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ABSTRACT 

 

Camera calibration is an initial step employed in many 

computer vision applications for the estimation of camera 

parameters.  Along with images of an arbitrary scene, these 

parameters allow for inference of the scene’s metric 

information.  This is a primary reason for camera calibration’s 

significance to computer vision.  In this paper, we present a 

novel approach to solving the camera calibration problem.  The 

method was developed as part of a Human Computer 

Interaction (HCI) System for the NASA Virtual GloveBox 

(VGX) Project.  Our algorithm is based on the geometric 

properties of perspective projections and provides a closed form 

solution for the camera parameters.  Its accuracy is evaluated in 

the context of the NASA VGX, and the results indicate that our 

algorithm achieves accuracy similar to other calibration 

methods which are characterized by greater complexity and 

computational cost.  Because of its reliability and wide variety 

of potential applications, we are confident that our calibration 

algorithm will be of interest to many. 

 
Keywords: Camera Calibration, Camera Modeling, Lens 

Distortion, 3D Reconstruction 

 

 

1. INTRODUCTION 
 

Camera calibration is a useful tool in the fields of computer 

vision, computer graphics, robot vision, etc.  In fact, the tasks 

common to these various fields require an understanding of the 

3D structure of a scene based on the information extracted from 

a sequence of images taken by two or more cameras.  The 

process of translating the images into information that can be 

used to reconstruct the scene observed involves several steps, 

one of the most important being that of camera calibration.  

Calibrating the cameras is equivalent to initializing the system, 

given that we obtain optimal values for the camera parameters.  

These parameters allow us to extract metric information from 

the scene and thereby locate objects in space using the 3D 

structure recovered from the 2D images. 

 

The calibration algorithm we will present in this paper has been 

developed as part of the research underway at the Computer 

Graphics and Image Processing Laboratory at the University of 

Nevada, Las Vegas.  This research project is supported by 

NASA1, and its main goal is to produce an efficiently effective 

                                                 
1
 NASA Space Grant/EPSCoR: “Development of a Nationally 

Competitive Program in Computer Vision Technologies for 

Effective Human-Computer Interaction in Virtual 

Environments" 

 

application for Human- Computer Interaction (HCI) that is, 

most importantly, non-invasive.  Thus, we are developing a 

system in which the actor is unhampered by any kind of 

external device2.  Specifically, we will determine the motion of 

the hand solely from images tracking the movement of the hand 

where the subject wears, at most, a pair of ordinary gloves with 

colored markers at key locations.  This will allow us to gather 

the information required to accomplish our task of resolving the 

hand’s 3D coordinates, thereby estimating its pose and motion. 

 

The structure of this paper is as follows:  Section 2 contains a 

brief description of our algorithm.  The reader is introduced to 

our experimental tools and procedures in Section 3.  Section 4 

provides the practicum and experimental results.  Finally, we 

present our conclusions in Section 5. 

 

 

2. CAMERA CALIBRATION ALGORITHM 
 

We chose the Pinhole Camera Model for our project.  This 

model is based on the principle of collinearity, where each point 

in the space is projected by a straight line through the projection 

center into the image plane [1]. 

 

As mentioned above, camera calibration allows for the 

estimation of all parameters necessary for obtaining the 

correspondence between image coordinates (2D) and world 

coordinates (3D) [3], [4], [5].  The parameters can be divided 

into two categories: 

 

1) Intrinsic Parameters, which provide a link between the 

Pixel Coordinate System (PCS) and the Camera 

Coordinate System (CCS), and 

2) Extrinsic Parameters, which define the location and 

orientation of the camera with respect to the World 

Coordinate System (WCS). 

 

2.1 Estimation of Internal Camera Parameters 
 

The internal parameters to be estimated are the focal length f , 

the scale factors 
x

S  and 
y

S  (in the x and y directions, 

respectively), and the radial distortion coefficients 
0

k  and 
1

k .  

In order to calculate the internal parameters, we place our 

calibration object perpendicular to the camera, and we set the 

origin of the WCS to be the point projected onto the center of 

the image, thus setting the rotation matrix R  to a 180 degree y-

                                                 
2
 For more information refer to 

http://biovis.arc.nasa.gov/vislab/vgx.htm 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 4 - NUMBER 18 ISSN: 1690-4524



roll and the translation vector t  to a zero vector of the form 

(0, 0, )h . 

 

Given that the ratio between the length of a line in the real 

world and the length of that line in the image remains constant 

for all lines (Fig. 1), we can estimate the focal length as follows: 

refer to Fig. 1 and consider the projection of the two lines 
1 2

x x  

and 
3 4

x x , where the latter is raised to a known height 
3

z .  

Since 
1 2 1 2

px x pu u∆ ≈ ∆  and 
3 4 3 4

px x pu u∆ ≈ ∆ , we have that  

 

 
x 2 1

2 1

S u - u f

x - x h
=  (1) 

and 

 
x 4 3

4 3 3

S u - u f

x - x h z−
= .  (2) 

 

Also, since it is known that there is a constant ratio between f  

and 
x

S  and that both parameters have the same effect on the 

image (scaling), we can define a “Virtual Camera” in which we 

set 
x

S  to one pixel per centimeter and obtain a corresponding 

focal length f .  We can thereby eliminate 
x

S  from Eqs. (1) 

and (2), which allows us to estimate f . 

 

 
 

Fig. 1:  Finding the focal length from two lines at different 

heights 

 

To best estimate f , 
x

S  and 
y

S , given that Eqs. (1) and (2) do 

not model radial distortion, we must consider lines that lie 

entirely within a region nearby the center of the image since this 

area is least affected by radial distortion. 

 

Let us note that in many cameras, 
x

S  and 
y

S  are not equal; as 

a result, the pixels have a rectangular shape.  The ratio /
x y

S S  

is called the aspect ratio and will be denoted by ρ  [8]. 

 

As we just mentioned, f , 
x

S , and 
y

S  are determined by using 

only control points lying close to the center of the image where 

the effects of radial distortion are minimal.  However, when 

trying to arrive at a viable estimate of the distortion coefficients, 

the control points to be considered must be uniformly scattered 

throughout the entire image.  The inclusion of lens distortion is 

extremely important for the accuracy of our model since lens 

distortion has a significant impact on the shape of the image.  

The most commonly considered form of distortion is radial, 

which is due to imperfections in the construction of the lens and 

causes points to be displaced radially from the center of the 

image.  It can be shown that the formulas modeling radial 

distortion are given by 

 

 
( )
( )

2 4r

r 42

0 1x

y 0 1

x k r k r

y k r k r

δ

δ

+
=

+

  
  
    

�

�
 (3) 

 

where 
2 2

2
r x y= +� �  [2].  Then, once we include Eq. (3) in our 

model, we can solve for the distortion coefficients 
0

k and 
1

k  

via a Linear Least Squares (LLS) Fit [8]. 

 

2.2 Estimation of External Camera Parameters 

 
In this section, we determine the orientation of the camera with 

respect to the WCS.  Our goal is to estimate both the rotation 

with respect to each of the axes in the WCS and the total 

translation. 

 

Initially assuming that the camera is only rotated about the x-

axis by an angle of θ , the rotation matrix is an x-roll (Fig. 2).  

Thus, from Fig. 2 it follows that  

 

 
sinED f - ED θ

=
a h

⋅
 (4) 

and 

 
- sinED f ED

a h

λ λ θ⋅
= . (5) 

 

Thus, θ  may be expressed as 

 

 
( )
( )

-1
-1

sin
1

h

a

λ
θ

λ
=

+

 
 
 
 

. (6) 
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Fig. 2:  Rotation of the camera by θ  degrees about the x-axis 

 

Refer to Fig. 2, where cn is the normal to the image plane, 

T

w (0, 0,1)=n  is the normal to the w wx y  plane, and π θ+  is 

the angle between them.  Therefore, if ( )
x

θR  is a rotation 

matrix about the x-axis, it is clear that  

 

 c w( + )
x
π θ=n nR . (7) 

 

Thus, we are able to find cn  for the case in which the camera is 

only rotated about the x-axis. 

 

In general, however, the image plane is not rotated solely about  

a single axis.  As a matter of fact, we will usually have a 

sequence of rotations about the x, y, and z axes.  Hence, in order 

to find the angle between cn and wn , we must first identify an 

axis of rotation in the w wx y  plane.  In order to find the axis of 

rotation, we rely on the fact that the image of the axis of rotation 

remains unchanged as the camera is rotated.  Once the axis is 

identified, we can use Eq. (6) to compute the angle of rotation.  

To this end, we constructed a special calibration object that 

consists of points in a circular pattern which lies centered at the 

origin of the WCS.  We search for an opposing pair of points 

that are equidistant from the center of the circle.  Subsequently, 

these points are used to determine the axis of rotation, which is 

in fact the line connecting them.  Next, we use the line 

perpendicular to the axis with Eq. (6) to determine θ . 

 

Once the angle of rotation θ  has been found, we can proceed 

with the construction of the corresponding rotation matrix, 

which will be denoted by ( )
u

θ�R .  This allows us to find cn  

and the coordinates of the center of the image plane, C .  

Hence, we can compute the equation of the image plane, which 

enables us to construct the sought-after rotation matrix, 

c=   du dv nR  [8]. 

 

 

3. EXPERIMENTAL TOOLS AND PROCEDURES 
 

3.1 Experimental Tools 

 
The experimental tools developed for this project fall into two 

categories: physical tools and software tools.  The physical tools 

include a circular pattern, a grid pattern, and a precisely 

measured box (the NASA GloveBox).  The software tools 

consist of a Region Selection Tool (RST), a Dot Extraction Tool 

(DET), and tools for rearranging extracted points. 

 

The circular pattern (Fig. 3) is used to carry out the implicit 

calibration, as described in Section 2.2.  It consists of 180 

evenly spaced dots that form a circle of radius 10 in.  Each of 

the constituent dots is a circle of radius 0.04 in.  The grid 

pattern (Fig. 4) is the one used for finding the internal 

parameters of the camera (Section 2.1) as well as testing the 

final calibration.  The grid consists of 0.04 in.-radius dots that 

are drawn in an 11x14 grid pattern, with neighboring dots 

spaced 1 in. apart. 

 

The RST is necessary to select the calibration pattern in the 

image to restrict the search for dots to that region.  This tool 

works by enclosing the region of interest within a closed 

polygon, specified by the user, so that the DET only considers 

points that fall within this polygon.  It is important to note that 

the polygon should enclose the entire calibration pattern. 

 

 
 

Fig. 3:  Circular Calibration Pattern 

 

Once the region has been selected, the DET is used to 

accurately detect the pixel coordinates of the control points on 

the calibration patterns.  To accomplish this, the image is 

converted to YIQ and then segmented into black and white 

regions via a thresholding.  Finally, the center of mass of each 

of the dot-representative black regions is computed via a Depth 

First Search (DFS) sweep. 

 

 
 

Fig. 4:  Calibration Grid 

 

Next, we utilize our point ordering tools to produce a 

meaningful arrangement of the control points.  We have 

developed two tools for this purpose:  a tool for arranging the 

points from the circular pattern into clockwise order, and a tool 

for ordering the points in the grid line by line. 
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1)  The circle ordering tool works by separating the points into 

four regions in the manner shown in Fig. 5.  Due to the fact that 

the image’s origin is located at its top left corner, the points in 

Region 1 are sorted by increasing y coordinate; in Region 2 they 

are sorted by decreasing x; in Region 3 by decreasing y, and in 

Region 4 by increasing x.  This results in a clockwise ordering 

of the points. 

 

 
 

Fig. 5:  Regions used for ordering the dots 

 

2)  The tool for ordering the control points on the grid sorts the 

points line by line from left to right (Fig. 6) as follows:  the four 

corners of the grid are the algorithm’s input.  Let 

{ , , , }
bl tl br tr

c c c c  be the corners, where 
bl

c  is the bottom left 

corner, 
tl

c  is the top left corner, 
br

c  is the bottom right corner, 

and 
tr

c  is the top right corner (see Fig. 6).  The initial step is to 

find the head and tail of every line.  This is accomplished by 

first computing the slope 1s  of the line
bl tl

c c .  For all remaining 

points 
i

p , we find the slope of the line 
i tl

p c  or 
i bl

p c ; if it is 

equal to 1s , then 
i

p  is considered a head of a line.  Similarly, 

using 
br tr

c c , we can find all the tails of the lines. 

 

Once we have found heads and tails, we sort each set in 

increasing order according to the y-coordinate.  The sorting is 

done in a manner similar to that described above.  In fact, we 

consider every line formed by joining the corresponding head 

and tail.  That is, we consider every line 
i

l  formed by heads[i] 

and tails[i].  Let 
i

s  be the slope of this line.  For all the 

remaining points 
j

p , if the slope of the line 
j

p heads[i] or 

j
p tails[i] equals 

i
s , then 

j
p  belongs to the line 

i
l .  Then, we 

sort all the points in every line 
i

l  in increasing distance from 

heads[i].  The sequence of lines 1 2 3, , ...,
N

l l l l  gives us the 

desired ordering of the points.  

 

 
 

Fig. 6:  Arrows to indicate sorting direction 

 

3.2 Experimental Procedure 

 

We begin by finding the internal camera parameters as 

described in Section 2.1.  The camera is placed perpendicular to 

the grid as shown in Fig. 1, and an image of the grid is captured.  

We extract the 2D image coordinates of this grid using the DET 

and store them in the ordered set LP.  Next, we raise the grid 

using a precisely measured height and fill the ordered set HP.  

The sets LP and HP are rearranged using the point ordering tool 

described in the previous section and then used with the solution 

of Eqs. (1) and (2) to compute the focal length f  for the virtual 

camera. 

 

In the next step, we compute the radial distortion coefficients by 

projecting all the points in LP from the 3D WCS to the 2D PCS 

using the values for f and the height of the camera h  just 

computed.  The actual image coordinates of the points are the 

ones that were extracted from the image using the DET; these 

are used to find the distortion at each point.  Then, we fit a 

polynomial having a form akin to that of Eq. (3) to the plot of 

distortions using LLS, yielding the values of the radial 

distortion coefficients 
0

k and 
1

k . 

 

Once we have obtained the internal camera parameters, we can 

proceed with the external calibration to determine the camera’s 

rotation and translation.  To do so, we place the camera at the 

desired location, and then we position the circular pattern 

described in Section 3.1 so that the center of the circle appears 

at the center of the image.  The dot extraction tool is used to 

extract the ICS coordinates of the dots and store them in the 

ordered set CP; then, the circle ordering tool is used to order the 

points in CP.  We then proceed to determine the axis of rotation 

of the camera as follows:  every two points on opposite sides of 

the circle are paired together into pairs 1 2( , )
i i

p p , where i  is 

the pair number and 1 1 1( , )
i i i

p c r=  and 2 2 2( , )
i i i

p c r=  are the 

image coordinates of the two points.  For every pair 1 2( , )
i i

p p , 

we compute the ratio 
1

2

i

i

i

p c
r

p c

−
=

−
, where ( , )

c c
c c r=  

represents the image coordinates of the center of the circle.  The 

line corresponding to the pair that gives 
i

r  closest to one is 

taken to be the axis of rotation, which we denote by a vector v

�

.  

We take the two circle points that fall on the line that is 

perpendicular to v

�

 and compute the angle of rotation θ  about 

v

�

 using Eq. (6).  Once we have θ , we can compute the 

Region 1 

Region 4 

Region 2 

Region 3 
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rotation matrix of the camera, c=   du dv nR , as 

mentioned in Section 2. 

 

 

4.  PRACTICUM 

 
A set of known control points was used to verify the correctness 

of the calibration.  The set contains 294 control points, 

positioned every 1 in. in a 21 by 14 grid pattern.  First, an image 

of the control points is captured from each calibrated camera, 

and the points are projected from the PCS to WCS using the 

parameters computed from the calibration procedure.  The 

Euclidean distance between the computed WCS coordinates and 

the actual known world coordinates is taken as the error 

measure. 

 

Two types of errors are considered, the calibration error and the 

reconstruction error.  For the calibration error, the points are 

assumed to belong to a known plane, say the 0z =  plane, and 

are projected using only one camera.  Before projecting the 

points, we compensate for the radial distortion, as mentioned in 

Section 3.2.  Next, the points are projected first into the CCS 

and then into the WCS using the estimated external parameters. 

To compute the reconstruction error, images from the two 

cameras are used in conjunction to resolve all three coordinates 

simultaneously via triangulation. 

 

Table 1:  Average Calibration Errors 

 ERRORS (cm) 

Trial No. X Y Z Magnitude 

1 – Cam 1 0.085 0.155 0.158 0.237 

1 – Cam 2 0.127 0.106 0.065 0.178 

2 – Cam 1 0.071 0.120 0.071 0.156 

2 – Cam 2 0.168 0.214 0.177 0.324 

3 – Cam 1 0.195 0.140 0.141 0.278 

3 – Cam 2 0.100 0.185 0.160 0.264 

4 – Cam 1 0.093 0.246 0.231 0.350 

4 – Cam 2 0.112 0.104 0.042 0.158 

5 – Cam 1 0.107 0.057 0.106 0.161 

5 – Cam 2 0.250 0.179 0.150 0.342 

6 – Cam 1 0.111 0.089 0.114 0.182 

6 – Cam 2 0.187 0.069 0.149 0.248 

7 – Cam 1 0.132 0.189 0.082 0.244 

7 – Cam 2 0.196 0.132 0.199 0.254 

8 – Cam 1* 0.152 0.178 0.210 0.314 

8 – Cam 2* 0.161 0.083 0.085 0.200 

9 – Cam 1* 0.060 0.082 0.056 0.116 

9 – Cam 2* 0.091 0.175 0.121 0.231 

10 – Cam 1* 0.114 0.288 0.207 0.372 

10 – Cam 2* 0.081 0.124 0.097 0.177 

Average 

Errors 
0.1296 0.1457 0.1310 0.2393 

                                                 
* Trial carried out with the cameras closer together. 

 

Table 2:  Average Reconstruction Errors 

 ERRORS (cm) 

Trial No. X Y Z Magnitude 

1 0.086 0.285 0.197 0.357 

2 0.145 0.138 0.161 0.257 

3 0.101 0.185 0.512 0.553 

4 0.109 0.169 0.160 0.256 

5 0.194 0.188 0.265 0.378 

6 0.150 0.139 0.189 0.278 

7 0.131 0.107 0.251 0.279 

8* 0.181 0.293 0.355 0.398 

9* 0.113 0.197 0.230 0.323 

10* 0.098 0.202 0.190 0.294 

Average 

Errors 
0.1308 0.1903 0.2510 0.3373 

 

As shown by Tables 1 and 2, we obtain an error of about 3 mm 

in the 3D coordinate reconstruction.  Some of the possible 

sources of error in our calibration are measurement error, 

feature extraction, triangulation error, and other types of lens 

distortions.  In fact, the feature extraction accuracy can be 

affected by non-uniform illumination, which causes the detected 

centroids of the control points to be slightly displaced from the 

actual centers.  Regarding the lens distortion, as mentioned in 

Section 3, our calibration model only considers radial lens 

distortion.  However, considering other forms of distortion such 

as tangential and thin prism may improve the results of the 

calibration.  Finally, the triangulation stage contributes to the 

overall error due to the fact that the accuracy of triangulation 

depends not only on the baseline (distance between the 

cameras) but also on the angle between the rays (Fig. 7).  In 

fact, points are less precisely localized along the ray of 

projection as the rays become increasingly parallel.  In the 

NASA VGX, the setup requires that the cameras be close to 

each other; as a consequence, the rays tend to be nearly parallel.  

This impacts our error, which can be seen in the reconstruction 

errors in Table 2. 

 

 
Fig. 7:  The shaded region represents the reconstruction 

uncertainty region, which depends on the angle between the 

rays of projection and increases as the cameras are placed closer 

together. 
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5. CONCLUSIONS 

 

We have presented a novel approach to camera calibration 

based on the geometric properties of the camera and system.  

Our calibration algorithm has various advantages and 

disadvantages in comparison to other calibration schemes.  For 

instance, it is computationally fast and algorithmically 

straightforward.  In fact, our algorithm yields a closed form 

solution without relying on non-linear optimization methods.  

However, two separate procedures are needed for computing the 

camera’s intrinsic and extrinsic parameters.  Yet, once the 

internal camera parameters are computed, it is possible to 

reposition the camera without recomputing them.  As mentioned 

earlier, the accuracy of our calibration method could be further 

improved by considering other forms of lens distortion such as 

tangential and thin prism distortion.  It would also be possible to 

use the parameters obtained from our calibration method as an 

initial guess to some of the non-linear optimization methods 

used in the literature [4], [5], [9].  Finally, we would like to 

remark that the calibration method presented in this paper was 

successfully used to calibrate the cameras in the NASA VGX.  

Using the calibrated cameras, we were able to extract the 

positions and directions of the hands in the VGX along with the 

positions and directions of each individual finger with high 

accuracy [6].  This allowed us to reconstruct the world 

coordinates of key locations on the user’s hand that were fed 

into our 3D hand modeling module, yielding a precise and 

realistic virtual modeling of the human hand [7]. 
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