
ABSTRACT

In an attempt to quantify the dynamical complexity of power 
systems, we introduce the use of a non-linear time series tech-
nique to detect complex dynamics in a signal. The technique is a 
significant reinterpretation of the Approximate Entropy (ApEn) 
introduced  by  Pincus,  as  an  approximation  to  the  Eck-
mann-Ruelle entropy.  It is examined in the context of power 
systems, and several examples are explored. 

Index Terms: Complexity, Chaos, Power system, Switching 
converters

1.INTRODUCTION

Complex  systems  are  characterized  by highly  interdependent 
components,  often  in  network configurations,  exhibiting non-
linear dynamics, and other such properties. Non-linear dynam-
ics,  such as  bifurcations and chaos,  have been seen to  cause 
voltage collapse,  angle  divergence,  and other  faults  in  power 
systems [1-3]. Simply by its nature, power generation and distri-
bution  is  an  inherently  a  non-equilibrium  process  (i.e.  load 
changes inducing driven generator responses, swing dynamics, 
etc) happening in a network structure. Furthermore, the power 
systems (especially shipboard power systems) of the near future 
will contain much higher degrees of reconfigurability (structural 
adaptability), which will allow them to adapt in the case of a  
fault, or drastic change in load demand [4]. Thus, they will have 
to be adaptive complex networks.
Since many of the complex characteristics arising in power sys-
tems create design and control difficulties, we wish to be able to 
quantify the complexity of a system. In a previous publication 
[5], we discuss some distinct potential realms within which to 
quantify complexity. Namely, we distinguish between compon-
ent  level,  configurational,  and a global  “complex” properties. 
The component level is based on component dynamics and in-
teractions.  The  configurational  concerns  the  static,  physical 
causal  connections  within  the  system,  and  its  propensity  for 
complex behavior. This would be based on the presence of feed-
back loops, particular network topologies, and other configura-
tion properties which engender complex behaviors. The global 
level would concern the emergent properties of the system as a 
whole, as well as the interaction of the system with its environ-
ment. For the work presented here, we focus on the component 
level, with an eye toward the dynamics and interactions of com-
ponents.

2. APPROXIMATE ENTROPY AND ITS INTERPRET-
ATION

Measuring Entropy from Data
If a system changes so that a controller would have to incorpor-
ate this change into a new control decision, we can say that the 
amount  of information  required to  determine  the state  of  the 
system has increased. This is the same as saying that the con-
troller's uncertainty of the system has increased. Entropy (in the 
sense of Shannon [6]) has long been proposed as a measure of 
this type of uncertainty in systems. For a system X with n states, 
the ith  state having probability pi  , the Shannon entropy is given 
as

∑
=

−=
n

i
ii ppXH

1

log)(
.                                                 (1)

The Renyi entropy is a generalization of the Shannon entropy. 
The Renyi entropy is given as 
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 It can be shown that as μ→1, Hμ(X)→H(X), the Shannon en-
tropy. For increasing μ, Hμ is increasingly determined by states 
with higher probabilities.  Lower values of μ weigh the states 
more equally.  We see that from this,  we can define infinitely 
many “entropies” for all positive μ. 

Time Delay Embedding:  Though in its present for-
mulation, this seems quite abstract, researchers since Shannon 
have developed ways to apply this notion to experimental data. 
If an experimenter wants to apply these measures to time series 
data,  they may “reconstruct”  the attractor of the system.  The 
most widely used way of doing this is called "time delay recon-
struction" [7]. If one has a time series  X={x1,x2,..xn}, then 
for an integer time delay  τ,  one can construct m-dimensional 
vectors as 
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for  )}(,...2,1{ τmNn −∈ . Having done this, one has embed-
ded the data in an m-dimensional Euclidian space. We can now 
think of this  as  a  reconstructed state  space of  our  system.  A 
“state” is now a point or, approximately, a region of the space. 
The probability of being in certain states can be estimated by 
looking at the proportion of reconstructed vectors that lie in the 
corresponding regions of the state space. We can think of these 
regions as neighborhoods of radius  ε, or m-dimensional boxes 
with sides of length ε, and we can refine the entropy by letting ε 
get very small. This scheme can be approximated by counting 
populations in ε -neighborhoods around reconstructed vectors.
 

Approximate  Entropy:  A formal  definition  of  en-
tropy for dynamical systems has required some special consid-
erations in the way of ergodic theory, and has produced the no-
tion of Metric entropy (a.k.a Kolmogorov-Sinai entropy) which 
is “the mean rate of creation of information” [8]. This quantity 
was 
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shown to be able to be computed via the Eckmann-Ruelle (E-R) 
entropy, using data in a reconstructed state space. To introduce 
the E-R entropy, we need some prerequisite definitions. Keep-
ing the vector notation of the time delay embedding in mind, let  
us introduce 
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The E-R entropy is defined to be            
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An approximation to )(ERH ,  called “ApEn” (first  proposed by 

Pincus in [9]) is defined as 
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There are many reasons to approximate the E-R entropy. First, it 
is infinite for signals with noise of any amplitude [10]. Second, 
it requires an infinite amount of data. Since we not only have fi-
nite data, but also wish to be able to compute with relatively 
small amounts of data (so that real time analysis would be pos-
sible) we would not be able to compute using the E-R defini-
tion. When the E-R entropy gives a nonzero finite value, this en-
sures the existence of deterministic chaos in a signal. In making 
an approximation of it, we lose this very strong indication. The 
ApEn statistic does not have this power, as it can not distinguish 
randomness from deterministic chaos. Though it is finite in the 
presence of randomness, it is maximal on random data (like all  
entropy measures). Yet, as we will see in the following discus-
sion, there is reason to believe that, by the novel modification of 
ApEn proposed here, we may be able to strip away some meas-
ure of entropy which is caused by randomness in the system. It 
is  also the case that ApEn has a computational advantage, in 
that, it has been seen to be robust in use with as little as a few 
hundred data points.

Interpretation of the ApEn measure
Though the ApEn measure has been widely used in many differ-
ent physiological settings [10,11], there are some considerations 
that remain to be settled about its implementations, namely, the 
choices of parameters used. For a given time series, ApEn is a 
function of m, r, and N. Though the original authors take care to 
characterize the appropriate ranges for N, their prescriptions for 
m and r are given, but not formally justified. The need for fur-
ther considerations is mentioned by Pincus in [9], in recognition 
that “guidelines are needed for  choices of m and r to ensure 
reasonable estimates of ApEn(m,r)”. It is known that time delay 
embedding yields false information [12] if the embedding di-
mension is not high enough to unfold the attractor appropriately. 
Since the ApEn is dependent upon time delay embedding,  it  
seems reasonable to ensure that m be sufficiently large. We will 
discuss below the choice of r. An additional consideration that is 
not  mentioned in  any of the literature involving ApEn is the 
question of the time delay (or lag). It is assumed implicitly that 
τ =1. For some discrete numerical systems, the time delay can 
be  τ =1, but for others, and for discrete samples from experi-
mental signals, the appropriate time delay is dependent upon the 
sampling rate and can often be quite larger than one [13,14]. 

Since the ApEn method relies on making a time delay embed-
ding, one must make sure that the time delay is appropriately 
chosen, just as the embedding dimension should be, in order to 
reconstruct the attractor faithfully. 
Without much consideration of the time delay, and embedding 
dimension, ApEn has been used successfully in many capacities 
[9-11],[15]  as  an  indicator  of  qualitative  differences  in  time 
series. In this work, we are computing the ApEn measure, with 
full considerations in choice the appropriate m, r, and τ. There 
are known solutions to motivating our choices of m and τ. For 
our choice of τ, we rely on the method developed by Kim et al.  
which is referred to as the C-C (“C minus C”) method [13], and 
for  our choice of m,  we rely on the method of false  nearest  
neighbors, or FNN [12]. 
We have found that,  given any fixed m,  there is  a particular 
value r0, such that for r ≥ r0, ApEn(m,r) for random signals be-
come zero  while, for the same r0 value, ApEn(m, r0) on nonran-
dom, and chaotic signals is nonzero (this will be fully explained 
in a future work). Thus, for all m, there exists an r, so that we 
find  that  ApEn(m,r)  is  unaffected  by randomness,  while  still 
achieving  some  quantification  of  other  dynamical  structure 
present in the data. Much interest lies in this distinction, because 
one of our main concerns is the detection of chaotic or other-
wise complex dynamics. 

3. ASPECTS OF COMPLEXITY; DYNAMICS, COUP-
LING, AND EMERGENCE

When  system  components  begin  to  interact  in  unanticipated 
ways,  we  may consider  the  potential  for  emergent  behavior. 
Such unforeseen events potentiate cascades of further  effects, 
possibly on larger scales than the initial interactions. Emergence 
is a very important characteristic of complex systems, and one 
which is especially baffling from control and engineering per-
spectives,  as  its  nature  is  not  generally  describable  a  priori. 
Though  there  is  not  a  strict,  global  definition  of  emergence, 
there  are  distinctions  made,  such  as  the  distinction  between 
weak  and  strong  emergence  [16].  Weak  emergence  is  when 
higher-level phenomena arise from the lower-level interactions, 
and while unexpected, truths concerning that [high-level] phe-
nomenon are deducible given the principles governing the low-
level domain. As pointed out in [17], even “Dependencies, such 
as  correlations,”  can be  considered  weak emergence,  as  they 
“arise from the interactions of components and in such a case,  
can be inferred from the properties of the components and their 
interactions.” This is in contrast to strong emergence, which is 
the same, except that the truths concerning the high-level phe-
nomena are not necessarily deducible given the low-level prin-
ciples. Emergence is an instance where the interaction of n com-
ponents can not be described by combining the individual de-
scriptions of the n components (whole greater than the sum of 
its parts). 
As of yet, we do not have a direct way to quantify the degree to 
which our system exhibits general emergent properties, nor do 
we know a priori what those traits might be. For the moment 
then, we begin by trying to examine the dynamics on the smal-
lest  scale  such that  system-wide real time data monitoring is 
feasible, and work our way up. In a power system, this scale is 
populated by the various power generation,  transmission,  and 
distribution  components.  The  relevant  dynamical  aspects  in-
clude current, voltage, and frequency. The occurrence of non-
linear (or otherwise unusual) dynamics can be seen as a result of 
interactions  between  components,  as  well  as  the  system  re-
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sponding to global constraints (i.e. hard limits, etc...). Thus, the 
detection of such dynamics may at least indicate some emergent 
behavior. It  is not clear from small  scale considerations what 
larger scale effects an emergent local behavior will have on the 
system. So far, it is seen that instability and failure are among 
effects that may result from such phenomena.
We utilize various dynamical systems to study interesting as-
pects of non-linear dynamics. We begin in the simplest way by 
examining the behavior of ApEn in the presence of chaos. We 
examine the chaotic output of a dynamical system whose beha-
vior is given by an equation, namely the Rössler map. Moving 
further towards application to power systems, we examine sim-
ulated dynamics of a power electronic  component  when it  is 
coupled with a noise source. Beyond this, we examine local dy-
namics resulting from a change in the system control in a large 
scale simulation of a shipboard power system,. 
Large power systems exhibit very wide ranges of behavior, in-
cluding stable dynamics, and less stable nonlinear dynamics, as 
well as large changes due to control changes, faults, or environ-
mental factors. The latter changes generally cannot be accoun-
ted for deterministically.  They are examples of non-stationary 
behavior. One interest is finding out how our ApEn responds to 
these changes in system behavior. Thus, in proposing any new 
measurement of system, one must account for how it will react 
to various states for which it may or may not be as descriptive, 
or informative. We hope to characterize its responses in a man-
ner that allows us to distinguish stable kinds of dynamics from 
more non-linear, or otherwise unstable dynamics, whether they 
are deterministic or non-stationary effects.

Rössler system
Consider the Rössler system, 
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with a, b, and c as real-valued parameters.  The above equation 
determines a dynamical system which exhibits nonlinear beha-
vior as dependent upon the parameter values. The system exhib-
its  nonlinear  dynamics,  including  a  period  doubling  route  to 
chaos. Using the method of Runge-Kutta, we generate a discrete 
time series behavior for each variable. Let us fix b and  c at 2 
and 4 (resp.), and vary a, letting a be our “bifurcation paramet-
er”. We see that (figure 1, lower panel), for smaller values of a 
(near .33) the system is periodic. As a is increased, the dynam-
ics  of  the  sequence  bifurcate,  becoming  multiply  periodic. 
These bifurcations continue in a period doubling cascade until, 
for a critical value of a (ac), the sequence becomes chaotic. Sim-
ilar transitions to chaos have been observed in power systems 
(and systems from many fields), and so the Rössler map is a 
natural starting place to examine the behavior in our context.

Coupled Buck Converter
The data that we analyzed from a power electronic component 
is taken from the output of a buck converter, when it is coupled 
with spurious periodic noise, as reported in [18]. The buck con-
verter is one of the simplest dc-dc converters, and we study it in 
continuous conduction mode controlled by a pulse-width modu-
lator.  A circuit model is used to produce intermittent chaos in a 
buck converter resulting from the presence of noise within the 
system.   The  model  uses  a  negative  feedback  system  with 
voltage-mode control to automatically correct the duty cycle of 
the buck converter.  In voltage-mode control, the output voltage 
is compared with a reference signal to generate a control signal 

which drives the pulse-width modulator by using some typical 
feedback compensation setup.
The reference voltage vref is coupled to the spurious signal.  This 
weak periodic signal that is introduced is used to illustrate noise 
within the feedback control in the converter current output. The 
difference between the output voltage and the reference voltage 
is known as the error voltage.  The goal of the feedback system 
is for the error to be small, and it works ideally when the error 
signal is zero, which occurs when the output voltage equals the 
reference voltage.  This feedback loop introduces the potential 
for non-linear dynamics in the system. The bifurcation effects of 
the coupled converter were found to be exactly as in the previ-
ous literature [18] (Fig. 2). The bifurcation parameter used is α,  
which is defined as α =νs/ Vref, where νs is the amplitude of the 
noise signal, and Vref is the reference voltage.

Shipboard Power system via RTDS
To look at dynamics in a power system, and not just in an isol-
ated component, we consider a set of electrical current measure-
ments obtained from shipboard power system (SPS) simulated 
in high fidelity on a Real Time Digital Simulator (RTDS). The 
RTDS is a high speed, real time test system that can be used for  
control  system  testing  and  general  power  system  simulation 
[19]. The SPS modeled in RTDS consists of a 4.16kV MVAC 
ring bus, which connects two main generators (MTG, 36 MW 
each), two auxiliary generators (ATG, 4 MW each), two propul-
sion motors (PM), a pulsed load and 3MW radar via  switch-
boards. We consider measurements of current in the system op-
erating during a control change, where one control parameter is 
changed in such a way that the resulting current signal becomes 
erratic.

4. RESULTS AND DISCUSSION

Systems and Analysis
For all of the data in this paper, the ApEn is computed using a 
moving window on the time series, as though it were measuring 
a signal in real time. Each ApEn value is shown plotted directly 
above  the  center  of  its  corresponding data  window.  All  data 
used is discrete, either by generation, or by sampling a continu-
ous wave form.

    Rössler system:  We compute the ApEn  on the dy-
namics of the variable x generated by the Rössler map, while in-
crementing the bifurcation parameter a towards, and past,  the 
critical value. The a return map of resulting signal can be seen 
in the lower panel of Figure 1, showing its bifurcations en route 
to chaos. The corresponding ApEn values are shown in the up-
per panels. For fixed point (constant) behavior, or perfectly peri-
odic states, the ApEn gives small values. When the parameter is 
changed, and the system bifurcates from period one to period 
two, the ApEn increases. It initially shows a spike response as a 
result of the use of the moving window. While the window con-
tains data both before and after the bifurcation, the reconstruc-
ted state space trajectory contains structure from dynamics be-
fore the bifurcation, as well as structure from post bifurcation 
dynamics. The spikes drop as the window passes the bifurca-
tion, as there is no additional structure being measured. After 
the spike drops, the values are higher than before the bifurca-
tion. This is because bifurcations add structure to the state space 
trajectory. This happens in general in the presence of bifurca
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Figure 1. The ApEn is computed for the various behavioral re-
gimes of the Rössler map. The dynamics are dependent upon the 

parameter a. The bifurcation diagram of the Rössler map is in 
the lower panel, with a incremented discretely, while the corres-

ponding ApEn values are plotted in the upper panel. aC is 
marked at the point when a reaches aC.

tions, as we will continue to see. The measure continues to in-
crease as the system bifurcates, and transitions into chaos.
Towards the end of the section, we will give more discussion to 
the general behavior of the ApEn.

Buck Converter: As we can see in Fig. 2, the ApEn 
responds as we would expect in the presence of bifurcations in 
the system. While the converter current is perfectly periodic, the 
ApEn is zero, but once the bifurcations occur, ApEn increases. 
One can notice the amount of this increase by examining the 
shape of the ApEn curve in Fig. 2(a). When an initial bifurcation 
occurs, the increase is in the range of 0.05. When a second bi-
furcation occurs in cascade, the measure jumps up above 0.1. 
Instances ofthis can be seen in the rest of Fig. 2. When chaotic 
dynamics occur, then the ApEn registers a very large increase, 
spiking to 0.2 and above (Fig. 2(b,c)). Overall, if we restrict our 
attention to the regions of data which yield ApEn values of 0.1 
or  higher,  we  immediately recover  the  bifurcated  regions,  as 
well  as the chaotic regions.  Beyond these considerations, and 
more  towards  understanding  how outside  (non-deterministic) 
changes can affect the dynamics of components,  we examine 
the impact of sending a pulse to the buck converter's reference 
voltage while  it  is  coupled with the noise source (Fig.  3(a)). 
This has been found to induce isolated bursts of bifurcations, 
that is to say, not cascades, but one bifurcation, its decay, fol-
lowed by another, and  its decay. It has been found that if the 
amplitude of the pulse is large enough, the burst exhibits chaos, 
without a visible cascade of bifurcations as a transition.  This 
isolated bursting occurs for non-zero α, even when α is not large 
enough to induce bifurcations by itself. We can see from Fig. 
3(a)  that  the  initial  amplitude  increase/phase  shift  from  the 
pulse,  before  bifurcation,  yields  an  increase  in  ApEn  value 
which is below 0.05, indicating sensitivity not only to nonlinear 
dynamics, but also other changes in signal structure. When bi-
furcations occur, the ApEn increases more significantly, as be-
fore. As we can see, with a 4V pulse amplitude, the ApEn in-
creases above 0.1 in the presence of the multiple  large amp-
litude bifurcations and stays for the duration of the isolated bi-
furcations. It  also picks up on the smaller bifurcations toward 
the end of the pulse decay. The step like responses to the pres-
ence of multiple isolated bifurcations, which can be seen clearly 
toward the end of Fig. 3(a), seem to indicate some kind of addit-
ive response on the part  of the ApEn,  when confronted with 
temporally close isolated bifurcations (the response of the ApEn 
doubles when the window gains an additional bifurcation, and 
then decreases by half when one passes out of the window).

 

 
Figure 2.  The return maps of the current from the buck con-

verter  showing bifurcations (lower panels), with calculation of 
ApEn (upper panels). Each figure corresponds to a different α  
value, with α =0.0044, α =0.005, α =0.007 in (a), (b), and 

(c) respectively.

Shipboard Power system:  In looking at the simula-
tion of the shipboard power system, we find that the dynamics 
are much less  simple,  in many respects.  When the system is 
periodic, it is not perfectly so, so that the ApEn does not take on 
zero  values  during periodic  behavior.  Since  the  waveform is 
more  varied,  the  structure  is  much  more  spread  out  in  state 
space. For our simulation, we look at a stable condition with the 
introduction of a control change. As can be seen in Figure 3(b), 
the periodic behavior registers an ApEn relatively small value 
(<0.2), until the control change occurs about midway through. 
When the control change occurs, the output of the system be-
comes erratic, with periodic bursts of aperiodic dynamics. For 
this condition, the ApEn surges to a sustained value near 1.  

Interpretation of Results
This signal measure is zero or small on perfectly periodic and 
constant  signals,  which  have  minimal  Shannon entropy.  It  is 
also zero on random signals, which have maximal Shannon en-
tropy. This allows it to be seen as a measure of complexity that 
is a convex function of disorder. It attains its maximum value on 
signals whose entropies are between the minimum and maxim-
um. This has been seen [20] as an important characteristic of 
measures of complexity, since complex systems necessarily ex-
ist somewhere between complete order, and complete disorder. 
Our preliminary uses of the ApEn methodology as a dynamic, 
“real-time” observation tool  suggests  that  we  may be able to 
distinguish  “non-trivial”  changes  in  system behavior.  This  is 
done by detecting geometrically “non-trivial” changes in the re-
constructed state space trajectory of the system. What is meant 
by a non-trivial change, the results suggest, is one which dis-
turbs the stable nature of the system, either by transitions into  
multiperiodicity (bifurcations), complete aperiodicity (chaos), 
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Figure 3. (a) Bifurcation diagram of buck converter response to 

a pulse with an amplitude of 4V (lower panel).  The ApEn is 
calculated as  the buck converter evolves (upper panel).  (b) The 

shipboard power system undergoes a control change during a 
stable running condition (lower panel). The corresponding 

ApEn, computed with a moving window, evolves with the sig-
nal (upper panel).

or general perturbation. What it seems that we are observing is 
the ability of a modified ApEn to detect the increase in structure 
of a system's state space trajectory (not necessarily an attractor). 
When a deterministic system transitions from periodic to chaot-
ic, the corresponding attractor begins (topologically) as a dis-
crete collection of points (discrete systems) or a circle (continu-
ous systems). The system attractor then transitions (most often) 
into  a  fractal  manifold  or  some other  relatively space  filling 
structure.  Many aspects  can  be  measured  of  these  structures 
(fractal dimension, Lyapunov exponents, etc.), but these kinds 
of  chaotic  quantifications  are  more  meaningful  on  measure-
ments on stationary systems, or during stationary periods of a 
system,  as they give specific geometric information about at-
tractor structure and dynamics. The systems of interest will not 
always be stationary, and thus, there will not always exist an in-
herent  attractor  to  be  studied.  Luckily,  non-deterministic 
changes  still  correspond  to  shifts  in  the  reconstructed  data’s 
structure in state space, and seem to be able to be detected by 
the modified ApEn.

5. CONCLUSION
The nature of power systems is such that outside conditions cre-
ate changes which are not given by any deterministic aspect of 
the system components, or their interactions. Thus, power sys-
tems investigators, and controllers, may easily find themselves 
in a situation where they are less interested in the specific as-
pects of chaotic or otherwise unstable behavior, and more inter-
ested simply in the presence of it. This is especially likely when 
one takes into account the fact that the more specific informa-
tion is computationally more expensive, thus delaying a control 
response  time.  One  important  example  is  that  of  switching 
between centralized and decentralized control. There is growing 
evidence  [21,22]  suggesting  that  distributed  control  may  be 
more appropriate for use in complex systems.  Yet, when sys-
tems are stable, centralized control is more efficient. Thus, the 

ApEn methodology presented here might yield information as to 
when to switch from centralized to decentralized control.       
 We seem to be able to use the modification of the ApEn, as was 
done here, to make dynamically meaningful distinctions in the 
output of a system. It will continue to be seen for which state 
changes the ApEn takes on small values. By doing this, we can 
begin to fathom precisely what can be determined through the 
measure, and what eludes it. It seems thus far that, if we con-
sider  the  complexity of  a  system as  inherently linked  to  the 
manner in which it traces out a history in its state space, then the 
ApEn measure may be of value in determining when a system is 
deviating from past behavior, as well as when it does not seem 
to be settling into some new stable behavior. We suggest that 
this may be an appropriate point to begin suspecting that the 
system behavior,  or  state,  may be  deserving  of  being  called 
“complex”. 
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