
Optimal Path Planner for Mobile Robot in 2D Environment

Valeri KROUMOV
Department of Electronic Engineering, Okayama University of Science

1-1 Ridai-cho, Okayama, 700-0005, Japan

Jianli YU
Department of Mathematics and Physics, Henan University of Science and Technology

Luoyang, 471003, China

and

Hiroshi NEGISHI
QUICK VALUE Co.,

699 Irinaka, Bizen City, Okayama 705-0023, Japan

ABSTRACT

The problem of path planning for the case of a mobile robot mov-
ing in an environment filled with obstacles with known shapes
and positions is studied. A path planner based on the genetic
algorithm approach, which generates optimal in length path is
proposed. The population member paths are generated by an-
other algorithm, which uses for description of the obstacles an
artificial annealing neural network and is based on potential field
approach. The resulting path is piecewise linear with changing
directions at the corners of the obstacles. Because of this fea-
ture, the inverse kinematics problems in controlling differential
drive robots are simply solved: to drive the robot to some goal
pose (x, y, θ), the robot can be spun in place until it is aimed
at (x, y), then driven forward until it is at (x, y), and then spun
in place until the required goal orientation θ is met. Simulation
results show the validity of the proposed algorithm.

Keywords: Optimal Path Planning, Mobile Robots, Genetic Al-
gorithm, Artificial Annealing, Potential Field.

1. INTRODUCTION
Path planning is a fundamental issue in the field of mobile

robot control. The purpose of the path planner is to compute
a path from the start position of the vehicle to the goal to be
reached. The primary concern of path planning is to compute
collision-free paths. Another, not less important issue is to com-
pute realizable and, if possible, optimal path, bringing the vehi-
cle to the final position. This paper addresses the optimal path
planning and proposes a path planning which employs a genetic
algorithm (GA) [1].

Many methods for path planning of a mobile robot have been
proposed in the recent years [2]–[14]. Recently, applications of
GAs to path planning have been recognized [7]–[11]. GA is a
search strategy using a mechanism analogous to evolution of life
in nature. It is widely recognized that GA works even for com-
plex problems such that the traditional algorithms cannot find a
satisfactory solution.

Some of the previously proposed path planners based on GAs
have drawbacks which lead to costly computations and could not
fully exploit the abilities and benefits of using GAs. For example

the motion planner proposed in [11] uses a binary string with
fixed length for path coding which is not easy to construct, and it
seems that the speed of evolution in GA slows down when there
is an obstacle restricting the area the optimal path goes through.
In many path planners GAs are entirely involved in the planning
process [8], [9] which seems to increase the computational cost.

This paper proposes an algorithm for generating optimal in
length path for differential drive robots. The proposed algorithm
is based on GAs but the GAs is involved only in the optimiza-
tion process. The actual path generation is performed by a fast
algorithm based on the potential field approach [12], which is not
trapped by local minima. Generally, we treat the two-dimensional
known environment, where the obstacles are stationary polygons
or ovals, but the algorithm can easily be extended for the three-
dimensional case.

The paper is organized as follows. In the next section an
algorithm based on potential field approach [14] is briefly pre-
sented. We use this algorithm for the paths generation through
the evolutionary process of the GA. Section 3 is central part of
the paper and proposes an algorithm for optimal path generation
based on GA. In Section 4 we show the effectiveness of the pro-
posed algorithm by presenting some simulation results. In the
final section we are discussing the results and some plans for fu-
ture developments. The Appendix shows the approach to local
minima problem solution used here.

The proposed here algorithm solves the local minimum prob-
lems and generates optimal path in relatively small number of cal-
culations. Only the assumptions made in this work are that there
are finite number of stationary polygonal or oval obstacles with
finite number of vertices, and that the robot polygon also has a
finite number of vertices. The obstacles can be any combination
of polygons and ovals, as well. In order to reduce the problem
of path planning to that of navigating a point, the obstacles are
enlarged by the robot’s polygon dimensions to yield a new set of
polygonal obstacles [13].

2. ALMOST OPTIMAL PATH PLANNER [14]
In this section we briefly present the fast path planning algo-

rithm which we proposed in [14]. For brevity we will call it A+
path planner. This algorithm generates optimized in length paths

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 3 45

but, as it can be seen from the following explanation the algo-
rithm does not guarantee that the generated path is optimal. This
‘almost’ optimal algorithm is used for producing populations for
the proposed in this paper planner based on GA.

Obstacles description

Every obstacle is described by a neural network as shown in Fig.
1. The inputs of the networks are the coordinates of a point of the
path. The output neuron is described by the following expression,
which is called a repulsive penalty function (RPF) and has a role
of repulsive potential:

C = f(I0) = f

M
X

m=1

OHm − θT

!

, (1)

where I0 takes a role of the induced local field of the neuron
function f(·), θT is a bias, equal to the number of the vertices of
the obstacle decreased by 0.5. The number of the neurons in the
hidden layer is equal to the number of the vertices of the obstacle.
OHm in Eq. (1) is the output of the m-th neuron of the middle
layer:

OHm = fHm (IHm), m = 1, . . . , M, (2)

where IHm is the weighted input of the m-th neuron of the middle
layer and has a role of induced local field of the neuron function.
The neuron activation function fHm (·) has the form:

fHm(x) =
1

1 + e−x/THm

, (3)

where THm is the pseudotemperature, and the induced local field
(x) of the neuron is equal to IO for Eq. (1) or equal to IHm in the
case of Eq. (2). The pseudotemperature decrease is given by

T (t) =
β

log(1 + t)
. (4)

and
THm(t) =

βm

log(1 + t)
. (5)

respectively.
Finally, IHm is given by the activating function

IHm = wxmxi + wymyi + θHm , (6)

where xi and yi are the coordinates of i-th point of the path, wxm

and wym are weights, and θHm is a bias, which is equal to the
free element in the equation expressing the shape of the obstacle.
When the obstacle has elliptic (circular) shape, IHm is expressed
as:

IH = a2b2 − (X − xi)
2b2 + (Y − yi)

2a2, (7)

and the description network has two neurons in the middle layer.
Examples of descriptions of some more complicated objects and
additional comments are given in [14].

The description of the obstacles by the shown here network
has an advantage that it can be used for parallel computation of
the path, thus increasing the speed of the path generation. This
description can be easily extended for the 3-D case. The exten-
sion can be done by adding an additional input for the z (height
of the obstacles) dimension to the obstacle description neural net-
work. It is shown in [12] that the calculation time is linearly pro-
portional to the number of the obstacles’ vertices and decreases
linearly with parallelizing the calculations.

C

xi yi

wxm wym

Output neuron

Input layer

Hidden layer

f

fH1
fH2

fH3 · · ·

OH1
OH2

OH3 · · ·

IH1
IH2 IH3

IHm

fHM

OHM

Figure 1: Obstacle description network

“Almost” optimal path planning algorithm

In this section an algorithm based on the background given in
the previous section is briefly explained. The state of the path is
described by the following energy function.

E = wlEl + wcEc, (8)

where wl and wc are weights (wl + wc = 1), El depicts the
squared length of the path:

El =

N−1
X

i=1

L2
i =

N−1
X

i=1

[(xi+1 − xi)
2 + (yi+1 − yi)

2], (9)

and Ec is given by the expression:

Ec =
N
X

i=1

K
X

k=1

Ck
i , (10)

where N is the number of the points between the start and goal,
K is the number of the obstacles, and C is obtained through Eq.
(1).

The idea is to minimize Eq. (8) which means to obtain an
“almost” optimal in length path, that does not collide with any of
the obstacles. Differentiating the Eq. (8) and performing further
reductions and calculations can be summarized in the following
path planning algorithm [14]:

Step 1: Initial step

1. Let the start position of the robot is (x1, y1), and the goal
position is denoted as (xN , yN).

2. Check for concavities (see the Appendix) and, if neces-
sary, perform elimination of local minima.

3. At t = 0 the coordinates of the points of the initial path
(straight line) (xi, yi; i = 2, . . . , N − 1) are assigned as

xi=x0+i(xN−1−x0)/(N−1),

yi =(yN−1−y0)(xi−x0)/(xN−1−x0)+y0, (11)

i. e. the distance between every two neighboring points of
the path in x and y directions is equal.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 346

Note 1 The obstacles dimensions here are enlarged by the ro-
bot’s polygon dimensions [13].

Step2: Path generation

1. For the points (xi, yi) of the path which lie inside some
obstacle, the iterations continue according to the following
equations:

ẋi = −2η1wl(2xi − xi−1 − xi+1)

−η1wc

K
X

k=1

f ′((IO)k
i)

M
X

m=1

f ′

Hm
((IHm)k

i)wk
xm

!

;

ẏi = −2η1wl(2yi − yi−1 − yi+1)

−η1wc

K
X

k=1

f ′((IO)k
i)

M
X

m=1

f ′

Hm
((IHm)k

i)wk
ym

!

,

i = 2, . . . , N − 1. (12)

2. For the points (xi, yi) situated outside the obstacles, then
instead of Eq. (12) use the following equations:

ẋi = −η2wl(2xi − xi−1 − xi+1);

ẏi = −η2wl(2yi − yi−1 − yi+1), (13)

i.e. for the points of the path lying outside obstacles, we
continue the calculation with the goal to minimize only the
length of the path.

3. Perform p times the calculations of step 2, i.e. find xi(t +
p), yi(t + p) (i = 2, . . . , N − 1), where p is any suitable
number, say p = 100.

Step 3: Test for convergence
Calculate the distance between the points (xi(t), yi(t)), and

the points (xi(t + p), yi(t + p)) (i = 2, . . . , N − 1), i. e.

d =

N−1
X

i=2

{[xi(t+ p)−xi(t)]
2 +[yi(t+ p)− yi(t)]

2}1/2. (14)

• If d < ε then the algorithm terminates with the conclusion
that the goal is reached via an optimal path.

• If d ≥ ε, then GO TO step 2.

Here ε is a small constant, say ε = 0.1.

Every obstacle is described using a neural network as shown in
Figure 1. The output neuron is described by Eq. (1), the neuron
function f(t) and fHm (t) are same as Eq. (3) and the pseudotem-
peratures are as in Eq. (4) and (5).

One of the important advantages of above path-planning is
that it allows parallelism in the calculations of the neural network
outputs, which leads to increasing the speed of the calculations.
The generated path is semi-optimal and is further optimized by
applying genetic algorithm in the foolowing section.

3. PATH OPTIMIZATION USING GENETIC
ALGORITHM

In the context of applying GA into optimal path generation
problem formulation, an appropriate chromosome structure will
greatly enhance the computation process. Instead of the com-
monly-used binary version [2], the chromosome is formed as se-
quence of path points as shown below.

1. Collection of initial paths
The population pool consists of n randomly generated initial

paths using the path planning algorithm presented in the previous
section. Every initial path has random number of points. The
population pool is generated as follows:

Let the start position of the robot is (x1, y1), and the goal
position is denoted as (xN , yN). The first path of the population
r1
1 is generated starting from straight line between the start and

the goal and the distance between every two neighboring points
of the path is equal.

r1
1 = {(x1, y1), (x̄

1
12, ȳ

1
12), . . . , (x̄

1
1j , ȳ

1
1j), . . . , (xN , yN)}

(15)
The other paths in the population pool are generated by ran-

dom selection of a point from the initial (straight line) path r1
1

and placing that point randomly inside the working area thus con-
structing an initial path consisting of two straight lines.

r1
i = {(x1, y1), (x̄

1
i2, ȳ

1
i2), . . . , (x̄

1
ij , ȳ

1
ij), . . . , (xN , yN)} (16)

where (x̄1
ij , ȳ

1
ij) belong to paths i = 2, 3, . . . , n and j take values

j = 2, 3, . . . , N − 1.
Then from the collection of initial paths the first generation

can be calculated by applying the A+ algorithm from the previ-
ous section, i.e.

R1
i ={(x1, y1), (x

1
i2, y

1
i2), . . . , (x

1
ij , y

1
ij), . . . , (xN , yN)}

(i = 1, 2, 3, . . . , n) (17)

i.e. r1
i

A+
−→ R1

i . We express the collection of path of the first
generation with

ϕ1 = {R1
1, R

1
2, . . . , R

1
n}.

2. Parent selection. A roulette-wheel-selection technique ap-
plies. The parent selection procedure operates as follows:

(a) sum the fitness of all chromosomes in the population

Fs =
n
X

i=1

f1
i =

n
X

i=1

1

L1
i

(18)

where

L1
i =

N−1
X

j=1

[(x1
i(j+1) − x1

ij)
2 + (y1

i(j+1) − y1
ij)]

1

2 (19)

(b) generate a random number 0 < p ≤ 1

(c) based on the probability

P 1
i = f1

i /Fs

return the first population chromosome, for which p > P 1
i , and

in this way reproduce 2m paths (2m < n).

3. Crossover Operation One-point crossover is used as a genetic
operation to perform evaluation. It works as follows:

(a) Construct m pairs of paths from the generated 2m paths
above:

R1
us

↔ R1
vs

, (us, vs = 1, 2, . . . , 2m; s = 1, 2, . . . , m)

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 3 47

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure 2: Example of initial population

Where

R1
us

={(x1, y1), (x
1
us2, y

1
us2), . . . , (x

1
usj , y

1
usj), . . . ,

(xN , yN)},

R1
vs

={(x1, y1), (x
1
vs2, y

1
vs2), . . . , (x

1
vsj , y

1
vsj), . . . ,

(xN , yN)}

(b) Generate m numbers at random: qs(qs < N).
(c) Cross the paths R1

us
↔ R1

vs
at qs-th point:

{(x1, y1), (x
1
us2, y

1
us2), . . . ,

(x1
usqs

, y1
usqs

), (x1
vsqs+1, y

1
vsqs+1), . . . , (xN , yN)},

{(x1, y1), (x
1
vs2, y

1
vs2), . . . ,

(x1
vsqs

, y1
vsqs

), (x1
usqs+1, y

1
usqs+1), . . . , (xN , yN)}

Let

r2
u = {(x1, y1), (x

1
us2, y

1
us2), . . . , (x

1
usqs

, y1
usqs

),

(x1
vsqs+1, y

1
vsqs+1), . . . , (xN , yN)},

r2
v = {(x1, y1), (x

1
vs2, y

1
vs2), . . . , (x

1
vsqs

, y1
vsqs

),

(x1
usqs+1, y

1
usqs+1), . . . , (xN , yN)}

As a result 2m paths are obtained: r2
k(k = 1, 2, . . . , 2m).

(d) Generate 2m paths using A+ algorithm: r2
k

A+
−→ R̄2

k.

4. Survival strategy. An elitist strategy is used to fix the potential
best number loss by copying the best member of each generation

-0.4

-0.2

0

0.2

0.4

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

-0.4 -0.2 0 0.2 0.4

(a)

-0.4

-0.2

0

0.2

0.4

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

-0.4 -0.2 0 0.2 0.4

(b)

-0.4

-0.2

0

0.2

0.4

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

-0.4 -0.2 0 0.2 0.4

(c)

Figure 3: The optimal path (part of the 3-rd generation).
(a) parents; (b) crossover operation, (c) the final paths

into the succeeding generation, i.e. if Rij
are n−2m paths short-

est in length in ϕ1 = {R1
1, R

1
2, . . . , R1

n}Cthen the collection of
path of the second generation is:

ϕ2 = {R2
1, R

2
2, . . . , R

2
n}

= {R1
i1 , R1

i2 , . . . , R1
in−2m

, R̄2
1, R̄

2
2, . . . , R̄

2
2m}.

5. Termination criteria. The steps 2.–5. are repeated until the
shortest path fulfils requirements or the shortest path of several
generations in succession do not change.

4. SIMULATION RESULTS
To show the effectiveness of the proposed in this paper al-

gorithm, simulation results are given in this section. The initial
population of ten paths is shown in Fig. 2. In the upper part the
first five paths and in the lower part of the figure the remaining
five paths are shown. The number of the path points is generated
randomly in the range between 60 and 120 points. The lengths
of the paths, the number of points in every path, parents selection
results, crossover points, and the next generation members for ev-

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 348

Li pts rep. cros qs r2

i R2

i

R1

1 1.319 86 2 R1

1 25 r2

1 R̄2

1

R1

2
1.581 92 2 R1

5
r2

2
R̄2

2

R1

3
1.319 92 0 R1

2
70 r2

3
R̄2

3

R1

4 1.957 98 0 R1

5 r2

4 R̄2

4

R1

5
1.490 98 3 R1

1
59 r2

5
R̄2

5

R1

6
1.278 86 1 R1

6
r2

6
R̄2

6

R1
7 1.175 86 0 R1

5 56 r2
7 R̄2

7

R1

8
1.889 98 0 R1

2
r2

8
R̄2

8

R1

9
1.489 110 0 line R1

7
R2

9

R1
10 1.590 80 0 R1

6 R2
10

Table 1: Parameters for the first generation. (Li: length
of the i-th path, ‘pts’: number of points in a path, ‘rep’:
reproduction, ‘cros’: crossover pairs, qs: crossover point)

ery generation are summarized in Tables 1–3. The pair matching
can be found also in these tables.

The path lengths in every generation and the final results from
the simulation are depicted in Table 4. The horizontal rows rep-
resent the individual path lengths and the last column gives the
total sum of the lengths in every generation. It can be seen from
the table, that the path length decreases gradually before the op-
timal solution is found. For the given example the optimal path
was reached in four generations and we have observed from more
than one thousand simulations for randomly generated environ-
ments with 5–30 obstacles, that in most of the cases the optimum
is found in 3–5 generations. This may be because for every path
generation we use the A+ algorithm which produces almost op-
timal paths. In other words, the GA “collects” pieces of “almost”
optimal paths until the optimal one is found and it can be said that
this is the key for the decreased number of generations.

The simulation finishes at the fourth generation, and the gen-
erated optimal path and its formation are shown in Fig. 3. The
path R̄4

5 is the optimal one.
In the course of operation, the “immigrant” method is adop-

ted: the longest path in parents path collection is substituted by
a new path by generating it using A+ starting from straight line
initial condition. In this way the speed of convergence is acceler-
ated.

In addition, we observed that for given configuration of ob-
stacles, in many cases, several suboptimal paths with fitness val-
ues very close to the optimal fitness (at most 0.05% difference)
might exist (see Table 4) and they are quite different from each
other. Insertion of a new obstacle creates a new optimal path
which is based on the suboptimal paths and it generation is very
fast. This might be because the GA maintains the diversity of
a population to some extent. Of course, this is not always the
case. If an environmental alternation drastically changes an op-
timal path, and the current population does not cover features of
a new optimal path, finding a new optimal path is basically same
as finding it from scratch.

The calculation speed remains as a problem which solution
does not seem to be that easy. The A+ algorithm itself allows

Li pts rep. cros qs r2

i R2

i

R2

1 1.743 98 0 R2

2 38 r3

1 R̄3

1

R2

2
1.427 86 1 R2

7
r3

2
R̄3

2

R2

3
1.693 98 0 R2

5
45 r3

3
R̄3

3

R2

4 1.505 92 0 R2

9 r3

4 R̄3

4

R2

5
1.396 86 1 R2

6
29 r3

5
R̄3

5

R2

6
1.266 86 2 R2

8
r3

6
R̄3

6

R2
7 1.319 92 1 R2

6 33 r3
7 R̄3

7

R2

8
1.685 98 1 R2

10
r3

8
R̄3

8

R2

9
1.176 86 1 line R2

9
R3

9

R2
10 1.279 86 1 R2

6 R3
10

Table 2: Parameters in the second generation

Li pts rep. cros qs r2

i R2

i

R3
1 1.345 92 1 R3

1 60 r4
1 R̄4

1

R3

2
1.338 86 0 R3

9
r4

2
R̄4

2

R3

3
1.411 98 0 R3

6
40 r4

3
R̄4

3

R3
4 1.368 86 0 R3

5 r4
4 R̄4

4

R3
5 1.189 60 2 R3

5 31 r4
5 R̄4

5

R3

6
1.341 86 1 R3

8
r4

6
R̄4

6

R3

7
1.327 86 0 R3

9
39 r4

7
R̄4

7

R3
8 1.311 86 1 R3

8 r4
8 R̄4

8

R3

9 1.176 86 2 line R3

9 R4

9

R3

10
1.266 86 1 R3

5
R4

10

Table 3: Parameters in the third generation

generation of semi-optimal paths in real-time, but the optimiza-
tion process based on GA takes a lot of computational time. The
reason is that in the population generation step the A+ algorithm
is used at least eight times and this increases the calculation time
drastically—e.g. when the total number of the vertices rises to
120 the computational time grows up to 220 s. Parallelizing the
computations using computers connected via Ethernet decreases
the speed greatly and this might be one of the possible solutions,
but to reach reasonable computational time a network of eight
computers is needed—a hardware cost which is hardly accept-
able.

5. CONCLUSIONS
In this paper we have proposed a path planner for differential

drive mobile robots moving in known environment. The proposed
algorithm is based on GA and the resulting path is optimal in
length. Because the generated paths are piecewise linear with
changing directions at the corners of the obstacles, the inverse
kinematics problems for the case of differential drive robots are
simply solved: to drive the robot to some goal pose (x, y, θ),
the robot can be spun in place until it is aimed at (x, y), then
driven forward until it is at (x, y), and then spun in place until

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 3 49

R1
1 R1

2 R1
3 R1

4 R1
5 R1

6 R1
7 R1

8 R1
9 R1

10 L1

1.319 1.581 1.320 1.957 1.491 1.279 1.176 1.889 1.489 1.590 15.092

R2

1
R2

2
R2

3
R2

4
R2

5
R2

6
R2

7
R2

8
R2

9
R2

10
L2

1.744 1.427 1.693 1.506 1.397 1.266 1.316 1.685 1.176 1.279 14.492

R3

1
R3

2
R3

3
R3

4
R3

5
R3

6
R3

7
R3

8
R3

9
R3

10
L3

1.345 1.337 1.411 1.368 1.189 1.341 1.327 1.311 1.176 1.266 13.072

R4
1 R4

2 R4
3 R41

4 R4
5 R4

6 R4
7 R4

8 R4
9 R4

10 L4

1.408 1.175 1.401 1.183 1.173 1.269 1.190 1.291 1.176 1.189 12.456

Table 4: The path lengths in every generation (the shortest path in bold)

the required goal orientation θ is met.
The algorithm finds an optimal path without being trapped in

local minima. It is applicable to free-flying robots and snakes,
too. The algorithm is an extension of the one proposed by us in
[14].

Because the GAs are adaptive they can work even if the envi-
ronment is time-varying, one of future directions of our research
is to adopt the proposed here algorithm for environments with
sudden changes.

Since the A+ algorithm used for population generation can
be directly adopted for 3D space, at present we are evaluating
the GA in 3D environment and the results of that research will
be reported in subsequent paper. Decreasing of the calculation
time is another problem to be worked out—a matter which we
are pursuing currently.

ACKNOWLEDGEMENTS
This research was partially sponsored by the Department of

Electronic Engineering and the Graduate School of Okayama Uni-
versity of Science.

The authors are grateful to Professor Hiroyuki Narihisa from
the Department of Information & Computer Engineering, Okaya-
ma University of Science for his helpful comments.

Finally, the authors would like to thank to the anonymous
reviewers for the fruitful suggestions and remarks—this helped a
lot in improving the quality of the manuscript.

A. THE LOCAL MINIMA PROBLEM
The local minima remains an important cause of inefficiency

for potential field methods. Hence, dealing with local minima is
the major issue that one has to face in designing a planner based
on this approach. This issue can be addressed at two levels [15]:
(1) definition of the potential function, by attempting to specify
a function with no or few local minima, and (2) in the design of
the search algorithm, by including appropriate techniques for es-
caping from local minima. However, it is not easy to construct
an “ideal” potential function with no local minima in a general
configuration. Therefore, second level is more realistic and is ad-
dressed by many researchers (see e.g. [15, 16] and the references
there).

In the proposed in this paper algorithm, the local minima
problem is addressed in a simple and efficient fashion:

1. After setting the goal position, the polygonal obstacles are
scanned for concavities (fig. 4(b)).

(a) (b) (c)

Figure 4: Concave obstacle: (a) the original shape, (b)
scanning result, (c) the filled concavity

2. If the goal (start) lies inside a concavity, then a new goal
(start) liyng outside the concavity is set, and the path be-
tween the original goal (start) and the new one is set as
straight line. The new goal (start) is set at nearest the ver-
tex measured from the start (goal).

3. Every detected concavity is temporarily filled, i.e. the ob-
stacle shape is changed from concave to nonconcave one
(see fig. 4(c)). After finishing the current task, the orig-
inal shapes are retained so that the next task be planned
correctly.

Note 2 For the special case when the start and the goal
are situated inside the same concavity, the concavity is left
untouched, i.e. the filling is not performed.

References
[1] D. E. Goldberg, Genetic Algorithms in Search, Optimiza-

tion, and Machine Learning, Addison-Wesley, 1989.

[2] L. Davis, Handbook of Genetic Algorithms, Van Nostrand
Reinhold, 1991.

[3] P. C. Chen and Y. K. Hwang, “SANDROS: A Dynamic
Graph Search Algorithm for Motion Planning”, IEEE
Trans. on Robot. and Automat., Vol. 14, No. 3, 1998, pp.
390–403.

[4] Y. K. Hwang and K. Ahuja, “Potential Field Approach to
Path Planning”, IEEE Trans. Robot. Automat., Vol. 8,
Sept. 1992, pp. 23–32.

[5] D. K. Pratihar, K. Deb, A. Ghosh, “Fuzzy-genetic Algo-
rithms and Time-optimal Obstacle-free path Generation for

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 350

Mobile Robots”, Engineering Optimization, Vol. 32, No.
1, 1999, pp. 117–142.

[6] Y. K. Hwang and K. Ahuja, “Gross Motion Planning—A
Survey”, ACM Comput. Surveys, Vol. 24, No.3, 1992, pp.
219–291.

[7] C. Hočaoglu and A. C. Sanderson, “Planning Multi-paths
Using Specification in Genetic Algorithms”, Proc. 1997
IEEE Int’l Conf. of Evolutionary Computation, Nagoya,
Japan, May 1996, pp. 378–383.

[8] H.-S. Lin, J. Xiao, and Z. Michalewicz, “Evolutionary Al-
gorithm for Path-planning in Mobile Robot Environment”,
Proc. 1st IEEE Conf. on Evolutionary Computation, Or-
lando, FL, Vol. 1, June 1994, pp 211–216.

[9] T. Shibata and T. Fukuda, “Intelligent motion Planning by
Genetic Algorithm with Fuzzy Critic”, Proc. 8th IEEE
Int’l Symp. on Intelligent Control, Chicago, IL, Aug.
1993, pp. 565–570.

[10] X. Y. Xu and G. Vukovich, “Fuzzy Evolutionary Algo-
rithms and Automatic Robot Trajectory Generation”, Proc.
1st IEEE Conf. on Evolutionary Computation, Orland,
FL, Vol. 2, June 1994, pp 595–600.

[11] K. Sugihara and J. Smith, “Genetic Algorithms for Adaptive
Planning of Path and Trajectory of a Mobile Robot in 2D
terrains”, IEICE Trans. Inf. & Syst., Vol. E82-D, No. 1,
Jan. 1999, pp. 309–316.

[12] V. Kroumov, J. Yu and H. Narihisa, Path Planner for Differ-
ential Drive Mobile Robots Using Annealing Neural Net-
work, Transactions of the Society of Instrumentation
and Control Engineers, Japan (submitted).

[13] T. Lozano-Pèrez and M. A. Wesley, “An Algorithm for
Planning Collision-free Paths Among Polyhedral Obsta-
cles”, Comm. of the ICM, Vol. 22, No. 10, 1979, pp. 560–
570.

[14] V. Kroumov, J. Yu and H. Narihisa, “Path planning for un-
manned vehicles”, Proc. of the 1999 International Con-
ference on Mechatronic Technology (IMCT’99), Pusan,
Korea, Oct. 1999, pp. 667–672.

[15] J. C. Latombe, Robot Motion Planning, Kluwer Academic
Publishers, 1991.

[16] T. Lozano-Pèrez M. T. Mason and R. H. Taylor, “Automatic
Synthesis of Fine Motion Strategies for Robots”, Interna-
tional Journal of Robotics Research, Vol. 3, No. 1, 1984,
pp. 3–24.

[17] E. Rimon and D. E. Doditschek, “Exact Robot Navigation
Using Artificial Potential Fields”, IEEE Transactions in
Robotics and Automation, Vol. 8, No. 5, 1992, pp. 501–
518.

[18] C. W. Warren, “Global Path Planning Using Artificial Po-
tential Fields”, in Proc. IEEE Int. Robot. Automat., 1989,
pp. 316-321.

[19] D. E. Doditshek: “Exact Robot Navigation by Means of
Potential Functions: Some Topological Considerations”,
Proc. IEEE ICRA, 1987, pp. 1–6.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 3 51

