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Abstract. Soft Computing Optimizer (SCO) as a new software 
tool for design of robust intelligent control systems is described. 
It is based on the hybrid methodology of soft computing and 
stochastic simulation. It uses as an input the measured or 
simulated data about the modeled system. SCO is used to design 
an optimal fuzzy inference system, which approximates a random 
behavior of control object with the certain accuracy. The task of 
the fuzzy inference system construction is reduced to the 
subtasks such as forming of the linguistic variables for each input 
and output variable, creation of rule data base, optimization of 
rule data base and refinement of the parameters of the 
membership functions.  Each task by the corresponding genetic 
algorithm (with an appropriate fitness function) is solved. The 
result of SCO application is the design of Knowledge Base of a 
Fuzzy Controller, which contains the value information about 
developed fuzzy inference system. Such value information can be 
downloaded into the actual fuzzy controller to perform online 
fuzzy control. Simulations results of robust fuzzy control of 
nonlinear dynamic systems and experimental results of 
application on automotive semi-active suspension control are 
demonstrated. 
Keywords: Soft computing optimizer, knowledge base, 
intelligent control, robust fuzzy controller, fitness function 

 
1. INTRODUCTION 

 
 Fuzzy control has emerged as one of the most active and fruitful 
fields in practical application of fuzzy systems theory based on a 
fuzzy logic and fuzzy sets theory introduced by L. Zadeh (1973). 
From control design point of view, fuzzy systems became so 
attractive because they can be considered as universal 
approximator of systems with unknown dynamics and structure. 
Fuzzy controllers (FC) allow for a simpler, more human 
approach to control design and provide reasonable, effective 
alternative to classical controllers (for example, see [1]). Fuzzy 
systems are based on a logic approach, which enables us to 
translate qualitative knowledge about the problem into a 
reasoning system capable of performing approximate pattern 
matching and interpolation. But, in fuzzy logic based technology 
the generation of membership functions (MF) and fuzzy rules 
(FR) is a task mainly done by a human expert. Human expert also 
solves the task of refining (or tuning) of knowledge base. It 
means that fuzzy logic approach itself does not have adaptation 
and learning capabilities for self-constructing and tuning of MF's, 
and FR's. Fuzzy control system can be designed by using soft 
computing technology including Genetic Algorithms (GA) and 

Fuzzy Neural Networks (FNN) learning algorithms [1]. Main 
disadvantage of FNN-based approaches is that the FNN structure 
must be given a priori (i.e., the number and type of MF must be 
introduced by a user), but some times it is difficult to define 
optimal FNN structure manually. To avoid this disadvantage, we 
developed SCO as the new flexible tool for design of optimal 
structure and optimal knowledge base of a fuzzy system (for 
example, a FC) based on some measured or simulated data 
(“teaching patterns”) about the modeled system. Random 
trajectories of the chaotic behavior of control object are 
generated by the stochastic simulation with appropriate 
probability density function according to the solution of Fokker-
Planck-Kolmogorov equations. And with fuzzy simulation we 
study the individual peculiarities in the random dynamic behavior 
of control object through the definition of fitness function. 
Design of KB for robust fuzzy controller is based on the 
extraction of the value information about random dynamic 
behavior of control object using fitness function in stochastic and 
fuzzy simulation technologies. We demonstrate SCO tool’s 
efficiency and robustness for design of new types of self-
organizing intelligent control systems adapted to control of 
essentially nonlinear stable and unstable plants under different 
kinds of stochastic excitations.  
 

2. INFORMATION-THERMODYNAMIC BOUNDS IN 
DESIGN PROCESS OF INTELLIGENT CONTROL 

SYSTEMS 
  
Figure 1 shows the structure of self-organizing intelligent control 
system based on SCO which approximates measured or 
simulated data about the modeled system with desired accuracy 
(call it as a teaching signal -TS). SCO uses chain of GAs to solve 
optimization problems connected with the optimal choice of 
number of MFs, their shapes and parameters and with optimal 
choice of fuzzy rules. Information-thermodynamic approach to 
design of fitness functions in GAs is based on the analysis of 
dynamic behavior of control object and FC [2]. Principle of 
minimum of entropy production in control object and fuzzy PID-
controllers is the background for design of intelligent robust 
control. Robustness of control means that the minimum of initial 
information about uncertainty of external environments or 
structure’s disturbances of control object is required.  
Robustness criterion backgrounds. The problem of maximum 
of released work, i.e. 

,
max( )

iq u
W , where ,iq u are generalized 
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coordinate and control correspondingly, is equivalent to the 
associated problem of the minimum of entropy production, i.e. 

,
min( )

iq u
S [2,3]. For the general class of dynamic control systems, 

described by Hamilton-Jacobi-Bellman equations, the optimal 
solution of the variational fixed-end problem for the maximum 
work W is equivalent to the solution of variational fixed-end 
problem for the minimum entropy production [3]. Thus, the 
analytical formalism, which is strongly analogous to those in 
analytical mechanics and control theory, is effective in 
thermodynamic optimization too. Let us consider the dynamic 
control process described as follows: ( , , )iq q t uϕ= . According 
to generalized thermodynamic approach [2,4], we can choose 

Lyapunov function V for this process as 2 2

1

1 1
2 2

n
i

i
V q S

=
= +∑ , 

where S is entropy production of an open system described by iq . 

p cS S S= − , where pS is the entropy production of a plant 

(control object) and cS is the entropy production of controller 
(fuzzy PID-controller). 
 

 
Figure 1:  Structure of self-organizing robust intelligent control 

system based on SCO 
 

 
Figure 2: Flow chart of SC Optimizer 

 
 
After simple transformations (as in [2]) we have 

1
( , , ) ( )

n p c
i p c

i

dS dSdV q q t u S S
dt dt dt

ϕ
=

 
= + − −  

 
∑ . (1) 

The interrelation between Lyapunov stability (V) and robustness 
( min( )S S⋅ ) described by Eq.(1) is the general physical law for 
design of intelligent control systems [2,4,5]. We apply this law 

for design of smart KB of robust intelligent control systems 
based on SCO tools. Thus, SCO is the universal approximator, 
which extracts information from simulated (or measured) data 
about the modeled system. SCO guarantees the robustness of FC, 
i.e. successful control performance in wide range of plant’s 
parameters, reference signals, and external disturbances. 
Information bounds considered in [2] are described in Table 1.  
 

3. THE STRUCTURE OF SOFT COMPUTING 
OPTIMIZER 

 
Figure 2 shows the flow chart of SCO operations on macro level 
and combines several stages.  

 
Table 1: Types and the role of GA fitness function in SCO 

 

Type of GA Criteria Fitness Function The Role of 
FF 

( ) ( )

1

log( )

log

1 ( ( )) log ( ( )) max

i ii

i i

i i

j j j
X XX

j j
i i X i i X

N
j j
X i X i

t

H p p

p x x p x x

x t x t
N

µ µ

µ µ
=

= − =

 − = = =  

 − → ∑
 

GA_1: 
 
 

Linguistic 
Variables 

Optimization 

MAX of mutual 
information 

entropy 
 

AND 
 
 

MIN 
of  information 

amount 
in each signal 

( ),
,

1

1 ( ( )) ( ( ))

log ( ( )) ( ( )) min

j l
i k i X k Xi k

i k

i k

j l
iX X x x

N
j l
X i X k

t
j l
X i X k

H H x

x t x t
N

x t x t

µ µ

µ µ

µ µ

= =

=

 = = 
 

 = − ∗ 

 ∗ → 

∑
 

where *  denotes selected T-norm  
(Fuzzy AND) operation. 

Data 
compressing; 

 
Choice of 
optimal 

number of MF 
approximating 

TS 

GA_2: 
 

Rule Base 
Optimization 

MIN of total error 
(a difference between 

the FIS  and  TS 
outputs) 

minp

p
E E= →∑

, 

where 
2

1 21/ 2( ( , ,..., ))p pp p p
nE d F x x x= −  

Choice of 
optimal 

number of 
rules and MF 
parameters 

minp

p
E E= →∑

 

 
GA_3: 

 
Refine KB 

MIN of total error 
(a difference between 
FIS and  TS outputs) 

OR 
MAX of mutual 

information entropy 

 

max
i

j
XH →

 

Fine Tuning of 
MF parameters

 

 
Stage 1: Fuzzy Inference System (FIS) Selection. The user makes 
the selection of fuzzy inference model with the featuring of the 
following initial parameters: Number of input and output 
variables; Type of fuzzy inference model (Mamdani, Sugeno, 
Tsukamoto, etc.); Preliminary type of MFs. Stage 2: Create 
linguistic values. GA optimizes linguistic variable parameters, 
using the information obtained on Stage 1, and TS, obtained from 
the in-out tables, or from dynamic response of control object 
(real or simulated in Matlab). Stage 3: Rule base optimization. 
GA optimizes a rule base, using the fuzzy model obtained on 
Stage 1, optimal linguistic variable parameters, obtained on Stage 
2, and the same teaching signal as it was used on Stage 1. Stage 
4: Refine KB. On this stage, the structure of FNN is already 
specified and close to global optimum. In order to reach the 
optimal structure, two methods can be used. First method is 
based on the minimum error criteria and similar to classical 
derivative based optimization procedures (like error back 
propagation algorithm for FNN tuning), with combination of 
initial conditions for back propagation, obtained on previous 
optimization stages. Second method is based on the maximum of 
mutual information entropy criteria. The result of the Stage 4 is a 
specification of fuzzy inference structure, optimal for solution of 
a current problem. In order to have robust solution, Stage 4 can 
be bypassed, and the robust structure obtained with GAs of 
stages 2-3 can be used.  
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4.  MAIN SCO-OPERATIONS 
 
SCO uses GA approach to solve optimization problems 
connected with the optimal choice of number of MFs, their 
shapes and parameters and with optimal choice of fuzzy rules. 
GA's are known as a very computational expensive approach in 
optimization, since each chromosome created during genetic 
operations must be evaluated. For example, GA with population 
size of 100 chromosomes evolved 100 generations requires as a 
maximum 10000 calculations of the fitness function. Usually this 
number is smaller, since it is possible to add some routine which 
will trace the same chromosomes, and will not evolve them two 
times, but still the total number of calculations is much greater 
than number of evaluations required by some sophisticated 
classical optimization algorithm.  This computational expense is 
a payback for the robustness of FC obtained when GA is used. 
The great number of the evaluations gives the constraints on the 
practical applications of the GA. For example, if the evaluation 
function requires 10 minutes for calculation on the single 
processor, its evaluation with abovementioned GA will take 
10*10000 minutes, which is about 1600 hours, and this time 
grows exponentially with increasing of the complexity of the 
fitness function. This practical constraint on GA application, 
leads to developing of the simpler fitness functions, dividing the 
total goal of the algorithm (KB extraction of the chosen FIS) into 
several simpler problems. Therefore SCO uses chain of GAs to 
solve optimization problems connected with the following sub-
problems: (1) Define number and shape of MFs; (2) Select 
optimal rules; (3) Fix optimal rules structure; and (4) Refine the 
KB structure. Information-thermodynamic criteria from [2] as 
fitness functions of GAs in SCO are used and guarantee the 
robustness of intelligent control. In Table 1 types and the role of 
SCO-GA’s fitness functions (FF) are shown. 
 

5. SCO-APPLICATIONS EXAMPLES 
 
We compare the results of robust fuzzy control obtained with 
presented approach and with other soft computing based 
approaches. Consider unstable control object as a swing dynamic 
system. The nonlinear equations of motion of the swing dynamic 
system are:  
 

( )2

2 sin 0

12 cos ( )p l d l i l

l g
l l

l kl l g k e k e k e dt t
m

θ θ θ

θ θ ξ


+ + =


 + − − = ⋅ + ⋅ + ⋅ + ∫

 (2) 

 
Here ( )tξ  is the given stochastic excitation with an appropriate 
probability density function. Equations of entropy production are 

the following: 2 ;  2ldS dSl kl l
dt l dt

θ θ θ= ⋅ = ⋅ . The system, 

described by Eq.(2), represents a globally unstable (along a 
generalized coordinate l) dynamic system . 
 
Example:  Fuzzy Control of swing system with one PID-
controller. We study a control problem only for the second state 
variable of the swing system (the length l ). As a fitness function 
indicating the better control, we choose the minimum of the 
entropy production rate in the control object (plant) and minimum 
of the entropy production rate in the control system [2,4]. The 

final form of the fitness function of control in this case is as 
follows:  

( )
2;  

CP
p C

p l c
d

dSdSf S S
dt dt

dS dS dS dS k e
dt dt dt dt

θ

 = − ⋅ − 
 

= + =

;   (3) 

 
TS for the given control problem was obtained in [6]. The SCO 
application result of intelligent fuzzy control of the swing system 
is presented in Figure 3 in comparison with classical PID control 
and with fuzzy control, where KB was obtained by using FNN 
error back-propagation method [6]. Fitness functions in GAs of 
SCO are chosen from Table 1. Coefficient gains of fuzzy PID-
controller obtained with presented approach have more stable 
behavior comparing with coefficient gains obtained with FNN 
based approach (see Figure 4).  

 
 

Figure 3:  Result of intelligent control of swing system 
(controlled state variable) 

 

 
Figure 4: Behavior of the coefficient gains of fuzzy PID-

controller 
 
Example: Fuzzy Control of swing system with two PID-
controllers. Consider excited motion of the swing system under 
fuzzy control of two PID-controllers along θ  and l-axes using 
the following conditions. Let the system be disturbed by two 
different noises acting along θ  and l-axes. Excitation along θ -
axis is described by a Gaussian-like noise and excitation along l-
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axis is described by a Rayleigh-like noise.  Stochastic simulation 
of random excitations with appropriate probability density 
functions based on non-linear forming filters methodology in [7] 
is developed. The following swing parameters and initial 
conditions are considered: m = 1, k = 1 and [ 0θ = 0.25, 0l = 1.5] 

[ 0θ = 0, 0l = 0.01]. The reference signals are as follows: θ  = 
0.4; l = 3.5.   
Traditional FNN based approximation of TS. At this step we 
extract KB of FC by using supervised learning of FNN with error 
back propagation algorithm. For realization of this step we use 
AFM tools developed by STM [17].  
FNN based KB design process is described as follows: 
• Numbers of MFs for each input variables have to be chosen 
manually: 3; 
• Number of rules in KB: 3x3x3x3= 81 rules. 
Remark: For the given case, if we choose more than 3 MFs for 
each input variables, AFM error back propagation algorithm is 
failed. 
SC Optimizer based approximation of TS. FC KB design 
process by SC Optimizer is characterized as follows: 
• Optimal numbers (and their shapes) of MFs for each input 
variables is defined by GA2 : 9; 
• Complete number of fuzzy rules: 9x9x9x9 = 2331 rules; 
• Optimal KB is defined by GA2: 143 rules. 
Control quality and robustness comparison. Compare control 
quality and robustness property of SCOFC  obtained by SCO, 

FNNFC  obtained by traditional SC approach based on FNN-
tuning and classical PID Controller. Results of comparison are 
shown in Figure 5. Let us take SCOFC  and FNNFC  developed 
for the case above (see Figure 5) and use them in a new control 
situation. Let us consider the following new initial conditions [-
0.52 ( 30− ), 2.5] [0.01, 0] (reference signals and noises are the 
same as in Figure 5) and compare control performance of 

SCOFC (obtained by SCO), FNNFC  obtained by traditional SC-
approach based on FNN-tuning, and traditional PID Controllers 
with K = (8 6 8) for control along theta-axis and K = (7 6 7) for 
control along length-axis (see Figure 6).  
Remark. We take these K-gains as mean values of variable K-
gains obtained by SCO. 
Simulation results show that SCOFC  control is robust, 
and FNNFC  control is not robust when initial conditions are 
changed. Figure 7 shows the comparison of fitness function 
values which are estimated by Eq.(3) (generalized entropy 
characteristics of control) in the new control situation (see Figure 
6). From the simulation results in Figures 6 and 7 we can see that 
fuzzy PID-controller designed by SCO realizes effective control 
in comparison to FNN and traditional PID-controller where K-
gains have been chosen by help of SCO. But SCO Controller is 
more effective than traditional PID Controller because it 
produces much smaller entropy than PID Controller (see Figure 
8).  
 
Consider another control conditions (control situation 2): (1) 
initial conditions [-0.52 ( 30− ), 2.5] [0.01, 0]; (2) new reference 
signals:θ  = 0.78 ( 045 ); l  = 5; (3) new noises amplitudes: noise 
along θ is a Gaussian-like noise with max amplitude A = 1.5; 
and noise along length l is a Rayleigh-like noise with max 
amplitude A = 1.5. 

 
Figure 5: Comparison of control quality obtained by SCO, FNN 

and traditional l PID controller 
 

 
Figure 6: Control quality comparison of SCOFC , FNNFC  and 

traditional PID controller in the new control situation. 
 

 
Figure 7:  Fitness Function amount comparison of SCOFC , 

FNNFC  and traditional PID controller in a new control situation  
 
 
In this case max amplitudes of noises are 2 and 6 times smaller 
than in the case of KB design with the TS in Figure 5. Compare 
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control performance of SCOFC (obtained by SCO) and FNNFC  
(obtained by traditional SC-approach based on FNN-tuning) (see 
Figure 9). 

 
Figure 8: Plant and controller entropy production under SCOFC , 

FNNFC  and traditional PID controller in new control situation  
 
Simulation results show that SCOFC  control is robust, 

and FNNFC  control is failed (unstable), i.e. it is not robust when 
initial conditions and reference signals are changed and 
disturbance amplitudes are much smaller. Figure 10 shows the 
comparison of fitness function values which are estimated by 
Eq.(3) (generalized entropy characteristics of control) in the 
control situation 2. The simulation results in Figures 9 and 10 
show that fuzzy PID-controller designed by SCO realizes 
effective control in comparison to FNN and traditional PID-
controller.  

 
Figure 9: Control quality comparison of SCOFC , FNNFC  and 

a traditional PID controller in control situation 2 
 
Example: Intelligent control of semi-active automotive 
suspension system. We have applied this tool also to design 
intelligent control systems in practical areas such as intelligent 
control of semi-active vehicle suspension system. Perspective 
interrelations between SCO and quantum computing technologies 
of robust controller design are considered in [8]. Design 

methodology of a fuzzy controller for a semi-active suspension 
system using genetic algorithms that optimizes only the 
membership functions [9] was begun originally by Karr. 
Hashiyama et al. expanded the function of genetic algorithms to 
find control rules [10][11], and the algorithms they developed 
were based on skyhook control of Karnopp [12] with some 
original additions.  
Hagiwara et al. [13] presented an idea for a method to create a 
knowledge base that is completely self-organized according to 
only fitness functions without any other predefined rule base [13], 
and an idea for an effective knowledge base creation method [6]. 
In this report we expand an idea by applying SC optimizer for 
KB design and refinement.  
In order to make it possible to represent non-linear movement, 
four local coordinates for each suspension and three for the 
vehicle body, totaling 19 local coordinates are considered to form 
a mathematical vehicle model (see Figure 11). Equations of 
motion are derived by Lagrange’s approach [13][14]. 

 
Figure 10: Fitness Function comparison of SCOFC  and a 

traditional PID controller in control situation 2 
 
Optimization of intelligent control of shock absorber based on 
soft computing technology (FNN approach) is developed in [14], 
[15] and [16]. 
Principal parameters of the test vehicle are presented in [13]. As 
a fitness function for SCO in this example we choose the 
minimum of the low frequency (less than 2Hz) components of 
heave, pitch and of roll movements of the car body. Experimental 
results presented in the Figure 12 demonstrate better reduction of 
the selected low frequency components of the vehicle movements 
under actual control conditions when suspension system is 
controlled by fuzzy controller prepared by SCO 
 
 

 
Figure 11:  Mathematical vehicle model 
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Figure 12: Experimental results of fuzzy control of semi-active 

suspension system 
 

6. CONCLUSIONS 
 
With SCO tool, using a GA-based randomized search of optimal 
robust control, we have modeled different versions of robust 
KB’s of FC, which allow us to control essentially non-linear 
stable and, especially, unstable dynamic systems in the presence 
of uncertainty information about external excitations and in the 
presence of changing reference signals. The robustness of control 
laws is achieved by the introduction of vector GA-fitness 
functions, one of which contains physical principle of minimum 
entropy production rate as in a control object and in a control 
system. Such approach allows us: (1) to design optimal 
intelligent control system with maximal level of reliability and 
controllability for complex dynamic systems in the presence of 
uncertainty in initial information [4]; (2) to decrease the number 
of sensors as in a control circuit channel and in a measuring 
system without loss of accuracy and quality of control [5]. The 
robust intelligent control system designed on the basis of such 
approach needs the minimum of initial information as about the 
behavior of controlled object and about external random 
excitations. Experimental results of effective fuzzy intelligent 
control of automotive semi-active suspension system based on 
SCO application are demonstrated. SCO tools are the background 
of a new high informational design technology of smart robust 
control systems. 
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