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Abstract 

 
A software-defined radio consists of a programmable 
communication system where functional changes can be made 
by merely updating software. In this paper, a software-defined 
radio 4-QAM (Quadrature Amplitude Modulation) modem 
system is implemented in LabVIEW. LabVIEW is a widely 
used graphical programming environment which allows 
designing systems in an intuitive block-based manner in shorter 
times as compared to the commonly used text-based 
programming languages. Basically, this paper demonstrates the 
ease with which a software-defined radio system can be built 
and analyzed via the LabVIEW graphical programming 
environment. Examples are provided to demonstrate the phase 
and frequency tracking capability of the system.  
 
Keywords: Software-defined radio, QAM modem, LabVIEW 
graphical programming, Phase and frequency tracking. 
 
 

1. INTRODUCTION 
 
This paper discusses a software-defined radio (SDR) system 
built using LabVIEW. A software-defined radio consists of a 
programmable communication system where functional 
changes can be made by merely updating software. Similar to 
other digital communication systems, the transmitter of a SDR 
system converts digital signals to analog waveforms. These 
waveforms are then transmitted to the receiver. The received 
waveforms are downconverted, sampled, and demodulated 
using software on a reconfigurable baseband processor. 
Normally, high-performance digital signal processors and/or 
FPGAs are used to serve as the baseband processor. Basically, 
the programmability and flexibility of a SDR system makes it 
possible for it to be used in ubiquitous network environments 
[1-5].  
 
In this paper, 4-QAM (Quadrature Amplitude Modulation) is 
chosen to be the modulation scheme of the designed software-
defined radio system noting that this modulation is widely used 
for data transmission applications over bandpass channels such 
as FAX modem, high speed cable, multi-tone wireless, and 
satellite channels. In particular, digital cable television and 
cable modem utilize 64-QAM and 256-QAM [6-8]. 
 
A number of hardware platforms are available in the market for 
development and testing of SDR systems. For example, the 
Sundance’s SMT8096 development platform is equipped with 
an ADC/DAC (analog-to-digital converter), a Texas 
Instruments TMS320C6416 DSP as a baseband processor, and 
an FPGA for pre- and post signal processing [9]. Knowledge of 
VHDL and DSP programming is required to use the SMT8096 
platform. 
 

Here, the software implementation of the QAM modem system 
is accomplished using LabVIEW as a time-efficient and cost-
effective solution. LabVIEW is a graphical programming 
environment developed by National Instruments which allows 
high-level or system-level design via its flow-chart intuitive 
block-based programming as compared to the commonly used 
text-based programming languages. A design using LabVIEW 
is achieved by integrating different blocks, components or 
subsystems, called Virtual Instruments (VI), within a graphical 
framework [10-11]. 
 
The paper is organized as follows. First, an overview of the 4-
QAM transmitter and receiver is mentioned in section 2. In 
section 3, the LabVIEW implementation details are then 
discussed. The simulation results are presented in section 4. 
Finally, the conclusions are stated in section 5. 
 

2. SOFTWARE DEFINED RADIO: 4-QAM MODEM 
 
The building blocks of the 4-QAM modem system are stated in 
this section. This system has two parts: transmitter and 
receiver. The first three modules (message source, pulse shape 
filter, and QAM modulator) make up the transmitter part and 
the other modules make up the receiver part. A brief 
description of each block follows. 
 
Message source 
Pseudo Noise (PN) sequences are used for this purpose. A PN 
sequence is generated with a 5-stage linear feedback shift 
register structure, see Figure 1, whose connection polynomial is 
given by 
 
 ( ) 2 51h D D D= + +  (1) 
 
where D denotes delay and the summations represent modulo 2 
additions. 
 

 

Figure 1: PN generation with linear feedback shift register. 
 
The sequence generated via Eq. (1) has a period of 31(=25-1). 
Two PN sequence generators are used in order to create the 
message sequences for both the in-phase and quadrature phase 
components. In the constellation of 4-QAM, the reference 
signals are located at each quadrant. 
 
Frame marker bits are inserted in front of the generated PN 
sequences. This is done for frame synchronization which is 
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discussed later. A known bit sequence of length 10 is used as 
the frame marker. This frame marker is chosen to carry low 
correlation with PN sequences.  
 
Pulse shape filter 
The generated message sequences are passed through a raised-
cosine FIR filter to create a band-limited baseband signal. The 
excess bandwidth beyond the Nyquist frequency is specified by 
a roll-off factor of the filter. In our implementation, a roll-off 
factor of 0.5 is used. 
 
QAM modulator 
The output of the raised cosine filter is then used to build a 
complex envelope, ( )s t% , of a QAM signal expressed by 
 

 ( ) ( )k T
k

s t c g t kT
∞
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where kc  indicates a complex message, made up of two real 
messages ka  and kb , k k kc a jb= + . 
 
After modulating ( )s t%  with cj te ω , the transmitted QAM 

signal, ( )s t , can be expressed as 
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where eℜ ⋅⎡ ⎤⎣ ⎦  corresponds to the real part of the complex value 
inside the brackets.  
 
Hilbert transformer  
A Hilbert transformer builds the analytic signal for 
demodulation from the transmitted QAM signal. That is, if 
( )r nT  is considered to be the sampled received signal, the 

analytic signal ( )r nT+  is given by 
 
 ( ) ( ) ( )ˆr nT r nT jr nT+ = +  (4) 
 
where ( )r̂ ⋅  indicates the Hilbert transform of ( )r ⋅ . An FIR 
filter is used for its implementation. 
 
QAM demodulation 
This block involves the multiplication of a complex carrier 
having a negative frequency with the analytic signal obtained 
from the Hilbert transformer block. 
 
The complex envelope of the received QAM signal ( )r nT%  can 
be expressed as 
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Frame Synchronization 
Frame synchronization is required for properly grouping 
transmitted bits into an alphabet. To achieve this 
synchronization, a similarity measure, consisting of cross-
correlation, is computed between the known marker bits and 

received samples. The cross-correlation of two complex values 
v  and w  is given by 
 

 wv
n

R j w n v n j
∞

=−∞

= +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑  (6) 

 
where the bar denotes complex conjugate. 
 
Decision Based Carrier Tracking 
Let us now examine the phase offset, denoted by θ , between 
the transmitter and the receiver. Based on this offset, the 
received signal can be written as 
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where ˆnc  indicates the output of a slicer mapping a received 
sample to the nearest ideal reference in the signal constellation. 
As a result, the baseband error at the receiver is given by 
 
 ( ) ( )ˆne nT c r nT= −% %  (8) 
 
Next, the LMS (least mean square) update method is used to 
minimize the phase error ( )nθ∆  given by 
 

 ( )
( ) ( ){ }
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n

m e nT r nT
n

c
θ

ℑ
∆ =

% %
 (9) 

 
When both phase and frequency tracking are considered, the 
carrier phase of the receiver becomes the phase update ( )nϕ∆  
and is given by 
 
 ( ) ( ) ( )1n k n nϕ θ ψ∆ = ∆ +  (10) 
 
where ( )nψ  denotes the contribution of frequency tracking, 
which can be expressed as 
 
 ( ) ( ) ( )21n n k nψ ψ θ= − + ∆  (11) 
 
The scale factors 1k  and 2k  are configured to be small here 
and usually 1 2/ 100k k ≥  is required for phase convergence. 
The reader is referred to [2] for more theoretical details of the 
modem mentioned here. 
 
 

3. LABVIEW IMPLEMENTATION OF QAM MODEM 
 
This section presents the LabVIEW software implementation 
of the 4-QAM modem system. LabVIEW is a graphical 
programming environment which allows one to design 
complex DSP systems in a relatively time-efficient manner as 
compared to textual programming.  
 
A LabVIEW program consists of two major components: Front 
Panel (FP) and Block Diagram (BD). A Front Panel provides a 
graphical user interface while a Block Diagram contains 
building blocks of a system resembling a flowchart. LabVIEW 
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blocks are called Virtual Instruments, or VIs. The interested 
reader is referred to [10-11] for details on LabVIEW 
programming. 
 
A system-level BD of the QAM modem is shown in Figure 2. 
An overview description regarding the implementation of each 
block follows. 
 
QAM Transmitter 
 Message source:  The first component of the QAM 
modem is the message source. Here, PN sequences are used for 
this purpose. Frame marker bits are inserted in front of these 
sequences to achieve frame synchronization. The BD of the 
Message Source VI is shown in Figure 3Error! Reference 
source not found.. 
 
Note that the generated samples are oversampled 4 times 
according to the specification of the pulse shape filter. This is 
done by comparing with 0 the remainder of a global counter. 
Thus, out of four executions of this VI, one message sample 
(frame marker bit or PN sample) is generated. For the 
remaining three executions of the VI, zero samples get 

generated. The total length of the message for one period of a 
PN sequence and frame marker bits is 164, which is obtained 
by 4 (oversampling rate) × [10 (frame marker bits) + 31 (period 
of PN sequence)]. A constant array of 10 complex numbers is 
used to specify the marker bits. The real parts of the complex 
values are used as the frame marker bits of the in-phase 
samples and the imaginary parts as the frame marker bits of the 
quadrature-phase samples. 
 
The PN Generator VI, shown as an icon in Figure 3, generates 
a pseudo-noise sequence of length 31 by XORing the values of 
the second and fifth shift registers. 
 
 Pulse shape filter:  Next, the generated samples are 
passed through a pulse shape filter that is shown in Figure 4. A 
raised cosine filter is used to serve as the pulse shape filter. An 
FIR filter (FIR Filter PtByPt VI) is utilized for this purpose. 
The two outputs of the pulse shape filter are combined to 
construct the complex value pulse shaped message signal. The 
filter coefficients can be obtained by any filter design tool such 
as LabVIEW DFD toolkit and stored in an array of constants. 

Figure 2: System-level BD of 4-QAM modem system. 

Figure 3: Message Source VI. 
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The coefficients are designed based on the specified 
oversampling rate, i.e. 4 in our case. 
 

 
 

Figure 4: Pulse shape filter. 
 
The output of the pulse shape filter is illustrated in Figure 5. As 
shown in the figure, the digital sequence is smoothed or filtered  
to minimize any intersymbol interference (ISI). The eye 
diagram of this signal is also shown in Figure 5. 
 

 
(a) 

 
(b) 

Figure 5: Pulse shape filter output and eye diagram. 
 

 Modulator:  The signal passed through the pulse 
shape filter is then connected to the QAM modulator shown in 
Figure 6. The QAM modulated signal ( )s t  is obtained by 

taking the real part of the pre-envelope signal ( )s t+ . This is 
achieved by performing a complex multiplication between the 
complex input and a complex carrier consisting of a cosine and 
a sine waveform. 
 

 
Figure 6: QAM modulator. 

 
This completes the transmitter. Next, the receiver blocks are 
mentioned. 
 
QAM Receiver 
 Hilbert transformer:  The first module on the 
receiver side is the Hilbert transformer. This module builds the 
required analytic signal for demodulation based on the 
transmitted QAM signal. The Hilbert transformer is 
implemented as a bandpass filter with the specification 
indicated in Figure 7. To have an integer group delay, an even 
number, such as 32, is specified as the filter order. 
 

 
Figure 7: Analysis of Hilbert transformer. 

 
Once the coefficient set of the Hilbert transformer is acquired 
based on the supplied specifications, the Hilbert transformer is 
implemented using an FIR filter with the coefficients 
previously obtained. This VI is shown in Figure 8. 
 

 
Figure 8: Hilbert Transform VI. 
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A data queue (Data Queue PtByPt VI) is employed in order to 
synchronize the input and output of the Hilbert transformer. In 
other words, the input samples are delayed until the 
corresponding output samples become available. This is needed 
due to the group delay associated with the filtering operation. 
For an FIR filter of 33 taps or order of 32, the group delay is 
16. An array of numeric constants corresponding to the filter 
coefficients is set up based on the designed Hilbert transformer 
shown in Figure 7. 
 
 Demodulator:  The analytic signal obtained from the 
Hilbert transformer is demodulated by the QAM demodulator 
as illustrated in Figure 9. The demodulation process is similar 
to the modulation process except for the negative frequency 
part. 
 

 
Figure 9: QAM demodulator. 

 
 Frame Synchronization:  Next, the QAM 
demodulated signal is decimated by 4. To achieve this, a Case 
Structure is used so that every fourth sample is selected for 
processing, as illustrated in Figure 2. The decimated signal is 

sent to the Sync & Tracking VI for frame synchronization and 
phase/frequency tracking. The Sync & Tracking VI is an 
intermediate level subVI incorporating several 
subVIs/functions and operating in two different modes: frame 
synchronization and phase/frequency tracking.  
 
Let us examine the BD of this VI, which is displayed in Figure 
10. The input samples are passed into the receiver queue, 
implemented via the Complex Queue PtByPt VI, in order to 
obtain the beginning of a frame by cross-correlating the frame 
marker bits and received samples in the queue. Filling the 
queue is continued until the queue is completely filled. Extra 
iterations are done to avoid including any transient samples due 
to the delays associated with the filtering operations in the 
transmitter. 
 
The length of the queue is configured to be 51 in order to 
include the entire marker bits in the queue. This length is 
decided based on this calculation: 31 [(one period of PN 
sequence) + 2 × 10 (frame marker bits)]. Also, 16 extra 
samples are taken to flush out any possible transient output of 
the filter as mentioned previously. Bear in mind that the length 
of the queue or the number of extra reads varies based upon the 
specification of the transmitted signal such as the length of the 
frame marker bits and the number of taps of the phase shape 
filter. A counter, denoted by the Loop Count VI in Figure 10, is 
used to count the number of samples filling the queue. Once the 
queue is completely filled and extra reads are done, the frame 
synchronization module is initiated. 
 
The VI for frame synchronization is shown in Figure 11. In this 
VI, the cross-correlation of the frame marker bits and the 
samples in the receiver queue are computed. The absolute value 
of the complex output is used to obtain the cross-correlation 
peak since the location of this peak coincides with the 
beginning of the frame. 
 

Figure 10: Sync & Tracking VI – frame synchronization mode. 
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Figure 11: Frame Synchronization VI. 

 

 
Figure 12: Complex CrossCorrelation VI. 

 
In Figure 12, the Complex CrossCorrelation VI is shown. This 
VI accomplishes the complex cross-correlation operation by 
evaluating Eq. (6). 
 
Once the index of the maximum cross-correlation value is 
obtained, all data samples are taken at this location of the 
queue. Consequently, data bits are synchronized. 
 
 Phase and frequency tracking:  The initial phase 
estimation is achieved using the phase of the complex data at 
the beginning of the marker bits. Considering that the ideal 
reference is known for the first bit of the frame marker, 1 i+  in 
our case. This allows us to obtain the phase difference between 
the ideal reference and the received frame marker bits. The real 
and imaginary parts of data at the beginning of the marker bits 
are also passed to the Phase and Frequency Tracking VI to 
provide the initial constellation. 
 
The subVI of the frame synchronization is now complete. Note 
that in order to control the flow of data for the frame 
synchronization, local variables, shown as a label with two 
border lines, are used in the BD. More details on using local 
and global variables can be found in [10]. 
 
The initial value of the local variable, denoted by Sync, is set to 
true to execute the frame synchronization. Then, it is changed 
to false within the case structure so that it is not invoked again. 
The other two local variables, Initial Const and Delay Index, 
are used as the inputs of the phase and frequency tracking 
module, see Figure 13. 
 

 
Figure 13: Sync & Tracking VI – phase and frequency tracking 

mode. 
 

Next, let us describe the Phase and Frequency Tracking VI 
illustrated in Figure 14. A Formula Node, shown as a box with 
thick gray border, is capable of evaluating a script including a 
C or a MATLAB text-based code. The formula node shown in 
the upper part of the BD acts as a slicer to determine the 
nearest ideal reference based on the quadrant on the I-Q plane. 
There are numerous built-in mathematical functions and 
variables in LabVIEW which can be used in a formula node. 
For example, pi represents π  in the formula node script shown 
in Figure 13. Further details on formula node appear in [11]. 
 
The phase error, see the BD in Figure 14, is computed from Eq. 
(9). This error is multiplied by a small scale factor to determine 
the phase update ( )nϕ∆  in a second formula node 
corresponding to Eq. (11). 
 
In what follows, we provide key features of LabVIEW that are 
utilized for our implementation. The same features can be 
utilized for implementing other types of SDR. 
 
 Formula node:  Formula node allows one to use C-
like code in LabVIEW. In Figure 13, logical comparisons and 
simple mathematical equations are written in the form of C-
language within the gray enclosure called Formula Node. 
 
 Digital Filtering:  The digital filtering operations  
used in pulse shaping and Hilbert transformation can be 
achieved through a LabVIEW toolkit called LabVIEW DFD. 
 
 Modulation-Demodulation:  Though not utilized in 
our implementation, the LabVIEW Modulation toolkit can be 
used to implement the widely used modulation and 
demodulation schemes. 
 
 Point-by-point processing:  LabVIEW supports 
point-by-point processing in addition to vector/matrix 
processing. Thus, all the filtering and modulation VIs can be 
carried out based on point-by-point processing. 
 
 Other features:  LabVIEW DSP Integration & 
LabVIEW FPGA toolkits require no textual coding. These 
toolkits generate the object code for specific target platforms, 
e.g. TI TMS320C6713 DSK. Hence, the development time can 
be shortened by using these tools. Also, Mathscripting is a 
newly added feature of LabVIEW allowing one to  incorporate 
MATLAB compatible scripts into the LabVIEW graphical 
programming environment. 
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It is worth mentioning that other graphical tools such as 
Simulink can be used for the implementation of SDR. 
LabVIEW is used here since in a comparative study reported in 
[12], it is shown that LabVIEW provides preferred interactivity 
and graphical-user-interface capabilities.  
 
In summary, as compared to a hardware-based solution, the 
LabVIEW-based SDR implementation presented in this work 
has enabled a rapid prototyped software solution. Moreover, in 
this solution, C and MATLAB textual codes can be integrated 
in a seamless manner. The built SDR VI can be easily 
converted to object codes for a number of specific target 
platforms. 
 
 

4. SIMULATION RESULTS 
 
This section provides the simulation study done to test the 
performance of the SDR modem system. To watch the 
simulation outcome, a waveform chart and an XY graph are 
added to the system-level BD shown in Figure 2. 
 
If there exist a phase and a frequency offset with no tracking, 
the received signal appears as shown in Figure 15. As 
displayed in this figure, the constellation of the received signal 
is rotated, and the amplitudes of some of the received samples 
become too small. Obviously, the received signal will change 
by introducing channel noise. 
 
By executing the phase tracking routine, the phase error, 
affected by the initial phase and frequency difference, is 
minimized and the received signal becomes a perfect 
reproduction of the transmitted signal except for the time delay. 
This is illustrated in Figure 16. 
 
More specifically, the change in the constellation via the phase 
and frequency tracking is shown in Figure 16. The constellation 
of the samples in the I-Q plane becomes that of the ideal 

reference as the tracking operation progresses. Figure 16 
illustrates a typical compensation achieved for the phase and/or 
frequency offset between the transmitter and receiver. The 
results show that the developed software-defined radio system 
provides successful decoding of the transmitted message 
samples. 
 

 
Figure 15: Received signal with no phase & frequency 

tracking. 
 

Figure 14: Phase & Frequency Tracking VI. 
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Figure 16: Perfect reproduction of transmitted signal with 

phase & frequency tracking. 
 
 
 

 
(a) 

 
(b) 

Figure 16: 4-QAM constellation: (a) phase offset exists 
between transmitter/receiver (ideal references are indicated by 
‘o’), and (b) outcome of phase and frequency tracking process. 
 
 

5. CONCLUSION 
 
In this paper, it is shown how LabVIEW can be used to build a 
software-defined radio system. In particular, a 4-QAM modem 

system consisting of a message source, a pulse shape filter, a 
modulator, an automatic gain controller, a Hilbert transformer, 
demodulator, a frame synchronizer, and a phase and frequency 
tracker was built in the graphical programming environment of 
LabVIEW. Basically, the use of LabVIEW allowed this 
interactive software-defined radio system to be built in a 
shorter time as compared to text-based programming 
languages.  
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