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ABSTRACT

Although there are a variety of heuristics developed
and applied to the variants of the binary knapsack
problem, the testing of these heuristics are based
on poorly defined test problems. This paper re-
views the various types of knapsack problems, con-
siders how test problems have been generated and
depicts via empirical results the implications of us-
ing poorly formed test problems for empirical test-
ing.

Keywords: knapsack problems, problem genera-
tion, multiple dimensional knapsack

1 INTRODUCTION

A variety of heuristic approaches have been devised
for the knapsack problem (KP) and its variants.
These approaches are generally empirically exam-
ined using test problems. The focus of this paper
is on the type of test problems used, how they are
generated, with emphasis on the test problem char-
acteristics embedded across the range of test prob-
lems available. We demonstrate the implications
of ill-devised test problems using multidimensional
knapsack problems.

The organization of this paper is as follows.
Section 2 gives a brief overview of KP and its vari-
ants and summarizes the empirical studies involv-
ing the variants of KP. Section 3 presents the re-
sults of a constraint coefficient analysis of the stan-
dard test problem sets. Section 4 provides the re-
sults of an empirical study explicitly demonstrating
the implications of ill-devised test problems. Paper
summary and concluding remarks are provided in
section 5.

2 BACKGROUND

The KP is a non-trivial binary integer program-
ming problem with a single constraint. While use-
ful in its own right, industrial applications find the
need for satisfying additional constraints such as
urgency of requests, priority and time windows of
the requests, and packaging with different weight
and volume requirements, or the filling of multiple
container types. These lead to variants and ex-
tensions of knapsack problems we examine: Multi-
Dimensional Knapsack Problems (MDKP), Mul-
tiple Knapsack Problem (MKP), Multiple Choice
Knapsack Problems (MCKP), Multiple-choice Mul-
tidimensional Knapsack Problems (MMKP).

2.1 The Multi-Dimensional Knapsack
Problems (MDKP)

A set of n items are packed in m knapsacks with
capacities ci. Each item j has a profit pj and weight
wij associated with placing that item into knapsack
i. The objective of the problem is to maximize
the total profit of the selected items. The MDKP
problem is formulated as:
Maximize,

Z =
n∑

j=1

pjxj (1)

subject to,

n∑
j=1

wijxj ≤ ci, i = 1, ...m (2)

xj ∈ {0, 1}, j = 1, ...n (3)

Equation (1) calculates the total profit of se-
lecting item j and equation (2) ensures each knap-
sack constraint is satisfied. Equation (3) is the bi-
nary selection requirement.
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2.2 The Multiple Knapsack Problems
(MKP)

Given n items, we seek to pack m knapsacks with
capacities ci, i = {1, ...,m}. Each item j has a
profit pj and weight wj . The problem is to select
i ∈ m disjoint subsets of items, such that subset i
fits into the capacity ci of knapsack i. The objective
is to maximize the total profit of the selected items
placed in the knapsacks. The MKP is formulated
as:

Maximize,

Z =
m∑

i=1

n∑
j=1

pjxij (4)

subject to,

n∑
j=1

wjxij ≤ ci, i = 1, ...,m (5)

m∑
i=1

xij ≤ 1, j = 1, ..., n (6)

xij ∈ {0, 1}, forall i, j (7)

Equation (4) provides the total profit of as-
signing item j to knapsack i (xij = 1). Equation (5)
ensures each knapsack constraint is satisfied while
equation (6) ensures each item is assigned to at
most one knapsack.

2.3 The Multiple Choice Knapsack Prob-
lems (MCKP)

The MCKP adds disjoint multiple-choice con-
straints [19]. Given m mutually disjoint classes
(N1, ..., Nm) of items, pack representative items
from these disjoint classes into a single knapsack
of capacity c. Each item j ∈ Ni has a profit pij

and a weight wij . The objective of the problem is
to maximize the profit of a feasible solution. The
MCKP problem is formulated as:

Maximize,

Z =
m∑

i=1

∑
j∈Ni

pijxij (8)

subject to,
m∑

i=1

∑
j∈Ni

wijxij ≤ c, (9)

∑
j∈Ni

xij = 1, i ∈ {1, ...m} (10)

xij ∈ {0, 1}, i ∈ {1, ...m}, j ∈ Ni

(11)

Equation (8) calculates the profit of an assign-
ment of items, a value to be maximized. Equa-
tion (9) ensures the single knapsack capacity is not
exceeded while equation (10) ensures selection of a
single item from each of the m disjoint subsets of
items.

2.4 Multiple-choice Multi-dimensional
Knapsack Problems (MMKP)

The MMKP considers m classes of items, where
each class has ni items. Each item j of class i has
profit value pij , and requires resources given by
the weight vector wij = (wij1, wij2, ..., wijl). The
amount of available resources are given by a vector
c = (c1, c2, ..., cl). The MMKP selects an item from
each class and is formulated as:
Maximize,

Z =
m∑

i=1

ni∑
j=1

pijxij (12)

subject to,
m∑

i=1

ni∑
j=1

wijkxij ≤ ck, k ∈ {1, ...l} (13)

ni∑
j=1

xij = 1, i ∈ {1, ...m} (14)

xij ∈ {0, 1},i ∈ {1, ...m}, j ∈ {1, ...ni}
(15)

Equation (12) provides the profit of select-
ing an item from every class, a value to be maxi-
mized. Equation (13) ensures the resource capacity
of knapsack k is not exceeded while equation (14)
ensures selecting a single item from each of the i
classes.

2.5 Empirical Studies Involving Variants of
Knapsack Problems

Researchers have developed heuristic algorithms to
solve the KP and its variants. In [11], [14], and [17]
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branch and bound approaches are used to solve the
MKP. The test problems generated in [11] and [14]
were similar in structure with randomly generated
profit and weight values. In [17] different types of
test problem instances were obtained by varying the
range of the distribution used for the coefficients.

Both [19] and [2] developed branch and bound
algorithms to solve the MCKP while [16] solved the
MCKP using dynamic programming. Both [19] and
[6] randomly generate test problems by indepen-
dently drawing the profit and weight values from
a uniform distribution and explicitly avoiding the
repetition of profit and weight values within the
multiple-choice set. Similar to his work on MKP in
[17], [16] generated the test problem instances by
varying the distribution used for the coefficients.

Moser et al. [15] developed a heuristic al-
gorithm using Lagrange multipliers to solve the
MMKP. Akbar et al. [1] present two heuristic
algorithms for solving the MMKP. Their initial
heuristic (M-HEU), uses both improving and non-
improving item selections. Extending M-HEU to an
incremental method yields I-HEU when the num-
ber of classes in the MMKP is large. Khan et al.
[12] develop a heuristic approach (HEU) that uses
the concept of an aggregate resource for selecting
items for the knapsack. They improve the solution
using an item exchange approach. Moser et al. [15]
generated their test sets by considering MDKP with
profits and weights generated from a uniform distri-
bution and divided among non-empty classes. They
varied the number of classes and knapsacks. Both
[1] and [12] randomly generated their test problems
from a uniform distribution by varying the number
of classes, items, and knapsacks.

Figures 1, 2, and 3 respectively summarize the
design of various studies of the MKP, MCKP, and
MMKP heuristics involving test problem genera-
tion. The Factors column is used to indicate the
factors considered while generating the test prob-
lems and the Measures column indicates the perfor-
mance measures used to compare the performance
of the developed heuristics with other heuristics.
These figures follow the format employed in Hill
and Reilly [9] in their MDKP study.

Interestingly few of the studies cited in Fig-
ures 1-3 examine correlation structure within the
test problems. This means any relationship among
test problem coefficient sets is due to sampling er-
ror. As problems get larger, and seemingly more
difficult, the correlation values converge to inde-
pendence (which is generally an easier type of prob-

Figure 1. Factors and Measures used in Empirical
Analysis of the MKP Heuristics

Figure 2. Factors and Measures used in Empirical
Analysis of the MCKP Heuristics

lem). When correlation is considered, the correla-
tion ranges induced are not representative of the
entire range of problem structure instances.

3 TEST PROBLEM CHARACTERIS-
TICS

Problem generation approaches should systemati-
cally or randomly vary problem attributes. These
attributes should include the number of variables,
number of constraints, marginal distributions of ob-
jective and constraint coefficients, method of set-
ting right-hand side values, correlation structure
between the objective and every constraint, cor-
relation structure between constraint coefficients,
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Figure 3. Factors and Measures used in Empirical
Analysis of the MMKP Heuristics

slackness ratios [8].
Test problems used for empirical examination

of heuristic algorithms are either from libraries of
standard problems or are synthetically generated.
The standard test problem sets available at [3]
lack sufficient diversity particularly in the correla-
tion structure and the constraint slackness settings.
Using test problems that provide an insufficient
breadth of diversity leads to questionable heuristic
performance generalization, particularly since the
structure of industrial problems are ill-defined [4].

3.1 Problem Structure Analysis of Test
Problems

3.1.1 Structure of MDKP Test Problems

On his website, Beasley [3] provides a set of 48
test problems for the MDKP extracted from the lit-
erature. Correlation values between the objective
function and the constraint coefficients and the in-
terconstraint correlation are calculated and plotted
in Figures 4 and 5, respectively, for each of the 48
problems. The range of problem structure is very
limited. Such limited range of problem instances
lead to tenuous claims of general heuristic perfor-
mance [8]. Further, the constraints have similar
ratios of coefficients to right-hand side values.

3.1.2 Structure of MMKP Test Problems

Khan et al. [12] provide standard test problems
available at [7]. The data available for each of

Figure 4. Range of Correlation Values Between
Objective Function and Constraint Coefficients for
MDKP Standard Test Problems

Figure 5. Range of Correlation Values Between
Constraint Coefficients for MDKP Standard Test
Problems

the test problem instances include the number of
resources, number of classes, number of items in
each of the classes, number of constraints, resource
capacities, solution values by exact, [15] and [12]
heuristic approaches. Figures 6 and 7 plot the anal-
ysis of the test problems.

There are 13 test problems provided by [12]
in 13 files from I01 to I13. Figure 6 displays the
range of objective function to constraint coefficient
values for the 13 test problems. The values are
all positive, ignoring negative correlations and the
range decreases as problem size increases; not good
coverage of the range of correlation structures.

Figure 7 shows the range of interconstraint co-
efficient values for the same 13 test problems. Once
again the range of values is not large in fact the val-
ues are mostly the same for each problem.
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Figure 6. Range of Correlation Values Between
Objective Function and Constraint Coefficients for
MMKP Standard Test Problems

Figure 7. Range of Correlation Values Between
Constraint Coefficients for MMKP Standard Test
Problems

4 IMPLICATIONS OF POOR TEST
PROBLEM SETS

Hooker [10] and Rardin and Uzsoy [18] are essential
reads for anyone considering a heuristic empirical
study. Test sets serve two purposes. One purpose is
to promote heuristic performance insight. Test sets
for insight should adhere to the principles provided
in [18]. However, as our research shows, current
problem sets lack the range of characteristics called
for by an experimental design; this means insights
gleaned may be lacking.

The second purpose of test sets are for com-
petitive testing. Since we generally lack knowl-
edge of the general structure of actual problems,
we want competitive test problems to be random
and sufficiently cover the full range of problem in-
stances. Few such problem sets exist; the exception
is [5]. The problem set in [5] generates 9 prob-
lem sets of 30 problems each for each combina-
tion of 50, 100, and 250 decision variables and 5,

Table 1. Comparing Heuristic Performance Against
Standard and New Problems Using Percentage
from Optimal

Standard New
Problem Problem

File Toy Koch Set Size Toy Koch
mknapcb1 2.81 0.97 50-5 4.27 2.22
mknapcb2 2.09 0.44 100-5 5.51 1.77
mknapcb3 1.47 0.21 250-5 5.84 0.89
mknapcb4 3.89 1.81 50-10 6.55 3.40
mknapcb5 2.71 0.81 100-10 7.57 2.66
mknapcb6 1.91 0.32 250-10 10.46 2.45
mknapcb7 4.87 2.25 50-25 9.15 6.84
mknapcb8 3.74 1.39 100-25 10.52 5.75
mknapcb9 3.46 1.14 250-50 13.24 5.02

10, and 25 problem constraints. Each constraint
slackness ratio is randomly drawn from the con-
tinuous range [0.20, 0.80]. Each objective function
coefficient set to constraint coefficient set correla-
tion value is randomly drawn from the continu-
ous range [−0.90, 0.90], with inter-constraint coeffi-
cient set correlations set to ensure feasibility. Using
randomly determined coefficient distribution func-
tions, the random sample of problem coefficients
is generated to attain the target (random) correla-
tion structure. This final test set represents a truly
random, sufficiently broad set of test problems ap-
propriate for competitive testing.

Two well established MDKP heuristics are
given in [20] (Toy) and [13] (Koch). These are
generally “better” performing heuristics. Table 1
depicts their performance on both the current stan-
dard MDKP problems and the new problems from
[5]. Note the consistent performance against the
standard problems but increasingly degraded per-
formance as problem size increases against the new
problems. This result has not been previously ob-
served, begs the question of why does this occur,
leads to research to overcome this behavior, and
questions the generality of heuristic performance to
real-world instances.

5 CONCLUSIONS

This paper reviews the various types of KP vari-
ants specifically examining the structure of the test
problems employed during empirical testing. Our
findings indicate these problems are not particu-
larly broad in range. The problem with an insuffi-
cient set of problems was demonstrated using two
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well-established MDKP heuristics against a stan-
dard problem set and a newly generated robust set
of problems. Our results demonstrate our concern
regarding current empirical testing results. Future
work will extend our problem generation methods
and heuristic performance insight experimentation
to the range of KP variants.
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