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ABSTRACT 

 
Our recent work in which we study the propagation of the 
general Hermite-sinusoidal-Gaussian laser beams in wireless 
broadband access telecommunication systems is elaborated in 
this paper to cover the special case of an off-axis Gaussian 
beam. We mainly investigate the propagation characteristics in 
atmospheric turbulence of an off-axis Gaussian beam 
possessing Gaussian distributed random displacement 
parameters. Our interest is to search for different types of laser 
beams that will improve the performance of a wireless 
broadband access system when atmospheric turbulence is 
considered. Our formulation is based on the basic solution of 
the second order mutual coherence function evaluated at the 
receiver plane. For fixed turbulence strength, the coherence 
length calculated at the receiver plane is found to decrease as 
the variance of the random displacement is increased. It is 
shown that as the turbulence becomes stronger, coherence 
lengths due to off-axis Gaussian beams tend to approach the 
same value, irrespective of  the variance of the random 
displacement. As expected, the beam spreading is found to be 
pronounced for larger variance of displacement parameter. 
Average intensity profiles when atmospheric turbulence is 
present are plotted for different values of the variance of the 
random displacement parameter of the off-axis Gaussian beam.  

Keywords: Free Space Optics, Atmospheric Turbulence, Laser 
Beam Propagation, Off-Axis Beams. 
 

1. INTRODUCTION 
 

It is known that the off-axis-Gaussian beams are special form of 
Gaussian beams in which complex displacement parameters are 
introduced. It is thus possible to obtain source coordinate 
dependent attenuation and phase at the exit plane of the laser. In 
this work we have incorporated the complex displacement 
parameters as Gaussian random variables. In this manner we 
mimic the spatial partial coherence property and apply it to an 
off-axis-Gaussian laser beam wave source. Propagation of such 
excitation is then examined in a turbulent atmosphere.   
Sometimes named also as the decentered Gaussian beams, the 
off-axis-Gaussian beams are studied by many researchers both 
at the excitation plane and after having propagated in various 
optical systems [1]-[5]. We have recently introduced off-axis-

Gaussian beams in a turbulent atmosphere [6], [7]. Our analysis 
in these studies is based on deterministic complex displacement 
parameters at the source plane representing the attenuation and 
phase shift. Our motivation is to search whether some features 
of the off-axis-Gaussian beams such as the displacement, 
coherence length and the intensity profiles at the receiver plane 
can be utilized in certain applications in atmospheric optical 
communication links. Also we want to understand how these 
features are influenced, when the complex displacement 
parameter of the off-axis-Gaussian beam varies in a random 
manner.   
 

2. FORMULATION 
 
In the presence of atmospheric turbulence, the field at the 
receiver plane due to an off-axis-Gaussian beam excitation is 
given by the extended Huygens Fresnel formula as   
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s ss  and  are the transverse source 

and transverse receiver coordinates, respectively, , 
and z is the propagation axis, i.e., and 
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0z = z L=  present the 
source and the receiver planes. L  is the link length,  is the 

wave number, 

k

( ),ψ s p  is the solution to Rytov method 
representing the random part of the complex phase of a 
spherical wave propagating from the source point ( ), 0z =s  to 

the receiver point ( ), z L=p . In writing Eq. (1), time 

dependence of the field is not included.   denotes 
the source field distribution of an off-axis-Gaussian beam given 
by  
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where A  is the amplitude of the field at the origin of the source 
plane (i.e. at  0

x y
s = s = z = ) taken as unity in our 

calculations, φ  is the constant phase factor, 
sx

α and 
sy

α  are the 

source size of the Gaussian beam in 
x

s and 
y

s  directions, 
x

V  

and 
y

V are the complex displacement parameters associated 
with the Gaussian part of the beam in the sx , sy directions, 
respectively. In general, ,  

x xr xi y yr yi
V V iV V V iV= + = + , where 

,  
xr xi

 are the real and imaginary components of V V
x

V , and 

,  
yr yi

 stand for the real and imaginary components of V V
y

V . In 
this paper, the complex displacement parameters are taken to be 
real, equal in both directions and also are assumed to be 
Gaussian distributed random variable with zero mean and the 

variance denoted by 2

V
σ . In our results, we have also taken 

equal source sizes in both directions, i.e., 
sx sy s

α α α= = . In Eq. 
(2), focal lengths in both transverse source coordinates are taken 
as infinity, i.e., collimated excitation is considered.  
 
Second order mutual coherence function evaluated at the 
receiver plane in the turbulent medium is given by 
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where and are two different points at the receiver plane, 

 denotes the ensemble average over the statistics of the 
complex displacement parameter and turbulence where these 
two statistics are assumed to be independent. Substituting Eq. 
(2) into Eq. (1), and inserting the resulting receiver field in Eq. 
(3), applying the receiver coordinate transformation such that 
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over the source coordinates by using Eq. 3.323.2 of Ref. 8, Eq. 
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where  is the coherence length at the receiver plane which is 
calculated to be  
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Here is the coherence length of a 

spherical wave propagating in the turbulent medium,  being 
refractive index  structure constant. 
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The second case when  

d
0=p  is found as 
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where 

b
α  is the beam width at the receiver plane which is found 

as 
1 / 22 2
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Expression in Eq. (6) also yields the average intensity profile at 
the receiver plane due to an off-axis-Gaussian beam excitation 
with random displacement parameter in turbulence. Thus, re-
writing Eq. (6) for the average receiver intensity, we have  
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where ( )

r
I< >p denotes the average intensity at an arbitrary 

receiver coordinate, i.e., at .    
c
=p p

 
Our formulas provided by Eqs. (4) and (6) correctly reduce to 
the average intensity expression in turbulence for Gaussian 

beam wave given in Ref. 9 in the limit when 2 0
V

σ = .   
 

3. RESULTS 

All our results are obtained at the wavelength of 1.55 mλ µ= , 
since this is the most widely used wavelength in the currently 
operational free space optical access communication links. 
Coherence length  shown in the figures has the unit of meters. 
In Fig. 1, coherence length at the receiver plane given by Eq. (5) 
is plotted versus the refractive index structure constant for 
various values of the variance of the displacement parameter. It 

0r
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is seen that for a fixed turbulence strength, the coherence length 
calculated at the receiver plane decreases as the variance of the 
random displacement is increased. As the turbulence becomes 
stronger, coherence lengths due to off-axis Gaussian beams tend 
to approach the same value, irrespective of  the variance of the 
random displacement.  
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Fig. 1. Coherence length at the receiver plane versus the 
structure constant for various values of the variance of the  
displacement parameter. 

The change of the coherence length versus the refractive index 
structure constant for various values of the variance of the 
displacement parameter is shown in Fig. 2 for a smaller source 
size than that of Fig. 1. Evaluation at a fixed propagation 
distance reveals that the spatial coherence length decreases as 
the strength of atmospheric turbulence increases, and this is 
valid for all values of the variance of the random displacement 
parameters of a fixed sized source. However, for the same 
turbulence levels, coherence length is smaller for larger 
variance of the random displacement parameter, eventually 
leading to similar coherence lengths for sufficiently strong 
turbulence levels. Comparing Fig. 1 with Fig. 2, we observe that 
the smaller size source yields larger coherence length at the 
same turbulence strength. Also, when the source size is smaller, 
the variance of displacement parameter becomes less effective.   

The change of the coherence length versus the link length for 
various values of the variance of the displacement parameter is 
shown in Fig. 3. Evaluation at a fixed source size reveals that 
the spatial coherence length decreases as the link length 
increases, and this is valid for all values of the variance of the 
random displacement parameters of a fixed sized source. Again, 
for the same turbulence levels, coherence length is smaller for 
larger variance of the random displacement parameter, 
eventually leading to similar coherence lengths for sufficiently 
long link lengths. 
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Fig. 2. Coherence length versus the structure constant for 
various values of the variance of the displacement parameter for 
a smaller source size. 
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Fig. 3. Coherence length versus the link length for various 
values of the variance of the displacement parameter. 

In Fig. 4, the coherence length is plotted versus the structure 
constant at a fixed variance of displacement parameter and for 
various source sizes. Examining Fig. (4), we find that in a 
similar manner to Fig. (2), the spatial coherence length 
decreases as the strength of atmospheric turbulence increases 
which is valid for all values of source sizes having a fixed 
variance of the random displacement. This time, for the same 
turbulence levels, coherence length is smaller for larger source 
sizes, eventually leading to similar coherence lengths when 
turbulence attains relatively large structure constants. 

In Fig. 5, beam width at the receiver plane given by Eq. (7) is 
shown versus the link length for various values of the variance 
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of the complex displacement parameter and in the absence of 

atmospheric turbulence ( ). 2 0
n

C =
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Fig. 4. Coherence length versus the structure constant for 
various values of the source size with a fixed variance of 
displacement parameter. 

Fig. 6 uses the same parameters as in Fig 5 except that 
turbulence is included. As expected, the beam spreading 
becomes pronounced for larger variance of displacement 
parameter. This is attributed to the fact that the off-axis 
Gaussian beam wave having a Gaussian distributed random 
displacement parameter has similar characteristics as that of a 
spatially partially coherent laser beam. By comparing Figs. 5 
and 6, we also note that the beam spreads more in turbulence 
than in free space when the other source and medium 
parameters are kept the same. 
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Fig. 5. Beam width versus the link length in the absence of 
turbulence for various values of the variance of the 
displacement parameter. 
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Fig. 6. Beam width versus the link length in turbulence for 
various values of the variance of the displacement parameter.  

The normalized average receiver intensity profiles in 
atmospheric turbulence are plotted in Fig. 7 for different values 
of the variance of the random displacement parameter of the 
off-axis Gaussian beam. The normalized average receiver 
intensity is found by dividing the average receiver intensity 
given in Eq. (8) by the peak value of average receiver the 

intensity at 2 0
V

σ = . The normalized average receiver intensity 
profile becomes smaller along the slanted receiver axis as the 
variance of the displacement parameter increases. This 
reduction is particularly pronounced at the origin of the receiver 
plane. 
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Fig. 7. Normalized average receiver intensity profiles in 
turbulence for different variance of displacement parameters  
 

4. CONCLUSIONS 

We examined the propagation characteristics in atmospheric 
turbulence of an off-axis Gaussian beam possessing Gaussian 
distributed random displacement parameters. For a fixed 
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turbulence strength, the coherence length calculated at the 
receiver plane decreases as the variance of the random 
displacement is increased. As the turbulence becomes stronger, 
coherence lengths due to off-axis Gaussian beams tend to 
approach the same value, irrespective of  the variance of the 
random displacement.  For a smaller source size, the same 
behaviour is observed except that the smaller size source yields 
larger coherence length at the same turbulence strength. Also, 
the variance of displacement parameter becomes less effective 
for smaller source sizes. For a fixed source size, the spatial 
coherence length decreases as the link length increases, and this 
is valid for all values of the variance of the random 
displacement parameter. For the same turbulence levels, 
coherence length is smaller for larger variance of the random 
displacement parameter, eventually leading to similar coherence 
lengths for sufficiently long link lengths. Also, at a fixed 
propagation distance, the spatial coherence length decreases as 
the strength of atmospheric turbulence increases which is valid 
for all values of source sizes having a fixed variance of the 
random displacement. This time, for the same turbulence levels, 
coherence length is smaller for larger source sizes, eventually 
leading to similar coherence lengths when turbulence attains 
relatively large structure constants.  

As expected, the beam spreading is found to be pronounced for 
larger variance of displacement parameter that can be related to 
the fact that the off-axis Gaussian beam wave having a Gaussian 
distributed random displacement parameter has similar 
characteristics as that of a spatially partially coherent laser 
beam. Also, the beam spreads more in turbulence than in free 
space when the other source and medium parameters are kept 
the same.   

The average receiver intensity profile becomes smaller along 
the slanted receiver axis as the variance of the displacement 

parameter increases, the reduction being  larger at the origin of 
the receiver plane.  
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