

 A Hybrid Data Compression Scheme for Improved VNC

Xiaozheng (Jane) Zhang and Hirofumi Takahashi
 Department of Electrical Engineering
California Polytechnic State University

San Luis Obispo, CA 93401, USA

ABSTRACT

Virtual Network Computing (VNC) has emerged as a
promising technology in distributed computing environment
since its invention in the late nineties. Successful application of
VNC requires rapid data transfer from one machine to another
over a TCP/IP network connection. However transfer of screen
data consumes much network bandwidth and current data
encoding schemes for VNC are far from being ideal. This paper
seeks to improve screen data compression techniques to enable
VNC over slow connections and present a reasonable speed
and image quality.

In this paper, a hybrid technique is proposed for
improving coding efficiency. The algorithm first divides a
screen image into pre-defined regions and applies encoding
schemes to each area according to the region characteristics.
Second, correlation of screen data in consecutive frames is
exploited where multiple occurrences of similar image contents
are detected. The improved results are demonstrated in a
dynamic environment with various screen image types and
desktop manipulation.

Keywords: Image manipulation and compression, and
Virtual Network Computing.

1. INTRODUCTION

VNC [1] stands for Virtual Network Computing. It is a
client/server software application that allows one to remotely
access a desktop environment from anywhere on the internet.
VNC has been gaining increased attention in recent years
because it provides great flexibility and convenience in a
mobile computing environment. For example, one can use
VNC to access his personal Unix or PC desktop from any
office on campus and from around the world. A system
administrator can use VNC to help troubleshoot a remote
computer, or to access and administer server machines without
leaving his own computer. There exist many programs that
provide one with the ability to view the screen on a remote PC.
But VNC, besides being free, is small and simple and has the
advantage of being fully cross-platform. Numerous groups [3-
6] are currently actively developing VNC and related products.

Successful application of VNC requires rapid data transfer
from one machine to another over a TCP/IP network
connection. However transfer of screen data consumes much
network bandwidth and current data encoding schemes for
VNC are far from being ideal. When VNC is used over the
internet, via a public network, security reasons require the use
of encryption, which further exacerbates the bandwidth
problem. Finally, mobile computing use of VNC with devices
such as Palm Pilot would have to overcome the limitation of a
slow network as well as the additional overhead of encryption

over the internet. There is a high demand for a bandwidth
optimized version of VNC.

The original VNC was developed by Olivetti Research
Labs in Cambridge in 1998 [1-3]. The technology underlying
VNC is a protocol called RFB that stands for Remote Frame
Buffer. It supports six different encoding algorithms where all
use lossless compression. The compression algorithm used in
the original VNC software is very inefficient especially in
compressing natural images and suffers from low performance
in low-bandwidth network environments.

TightVNC [4, 7] developed by Kaplinsky is an improved
version of the original VNC. Besides the various enhanced
features it offers, it implemented a new encoding called
“tight”. TightVNC incorporates an additional data analyzer to
determine statistical properties of pixel data before applying
data filters. While TightVNC was shown to outperform
standard VNC encoders in compression ratios, the design of
the data analyzer is still primitive and leaves much room for
improvement.

The objective of the proposed work is to develop
improved screen data compression techniques to enable VNC
over slow connections and present a reasonable speed and
image quality. The paper is organized as follows. In Section 2,
segmentation-based image coding is first described. We first
review previous work in this area, we then present our
algorithm that uses different encoding schemes to address
varying region characteristics in a screen image, followed by
experimental results. Section 3 presents our novel approach in
coding similar image contents appeared in earlier frames using
memory buffer. Finally, Section 4 offers our conclusions and
future research direction.

2. SEGMENTATION-BASED IMAGE CODING

Computer screen image represents a class of compound image
that consists of background, text, graphics, and natural image
contents. The basic idea in improving coding efficiency of a
compound image is based on the observation that screen
image is composed of several distinct regions and no coding
technique alone is able to efficiently handle all range of data.
By allowing the compression algorithm being content
adaptive, different image classes are better encoded using
region specific characteristics.

2.1. Previous Work
In general, there exist two main approaches for representing a
compound image. One is based on MRC multilayer model [8]
that decomposes an image into background, foreground, and
mask layers. Each layer is then coded as an image
independently from other layers. Among various applications
are DjVu coder [9] and SPEC coder [10].

On the other hand, block-based segmentation classifies
non-overlapping blocks of an image into different classes and

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 2 1ISSN: 1690-4524

compresses each class differently according to its
characteristics, such as in [11] where the method was applied to
scanned documents.

 2.2. Proposed Algorithm
We employ block-based segmentation since it provides low
complexity which is crucial for VNC application. As opposed
to conventional method where image blocks are classified into
text, graphics, picture, etc., we tie the segmentation directly to
the compression process. We consider JPEG as our baseline
coding because it is a well-established digital image
compression standard. While JPEG is very efficient in
compressing color-rich images, it introduces noticeable
artifacts when it is applied to text and graphic images. One
such example is shown in Figure 1, where distortion around
edges can be easily observed in a JPEG encoded image with
graphic content. Various psychophysical studies [12] also
suggest that human eyes are more sensitive to distortion around
edges thus higher perceptual importance should be given to the
text and edge regions, followed by the smooth and detailed
regions. We therefore choose to use lossless compression to
encode image blocks with text and graphic contents that are
normally characterized by fewer color numbers and leave only
color-rich images to JPEG.

(a) (b)

Figure 1: An example of artifacts introduced by JPEG on a
graphic image. (a) Original image (24 bpp), (b) JPEG
reconstructed image (4.946 bpp).

2.2.1. Lossless Coding: For lossless encoding of an
image block with a color number of eight or less, only N (≤8)
color data (requiring 3*N bytes for an RGB color pixel) plus a
bitmap are transmitted. The decoder is able to reconstruct the
original image from these data. The bitmap requires only 1 bit
for each entry when N is 2, 2 bits if N is 3 or 4, and 3 bits if N
is from 5 to 8. Note that one-color image does not require any
bitmap.

2.2.2. Lossy Coding: If the color number in a 16x16
block is more than 30 (determined experimentally), the image
will be encoded using JPEG. For images in between, we choose
Block Truncation Coding for images with strong edges, while
JPEG for the ones with weak edges. BTC (Block Truncation
Coding) [13] is a lossy compression technique. The advantage
of BTC is that it is relatively easy to implement but still
preserves strong edges in an image. We adopted a modified
version of BTC [14], where only one bitmap resulting from the
sum of three color components is encoded. Figure 2 shows the
performance of the improved BTC compared with JPEG and
the original BTC in one test image.

2.2.3. Complete Segmentation Scheme: Figure 3

shows the flowchart of our segmentation process. Here we
employ a simple color counting in combination with edge
detection. Since each pixel has three components (R, G, B), we
combine them using the following formula: pixel value =

1000R+G+0.001B. This is used for counting color numbers. In
refinement 1, the algorithm checks all 4x4 sub-blocks inside
the 16x16 block. If there is any sub-block having more than
two colors, the image block is sent to JPEG; otherwise, the
BTC is used. In refinement 2, two edge detection techniques
are employed. In the first edge detection, magnitudes of the
difference between adjacent pixels vertically and horizontally
are computed for each pixel in the image block. If sum of the
magnitudes is less than a threshold (T1=1500), the image is
sent to BTC with a block size 4. Otherwise the block goes
through the second edge detection, where the magnitude of the
difference between adjacent pixels are computed for top,
bottom, left and right sides of an image block. If the maximum
value is less than a threshold (T2=10), the block will be
compressed by BTC with a larger block size of 8, otherwise,
the block size of 4 is chosen. This classification is helpful in
better coding strong edges appearing on sides of the block. It
should be mentioned here that even though we use PSNR as an
objective measure in our final evaluation for reconstructed
image quality, the segmentation method is developed by
comparing compression results among various schemes for test
images based on combining PSNR with visual inspection. For
similar PSNR values, we choose the one with better visual
results.

PSNR vs Bit Rat e [Image (d)]

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16

Bi t Rate (bi ts per pixel)

JPEG

Or igial BTC

Impr oved BTC

Figure 2: Comparison between JPEG, original BTC, and
improved BTC using one test image.

Figure 3: Flowchart of the Segmentation.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 22 ISSN: 1690-4524

2.3. Experimental Results

The performance of the presented algorithm is evaluated and
compared with JPEG on five test images with a size of
560*560. These images are chosen to cover a variety of screen
image types. Summarized results in Table 1 show that in all
cases except for image 2, the new algorithm produces much
better results in terms of PSNR and bit rate. The new algorithm
requires low bit rate while maintaining high PSNR. It should
be mentioned that since we employ lossless coding and BTC
for regions with strong edges, noticeable improvements are
observed in those areas comparing to JPEG even though both
might have similar PSNR values.

JPEG
The New

Algorithm

Bit Rate
(bpp)

PSNR
(dB)

Bit Rate
(bpp)

PSNR
(dB)

Image 1 4.25 31.37 3.01 39.25
Image 2 4.81 31.04 4.73 31.85
Image 3 3.45 34.03 1.87 33.59
Image 4 4.89 31.32 3.57 33.34

Table 1: Performance Comparison between JPEG and the
New Algorithm.

3. CODING OF SIMILAR IMAGE INSTANCES

In addition to the improvement on coding a single still image,
the hybrid algorithm also exploits temporal correlation of
screen data in consecutive frames. It is noted that the existing
VNC detects updated region between two adjacent frames and
transmits only those areas. This significantly reduces temporal
redundancy in screen data. However VNC does not address the
coding of similar image content in a series of image frames that
occur frequently during a typical manipulation of desktop
environments. For example, it is often observed that one might
scroll up and down the contents in a window, or bring up and
hide/cover a window from time to time. The background can
also be covered and uncovered over and over. The same or
similar image contents appear and re-appear in those situations.
Figures 4-6 show a sequence of three partial screen images. As
can be seen, during the process of bringing up a new window
from the Windows Taskbar (located in lower portion of the
screen, with the Auto-hide property enabled), multiple
occurrence of the Taskbar content is detected in Figure 4 and 6.
Hence, subsequent occurrence of the same Taskbar would be
best encoded by reference to its first occurrence.

To implement the idea, we create a memory buffer
covering up to 250 previously encoded image blocks at both
encoder and decoder. It is critical to maintain the same copy at
both sides. Each time a new image block of a certain minimum
size is encoded, we first search through the memory buffer. If a
good match is found, only the image id is transmitted. This idea
is motivated by work [15] on long-term memory prediction,
however with the difference that no motion compensation is
performed here.

In our implementation, we first add a memory prediction
encoding and its associated message to the RFB protocol. The

message includes frame id, image id, and mode of action that
could be either record or playback. The routine is then
extended to first ask Memory Buffer for a match to the
rectangle we are trying to encode. In doing so, we first build a
candidate bag including all possible matching rectangles from
the Memory Buffer. The most likely candidate is the one that
has the same location and size as the rectangle to be encoded.
This is characterized by a four-edge matching. Following that
is three-edge, two-edge, and one-edge matching. The candidate
bag is then searched for matches by comparing pixel values
between the rectangle and the candidate in the bag. If no match
is found, the image will be encoded using the original method,
and the action is set to record. Both encoder and decoder will
save this rectangle in their Memory Buffer. If a match is found,
the mode of action is set to playback and the frame id and
image id of the matched rectangle is transmitted. The decoder
will use the id info to retrieve the image stored in its Memory
Buffer. Most matches are not perfect, such as the Taskbar in
Figures 4 and 6 – the clock in Figure 6 is updated. The
algorithm can declare a match so long as the rectangle
“almost” (80% at the moment) matches the image in Memory
Buffer. In this case we recursively encode all the rectangles
constituting the mismatched regions, however, at some point
the overhead of recording and recalling such small rectangles is
more than any realized savings. For this reason, the algorithm
does not remember any image smaller than the MINRECTSIZE
(currently 900, such as a 30x30 image block).

Figure 4: First Image in a Sequence with Taskbar

Figure 5: Second Image in a Sequence without Taskbar

Figure 6: Third Image in a Sequence with Taskbar

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 2 3ISSN: 1690-4524

Figure 7: Flowchart of the Memory Coding.

4. CONCLUSIONS AND FUTURE WORK

In this paper we present a hybrid algorithm that improves the
existing software package to enable VNC over slow
connections and present a reasonable speed and image quality.
The improvement was made in two areas. While the
segmentation-based image coding has been exploited in
previous research efforts, the idea and implementation of the
coding of multiple occurrences of similar image contents is
novel and has not been reported elsewhere. In this approach,
the improvement was made in exploiting correlation of screen
data in consecutive frames. It is often observed that during
manipulation of a desktop environment, the same image
content might appear from time to time, or at varying locations.
Based on that, we encode multiple occurrences of the similar
image block by referring to its first occurrence. This leads to
significant savings in bandwidth.

 The developed algorithm has been tested on several
desktop images and during manipulation of desktop
environments. Improved image quality and faster transmission
speed has been observed visually. However, to objectively
evaluate the new algorithm, further work is required. First
incorporation of a record/playback mechanism in the original
software is necessary so that each VNC session can be
reproduced and tested on a variety of algorithms. Furthermore,
performance measures need to be built into the original
package to allow objective evaluation of our hybrid algorithm
with existing techniques. It is our hope that this will justify the
usage of our newly developed algorithm and lead to a wider
deployment of VNC in the field of mobile computing
environment.

5. ACKNOWLEDGEMENT

This work was sponsored by the Department of the Navy,
Office of Naval Research, under Award # N00014-04-1-0436.

6. REFERENCES

 [1] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A.
Hopper, “Virtual Network Computing,” IEEE Internet
Computing, Volume 2, Number 1, January/February, 1998.

[2] T. Richardson, The RFB Protocol, RealVNC Ltd, August
2003.

[3] http://www.realvnc.com

[4] http://www.tightvnc.com

[5] http://ultravnc.sourceforge.net

[6] http://www.tridiavnc.com

[7] K. V. Kaplinsky, “VNC tight encoder – data compression
for VNC”, Modern Techniques and Technology, 2001.
Proceedings of the 7th International Scientific and Practical
Conference of Students, Post-graduates and Young
Scientists, February/March 2001.

[8] Mixed Raster Content ITU-T Study Group 8, Draft
Recommendation T.44, March 1997.

[9] L. Bottou et al., “High Quality Document Image
Compression Using DjVu”, Journal of Electronic Imaging,
Vol. 7, July 1998.

[10] T. Lin, and P. Hao, “Compound Image Compression for
Real-time Computer Screen Image Transmission”, IEEE
Transaction on Image Processing, Vol. 14, Issue 8, August
2005.

[11]X. Li, and S. Lei: Block-based segmentation and adaptive
coding for visually lossless compression of scanned documents.
In Proceeding of International Conference in Image
Processing, Volume 3, 2001.

[12] D. Marr, Vision, W. H. Freeman and Company, 1982

[13] O. Mitchell, E. Delp, and S. Calton, Block Truncation
Coding: A New Approach to Image Compression, IEEE
International Conference on Communication, IEEE Press,
Piscataway, 1978.

 [14] Y. Wu, and D. Coll, “Single Bit-Map Block Truncation
Coding of Color Images”, IEEE J. Selected Areas
Communication, CA, 1995.

 [15] T. Wiegand, X. Zhang, and B. Girod, Long-Term
Memory Motion-Compensated Prediction, In IEEE
Transaction on Circuit and Systems for Video
Technology, February 1999.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 24 ISSN: 1690-4524

	P841078

