solution. 
 
A procedure of a two-phase cyclic local search is proposed that 
incorporates the aforementioned techniques, and improves the 

computational performance of local search in imaging 
optimization with HEA. The algorithm maintains a global list of 
the fittest chromosomes whose neighborhoods are subject to 
local search. A random search is performed in the neighborhood 
of each chromosome in the list, with the radius of the 
neighborhood and the number of the selected neighbors 
computed as linear functions of time. During the second phase, 
local search is refined using the Downhill simplex method. To 
reduce a potential waste of computational resources, DSM 
performs only a specified number of complete cycles during 
each call. At regular time intervals, local search switches from 
DSM back to the random search. Periodic alternating the 
random and the DSM search continues until either the DSM 
search successfully terminates, or the chromosome is replaced 
with a fitter one found by the global evolutionary search. 
 
Engaging image local response helps further reduce the total 
computational cost of the additional fitness evaluations 
attributed to the local DSM search. Image local response defines 
a contraction transformation applied to the vector of the DSM 
coefficients, in order to adaptively control the shape and the 
movement of the simplex. The transformation adjusts the length 
of the vector and, correspondingly, the step size of the simplex 
movement to the properties of the local fitness landscape. 
 
A series of computational experiments with 2-D grayscale 
images provide support for the proposed approach. A noticeable 
reduction of computational cost results from incorporating the 
techniques described in the paper into the global evolutionary 
procedure. Moreover, the quality of the final solution does not 
degrade, in comparison with conventional methods.  
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