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ABSTRACT 
 

Fibre channel storage area networks (SAN) are widely 

implemented in production data center environments. Recently 

the storage industry has moved towards deployment of 

distributed SANs (DSAN), geographically dispersed across 

large physical distances. In a DSAN, specialized gateway 

devices interconnect the individual Fibre Channel (FC) fabrics 

over IP networks using TCP/IP based protocols (iFCP or FCIP) 

or over metro to long distance optical networks such as Dense 

Wavelength Division Multiplexing (DWDM) based networks 

that utilize native FC ports supporting large numbers of link 

credits. When using TCP/IP based storage networking protocols 

to interconnect local FC fabrics in a DSAN, the sustained 

throughput achievable depends upon the link characteristics and 

TCP/IP stack implementation. Sustaining maximum possible 

storage traffic throughput across the wide area network enables 

practical DSAN deployments by maintaining the required site to 

site service level agreements. 

This study explores the effects of several TCP/IP 

modifications on sustained traffic throughput for a DSAN 

interconnected via iFCP gateways across an impaired network. 

The TCP/IP stack modifications, known as storage friendly, 

include changes to the window scaling, congestion avoidance, 

and fast recovery algorithms. The theoretical background and 

experimental results are presented to explain and illustrate these 

modifications. 

 

Keywords: TCP, Congestion, Packet Loss, Storage, Fibre 

Channel 

 

 

1. INTRODUCTION 
 

Fibre Channel Storage Area Networks (FC SANs) have a 

maximum link length of about 100 miles because of the 

limitations of the optical signaling electronics. Long distances 

require use of expensive long wavelength lasers and single mode 

fibers. Most FC SANs use less expensive short wavelength 

lasers and have maximum link length of 100 to 300 meters. 

Greater distances are achievable through the use of repeaters or 

alternative signaling techniques such as wave division 

multiplexing. The use of repeaters to extend range has not been 

widely accepted by the industry due a number of reasons [1]. 

Dense Wavelength Division Multiplexing (DWDM) technology 

over dedicated fibre optic link(s) is often deployed to directly 

extend FC SANs across metropolitan distances using FC 

equipment with sufficient buffer-to-buffer (BB) credits to 

maintain transfer rate. The DWDM technology over long 

distance (across continental USA) tends to be economically 

infeasible due to cost of dedicated fibre optic link(s).  

 

 
 

Figure 1. Distributed storage area network 
 

The new approach to extend the range of FC SANs 

economically is by using non-dedicated links between servers 

and storages with the non-dedicated links constructed using 

existing internet infrastructure with FC-to-IP gateways leading 

to distributed SAN (DSAN). An IP based solution has the 

advantage of running over a wide variety of network 

infrastructures though commodity networking equipment. 

DSANs optimize and ease deployment for a variety of extended 

data center functions including data replication, business 

continuance, centralized storage access, remote device sharing, 

and distribution of storage resources. Figure 1 shows an example 

of a DSAN deployment in which three local SAN’s spread 

across continental distances are connected across the internet via 

gateway devices.  

A server connected to the client through a local area 

network is shown in New York. The server may host enterprise 

applications like Microsoft Exchange server, SQL server, and 

Oracle Database which require large storage access. The large 

storage at Los Angles could be used by the server on real time 

basis where as the storage at Austin could be for 

replication/backup [2]. The gateway device attached to each of 

these SANs allows its local devices to communicate with remote 

devices from the other SANs. The gateway acts as a proxy on 

the local SAN for the remote devices. It converts the FC 

protocol traffic from the device into IP storage protocol traffic. 

The IP traffic is sent across the internet to the remote gateway 

where it is converted back into FC. The storage industry has 

created several TCP/IP based protocols to take advantage of IP 

infrastructure. These are iSCSI, iFCP, and FCIP. The iSCSI 

protocol primarily provides direct device interconnect, while 

iFCP and FCIP primarily provide distance connections to 

existing FC devices and FC SANs.  

FCIP is a tunneling protocol which connects one or 

more SAN islands and integrates them into a single SAN entity 

[3]. In the example the FC switches and devices from Austin, 

New York, and Los Angeles form a single extended high latency 
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fabric. Switch to switch communication traffic must be 

converted and sent across the internet just like device to device 

storage traffic. 

 iFCP is an individual device proxy protocol which 

maintains individual SAN islands as separate entities. In the 

example each city would have an individual FC SAN. The 

switch to switch traffic in the Austin SAN would not be sent to 

New York or Los Angles. The iFCP gateway presents itself as 

an edge switch on the local SAN. Remote devices appear to the 

local fabric as though they are attached to the gateway. 

A DSAN is typically used for replication or backup 

purposes which require sustained bulk data transfer between end 

devices. The parameter selected to measure the performance of 

DSAN is the throughput across the internet link. Since FC-to-IP 

involves encapsulating FCP data into an IP packet, the TCP 

implementation play a significant role on the performance of a 

DSAN. The TCP implementation is housed in the gateways in 

Figure 1. The links between the gateways are typically operated 

at OC3 speeds although only a significant minority of 

deployments actually utilizes the full Gigabit-Ethernet speed. 

Even though most deployed links do not experience sustained 

high packet loss rates, the storage traffic has to maintain 

throughput when packet losses do occur or during transient 

problems. The maximum distance and possible throughput 

depends primarily upon the internet packet loss and latency; 

gateway’s buffering and TCP/IP stack implementation. The 

effect of latency and packet loss on performance is dependent on 

the TCP congestion control techniques, window scale options, 

error detection and recovery techniques. The internet packet loss 

on an average across continental US is 16% with an average 

delay of 67 msecs [http://www.internettrafficreport.com] 

indicating multiple packet loss. The internet link between the 

FCtoIP gateways may also consist of wireless sections leading 

to higher packet loss rate (in excess of 25%). Since, DSAN 

implementation is achieved by leasing inter continental high 

speed links (OC3) from service providers, in this investigation, 

the effect of wireless links is not considered. The authors 

recognize the existence of vast literature discussing the packet 

loss issue in wireless networks.   At present, majority of bulk 

transfer operations are performed at enterprise data centers 

implemented on FC SAN constituting mainframes and high end 

servers. Even though iSCSI is becoming popular in small data 

centers due to low infrastructure costs and low incompatibility 

issues, it has not been widely implemented at enterprise data 

centers. Hence, the modifications to TCP/IP stack in iFCP, to 

improve the throughput during bulk transfer with large latency 

and packet loss is the focus of this investigation. Also, it should 

be noted that the modifications to the TCP/IP stack investigated 

can be applied to FCIP and iSCSI with minimal additional work.    

This paper first presents a theoretical study of the 

effects of some of the modifications of the TCP/IP stack 

implementation known as storage friendly TCP/IP on high rate, 

long latency sustained bulk storage traffic performance. Next, 

the performance due to the modifications is demonstrated by 

experimental results obtained using iFCP gateway’s with the 

modified TCP/IP stack. 

 

 

2. RELATED WORK 
 

A large body of literature exists regarding modification to 

TCP/IP stack to improve the performance under packet loss and 

congestion scenarios. But, the literature is very sparse with 

regard to modifications to TCP/IP stack in high latency links in 

particular with distributed storage area networks. Hence a few 

investigations related to this investigation are discussed. The 

investigations [4, 5, 6, 7, 8 and 9] discuss improving the 

performance by modifying the TCP/IP stack either under 

congestion conditions or large latency. The investigation [4] 

discusses a delay based approach to eliminate the congestion 

control problem associated with the binary nature of congestion 

control. The investigation [5] discusses enhancing the IP routing 

capability by combining the congestion control with routing 

scheme. In the third investigation [6], the modifications to 

improve performance when packet reordering occurs due to 

route fluttering and retransmissions are discussed. A number of 

algorithms have been proposed in this investigation. The fourth 

investigation [7] deals with hybrid networks consisting of 

terrestrial and wireless links. This investigation deals with 

improving the performance over the wireless links by TCP 

splitting. The common thread of all of the above investigations 

is that the links have low to medium latency and the desired data 

transfer rates are in the range 10 to 100 Mbps. As mentioned 

previously, DSANs experience large latency (>100 ms) at data 

transfer rates of 1 to 4 Gbps. Also, the investigations in cited 

literature have demonstrated the improvement by theoretical 

analysis in most cases with simulations in a few [8, and 9]. In 

this investigation, we not only show the improvement through 

theoretical analysis but also through experimental results by 

implementing the modified TCP/IP stack on iFCP gateways. 

 

 

3. iFCP 

  
A DSAN based on iFCP is shown in Figure 2. In this figure, 

local FC devices attach directly to F_Ports on the gateways. 

Only device-to-device storage traffic is allowed to pass through 

the gateways creating SAN islands. For example if one of the 

gateway’s ports in the diagram were instead an E_Port attached 

to a local switch, such a switch would not be allowed to 

communicate through the gateway, but storage traffic passing 

through the switch destined for a remote device would be 

forwarded across the IP network. This behavior ensures that any 

disruptive behavior within a local SAN is contained improving 

DSAN stability. The remote devices are addressed in two modes 

in iFCP: transparent or translated. Transparent addressing in 

iFCP is rarely used in practice and so will not be addressed in 

this paper.  

 
Figure 2. iFCP based DSAN [11, 12] 
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The iFCP address translation is analogous to IP 

network address translation, where an iFCP gateway presents 

remote devices as though they are directly attached to the 

gateway. The gateway appears as an FC switch to the local 

fabric. The iFCP gateway assigns local 24-bit FC IDs known as 

the proxy address to the remote device N_Ports [1, 12]. In 

addition iFCP always assigns an iFCP specific FC ID to the 

device and uses this ID to distinguish device and its traffic 

within a group of gateways. iFCP gateways perform address 

conversion when they convert from FC protocol to iFCP 

protocol. 

An iFCP gateway communicates across an IP network 

using an assigned IP address and TCP/IP connections. The 

gateway opens a separate TCP/IP connection for each local FC 

device to remote FC device session created. Each of these 

sessions uses the gateway IP address and the iFCP FC IDs 

assigned by the gateways to keep track of the TCP connections 

and storage traffic. This enables communication between any 

pair of FC devices over the IP network. Since each device pair 

communication session has a TCP connection, an iFCP frame is 

routed to its destination using standard IP infrastructure and the 

gateway performs congestion control, error detection and 

recovery through TCP. The iFCP gateways maintain a lookup 

table [12] containing actual remote N_Port addresses, proxy 

N_Port addresses and IP addresses. On receipt of an FC frame 

destined for a remote device, the iFCP gateway translates the 

local source device’s FC address into an iFCP address, translates 

the remote device’s proxy FC address into an iFCP address, 

encapsulates the FC frame in an iFCP header, determines which 

TCP/IP connection belongs to that FC session, and transmits the 

encapsulated frame on the TCP/IP connection. The IP header in 

the iFCP frame will have its destination address set to the 

destination iFCP gateway IP address. When the iFCP gateway 

receives a TCP segment, the gateway determines if it can 

complete the construction of an encapsulated FC frame for that 

connection. If it can, the iFCP gateway translates the destination 

iFCP address into the destination device’s local FC address and 

the source iFCP address into the remote devices proxy address. 

It then forwards the FC frame into the local SAN. 

Translation of addresses improves scaling and 

configuration of DSANs. Since remote devices are imported as 

individual devices independent of their actual local FC SAN 

attachment or addressing, multiple remote devices can have the 

same FC addresses on their individual remote SANs and yet still 

be uniquely accessible  from a the local SAN through their 

proxy addressed. 

 

 

4. STORAGE FRIENDLY TCP/IP 

 
The storage friendly TCP/IP is a group comprising a number of 

modifications to the TCP/IP stack designed to increase data 

transfer rate with packet loss and large latency. The major 

modifications implemented were TCP Window Scaling, fast 

retransmit/recovery, reorder resistance, and selective 

acknowledgement scheme. Due to page limitations, the 

modifications of storage friendly TCP/IP that will be discussed 

in this paper are the automatic TCP window scaling, and the 

modified fast retransmit/recovery algorithm. 

  

Slow Start and TCP Window Scaling 
The TCP connection carrying iFCP traffic typically runs across 

a long fat network (LFN) [13, 14] with a large capacity. The 

capacity of LFNs is expressed mathematically as the product of 

bandwidth (BW) and round-trip time (RTT) as shown in (1). 

 

Capacity (bytes) = BW (bytes/sec) x RTT (sec)          (1) 

 

This capacity, often called the bandwidth delay 

product, represents how much data the link or pipe can hold at a 

given time. To achieve maximum throughput for a given 

latency, the sender must transmit data at the capacity of the pipe. 

When this is achieved it is known as the ideal steady state of the 

connection. For TCP/IP the maximum amount of data that can 

be transmitted by a sender without waiting for an 

acknowledgement from the receiver is dependent on the 

advertised TCP receive window (TCP receive buffer). The 

initial value for this window and its scale value are determined 

during connection establishment [15].  

As shown in Figure 2, an iFCP TCP connection can 

cross an arbitrary IP network. This network can include multiple 

sub-networks with potentially slow links or congestion. If the 

sender starts off by immediately injecting multiple TCP 

segments (packets) up to the TCP window size advertised by the 

receiver this can lead to drastic reduction of throughput [13] due 

to packet loss in slow routers and links along the network path 

followed by the iFCP connection. In order to reach the ideal 

steady state without drastic reduction in throughput, TCP uses 

an algorithm known as slow start [13, 15]. The slow start 

algorithm states that the rate at which new packets should be 

injected into the network is the same as the rate at which the 

packets are acknowledged. This leads to exponential growth of 

the amount of data that the sender is allowed to transmit. The 

sender’s TCP implementation tracks this amount per connection 

with another window known as congestion window (cwnd). 

During the connection setup process, the cwnd is initialized to 

one segment. The slow start algorithm increases this cwnd by 

one segment each time an acknowledgement (ACK) is received. 

The sender can now transmit up to the minimum of the current 

cwnd and the advertised TCP receive window.  

In Figure 3, the interactions between the sender and 

receiver at discrete time steps to transfer certain amount of data 

using the slow start algorithm is shown. For illustration 

purposes, assume that one time unit is needed to transmit one 

segment and also assume that the receivers advertised window is 

large enough that it is not a limit for the example. 

At time 0, the sender’s cwnd is 1 segment and the 

sender transmits a single segment D1. D1 travels to the receiver 

at time steps 1 and 2. At time 3 the receiver gets D1 and 

acknowledges it with transmission A1 at time 4. A1 travels back 

to the sender at times 5 and 6 (not shown). At time 7, the sender 

gets A1, increases the cwnd to 2 segments, and notes that the 

RTT is 8 time units. At time 8, the sender transmits D2 and then 

at time 9 transmit D3 since the sender is allowed to transmit 2 

segments by the current cwnd. These then travel to and are 

acknowledged by the receiver such that by time 16 the sender 

has a cwnd of four and can transmit D4, D5, D6, and D7 into the 

network. At times 23, 24, 25, and 26 the sender increases the 

cwnd by 1 and transmits another segment with a cwnd of 8 with 

4 segments already transmitted (D8, D9, D10, and D11) at time 

27. The sender can then send 4 additional segments D12, D13, 

D14, and D15 without violating the cwnd value before A8 is 

received at time 31. It can be seen that by time 31, the number of 

segments entering the pipe is equal to the number of ACKs 

returning indicating the ideal steady state of the connection. At 

this time, the cwnd equals or exceeds the advertised TCP receive 

window or capacity of the network, causing the data flow to be 

limited. The term ideal here represents a condition where there 

are no packet losses. 
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Figure 3. Slow start with bulk data transfer [13] 
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Figure 4. Continuous data flow with slow start 

 
 The continuous time data flow due to the slow start 

algorithm and the advertised TCP receive is shown in Figure 4. 

The exponential increase represents the slow start, and the 

constant part represents the pipe reaching the ideal steady state. 

The ideal steady state value depends on the capacity of the pipe 

and the advertised TCP receive window size.  If the advertised 

TCP receive window size is less than the capacity of the pipe, 

the throughput achieved will be less than the bandwidth of the 

pipe. The standard TCP implementation [16] allows a receiver to 

advertise a maximum of 64 KB TCP window due to the use of 

only 16-bits in the TCP header for this purpose.   

Typically, iFCP runs through networks formed by 

interconnection of local area networks (LANs) using high speed 

backBone networks operating at data rates in excess  of 1 Gbps 

(125 MB/s) and possibly experiencing round-trip time in excess 

of 100 msecs[10]. To achieve maximum throughput on this kind 

of LFN, the advertised TCP window has to be significantly 

higher than the maximum 64 KB possible in the standard TCP. 

In this work, the TCP implementation at the receiver has been 

modified to implement TCP window scaling option [17, 18]. 

The TCP window scaling option involves increasing the size of 

the window covered with the 16-bit TCP header window value 

by applying a 1 byte scale factor to the value. The scale factor 

indicates by how many bit positions the 16-bit TCP window 

value in the TCP header has to be left shifted to obtain the real 

advertised window size. The scale factor is sent as an option 

parameter in the TCP header during connection establishment. 

Using the scale factor [13] the theoretical maximum advertised 

window size has been increased from 64KB to 64KB x 214.  The 

received scaling factor is stored at the iFCP gateways. The iFCP 

gateway implementation used for the tests in this paper always 

negotiates a scale factor of 10 for its iFCP TCP connections 

giving 1 KB per count in TCP header window size field. 

 

Modified Fast Retransmit/Recovery Algorithm 
A congestion avoidance algorithm to handle packet losses is an 

integral part of standard TCP implementation [16]. The 

implementation details and analysis of the congestion avoidance 

algorithm has been discussed extensively in various literatures 

[13, 14, and 19]. If a packet loss is detected due to the expiration 

of the retransmission timer, half of the current cwnd is stored in 

the slow start threshold (ssthresh), the cwnd is reinitialized to 

one segment, and transmission resumes (using slow start) 

starting with any unacknowledged data. The transmission of 

data continues under slow start only up to a cwnd of ssthresh 

(which is half of the original cwnd). Above this value cwnd only 

increases by one segment per RTT regardless of how many 

ACKs are received. This changes the exponential growth of 

cwnd into linear growth and is known as congestion avoidance 

algorithm [13]. This process is repeated any time the 

transmission timer expires (on any packet loss) and can cause 

significant reduction of throughput. Later, the TCP 

implementation was modified to retransmit the missing segment 

before the retransmission expired, cut the current cwnd in half, 

and then enter congestion avoidance [14, 15, and 18] but without 

entering slow start. Entering slow start would force the cwnd to 

1 segment and force the retransmission of all unacknowledged 

data. This retransmission of the missing segment followed by 

congestion avoidance is known as fast retransmit and fast 

recovery algorithms. The fast retransmit algorithm is based on 

the requirement that TCP has to generate an immediate ACK (a 

duplicate ACK) when an out-of-order segment is received. This 

duplicate ACK is used to inform the sender that a segment was 

received out-of-order, and to tell what sequence number is 

expected. Since, the duplicate ACK could be caused either by 

packet loss or simple reordering; the sender waits for a small 

number of duplicate ACKs to be received. In case of only 

reordering of the segments, this will cause only one or two 

duplicate ACKs before the reordered segment is processed, 

which results in a new (non-duplicate) ACK [13]. Three or more 

duplicate ACKs received by a sender in a row, indicate strongly 

the loss of a segment and initiates the fast retransmit algorithm 

without waiting for the transmission time to expire. The fast 

30 SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 5 - NUMBER 4 ISSN: 1690-4524



 

retransmit and fast recovery algorithm stages implemented 

together are shown below: 

 

1. On receiving the third duplicate in a row, set ssthresh to 

one-half of the minimum of current cwnd and the 

advertised TCP receive window.  

2. Retransmit the missing segment. 

3. Set current cwnd to ssthresh plus 3 times the segment size. 

4. Each time another duplicate ACK arrives, increment cwnd 

by the segment size and transmit a packet (if the new cwnd 

is less than the advertised TCP receive window). 

5. Next, on receiving an ACK acknowledging new data, set 

current cwnd to ssthresh (one half of the cwnd when packet 

loss was detected). 

 

Figures 5 and 6 show the simulated data flow under 

packet loss with slow start/congestion avoidance and fast 

retransmit/fast recovery algorithms. 

 

0

500000

1000000

1500000

2000000

2500000

0 200 400 600 800 1000 1200 1400

Time (ms)

T
ra

n
sm

it
te

d
 b

y
te

s

Congestion AvoidanceSlow Start

Packet Loss

Throughput = 11.8 Mbps

 
Figure 5. Data flow under packet loss with slow 

start/congestion avoidance 
 

In Figure 5, because fast retransmit and fast recovery 

are not used, the cwnd is initialized to one segment every time a 

packet is lost and slow start is initiated before congestion 

avoidance.  

In Figure 6, fast retransmit prevents slow start from 

occurring when a packet is lost. The effects of fast recovery and 

congestion avoidance are also shown. The overall throughput is 

higher in this case as compared to figure 5. The fast transmit and 

fast recovery algorithm allows higher throughput as compared to 

only slow start under moderate congestion. However, the iFCP 

connections in a DSAN with very large TCP receive window 

capability (several MB) at the iFCP gateways are expected to 

provide close to maximum network throughput even with packet 

losses. To meet this requirement, the fast retransmit/fast 

recovery algorithm has been modified. The standard fast 

retransmit/fast recovery algorithm reduction of the current cwnd 

value at the time of packet loss detection to one-half of its value 

as seen in Figure 6 contributes to reduced throughput. Based on 

this observation, the fast retransmit/fast recovery algorithm was 

modified to reduce the current cwnd value at the time of packet 

loss detection by only 1/8th of its current value. This causes the 

TCP implementation to react more slowly to packet loss events. 

Figure 7 shows the simulated data flow under packet loss with 

the modified fast recovery algorithm. From the graph, it can be 

seen that the sender is responding slowly to packet loss there by 

maintaining a higher throughput. 
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Figure 6. Data flow under packet loss with fast 

retransmit/fast recovery 
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Figure 7. Data flow under packet loss with smaller cwnd 

reduction fast retransmit/fast recovery 

 

 As can be seen from the figures the linear ramp of 

cwnd after a packet loss event suppresses throughput. An option 

to disable congestion avoidance was also added so that the ramp 

of cwnd would always be exponential. 

 

 

5. EXPERIMENTAL SETUP 

 

The experimental setup used to measure a DSAN performance is 

shown in Figure 8. FC traffic is generated by using FC simulator 

(FCSim) cards instead of actual FC end devices (server and 

storage). An FCSim card manufactured by Brocade can generate 

FC traffic at rates up to 4 Gbps using the embedded FCLoadTM 

program. In this test setup, two FCSim cards are located in a 

single PC, with one FCSim card generating traffic and the other 

receiving the traffic. An FCSim card can also measure 

throughput and the latency of every FC frame transmitted and 

received and was used to collect the performance data. The 

FCSim cards are connected to two Sphereon 4500 FC switches 

from Brocade. The two FC switches in turn are connected to two 

Eclipse 1620 iFCP gateways from Brocade Corp. The two iFCP 

gateways are connected together by a 1 Gbps IP link through a 

packet loss/latency generator. The packet loss/latency generator 

is used to simulate packet loss and RTT conditions in the IP 

network. The modified TCP/IP stack is implemented on the two 

iFCP gateways by programming the firmware on the two 

Eclipse 1620s. The Eclipse 1620 TCP implementation has a 

maximum TCP receive window size per connection of 8MB 

using a scale factor of 10. 
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Figure 8. DSAN test setup 

 

 

6. EXPERIMENTAL RESULTS 
 

The theoretical throughput possible with increasing RTT at a 

constant 8MB TCP window size on a 1 Gbps iFCP link is 

presented in Table 1, this information was computed using (1). 

Using the previously discussed experimental setup, the FCLoad 

program was used to transmit traffic at data rates (load) ranging 

from 10% to 90% of the link bandwidth. The packet loss/latency 

generator was used to simulate RTT ranging from 0 to 200 ms to 

simulate internet behavior [10].  
 

Table 1 Theoretical throughput with increasing RTT 
TCP Window Size (MB) Round Trip Delay (ms) Computed Throughput (MB/s)

8 80 100.00

8 100 80.00

8 120 66.67

8 140 57.14

8 160 50.00

8 180 44.44

8 200 40.00  
 

Figure 9 shows the variation of throughput with 

increasing RTT. It can be seen that up to 80 ms RTT, increasing 

the load causes a corresponding linear increase in the 

throughput. When the RTT is increased to 100 ms, it can be seen 

that the throughput can reach only 80 MB/s due to the advertised 

TCP window size maximum value of 8MB. As the RTT is 

increased further, the limiting effect of the TCP window size 

further reduces the throughput. The measured steady state 

throughput shown in Figure 9 matches the theoretical values 

shown in Table 1.  

Next, FCLoad was used to drive 90% of line rate with 

the network simulation applying a constant RTT of 25 ms and 

various loss rates. In this setup the effects of the fast recovery 

modification and congestion avoidance disabling were 

measured. Figure 10 shows these results. It can be seen that the 

throughput with standard TCP decreases to a value of 9 MB/s at 

1 in 1000 packet loss rate. The throughput with the same packet 

loss rate with smaller cwnd reduction modification and 

congestion avoidance disable has increased to 16MB/s and 

11.5MB/s respectively. The increase in throughput with 

congestion avoidance disable modification by itself is less 

compared to the smaller cwnd reduction. 
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Figure 9. Throughput variation with increasing RTT and 

constant 8MB TCP window size  
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Figure 10. Storage friendly TCP influence on throughput 

with packet loss rate 
 

 This is due to the congestion avoidance disable 

starting point being at one-half of the cwnd value as compared 

to 7/8th of the cwnd value with smaller cwnd reduction. Next, on 

selecting both of the modifications the throughput with the same 

packet loss rate has increased to a value of 30MB/s.  This is due 

to exponential ramp from the higher 7/8th cwnd value. 

 

 

7. CONCLUSIONS 
 

The problems faced with bulk storage data transfer with the 

standard TCP implementation has been demonstrated both by 

theoretical analysis and experimental results.  The standard TCP 

implementation performance has been improved with LFNs by 

incorporating the TCP window scaling option. The improvement 

in throughput by using fast retransmit/fast recovery over slow 

start/congestion avoidance has been demonstrated with a 

theoretical analysis. Further modifications of fast retransmit/fast 

recovery by decreasing the one-half cwnd reduction to 1/8th 

cwnd reduction on detecting a packet loss increase the 

throughput significantly. This modification when paired with the 

congestion avoidance disable increases the throughput by a 

factor of 3. 

 The modifications introduced to the standard TCP and 

know as storage friendly TCP or storage optimized TCP enable 

more widespread implementations of iFCP based DSANs across 

transcontinental distances for storage backup and replication. 
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Further modifications such as reorder resistance, increasing 

initial cwnd value in slow start, and others remain to be 

explored. 
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