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ABSTRACT 

An integrative methodology is developed to characterize the 

complex patterns of change in highly variable dynamic 

biological processes. The method permits estimatation of the 

population mean profile, multiple change points and length of 

time-windows defined by any two change points of interest 

using a semi-/non-parametric stochastic mixed effect model and 

a Bayesian Modeling Average (BMA) approach to account for 

model uncertainty. It also allows estimation of the mean rate of 

change of sub-processes by fitting piecewise linear mixed effect 

models. The methodology is applied to characterize the stages 

of female ovarian aging and the menopausal transition defined 

by hormone measures of estradiol (E2) and follicle stimulating 

hormone (FSH) from two large-scale epidemiological studies 

with community-based longitudinal designs and ethnic diversity. 

Keywords: Complex systematic dynamics, Change detection, 

Longitudinal data, Epidemiology, Ovarian aging, Hormones 

1. INTRODUCTION AND MOTIVATION 

The ability to describe process dynamics is crucial to portraying 

patterns of change across time in complex biological and 

epidemiological systems found in populations.  

An example of these dynamics in women includes the ovarian 

aging process as reflected in the hormone measures of estradiol 

(E2) and follicle stimulating hormone (FSH)[1~4,30,31], which 

characterize the female reporoductive transition from pre-/peri- 

menopausal status to post-menopausal status. During this 

transition process, understanding when, how rapidly, and how 

long the E2 and FSH levels change (increase, decrease, or 

oscillate) around the final menstrual period (FMP) is important 

as studies have reported that postmenopausal sex hormone 

concentrations are risk factors for several major chronic 

diseases in women, including osteoporosis, breast cancer and 

endometrial cancer, and, with less certainty, coronary heart 

disease and osteoarthritis.  

Thus, the ability to describe the dynamics of such processes is 

not only of great theoretical interest but also has important 

public health and clinical implications for intervention. 

Description of these complex processes will help define onset of 

sub-fertility and the initiation of the menopausal transition and 

lead to identification of relevant factors (e.g, body mass index, 

smoking, race/ethnicity) that influence these dynamic, including 

accelerating or decelerating, processes. As shown in Figure 1  

 

using data from two ongoing studies, the logE2 and logFSH 

changing process around the FMP might be a smooth, slow or 

fast time-varying process with local maxima, and/or an 

asymmetrical changing process acommpanied by multiple 

change points.  

Figure 1a (logE2) and Figure1b (logFSH) visualized 100 women’s 

(randomly selected from the study cohort without replacement) 

individual profiles (marked as solid line segments with star), 

spline smoothed population mean (marked as solid smoothing 

lines), and two potential segmented population means (marked 

as dashed line segments with dot or square).  Figure 1 

demonstrates that there may exist transition points for logE2 and 

logFSH around FMP reflecting different stages in ovarian aging, 

e.g., two years  before (t = -2) and two years after (t = +2) FMP. 

The complexity of identifying these stages stems from: 

a) The inherent variation in the between-women ovarian aging 

process over time, especially during the menopausal 

transition for middle-aged women. This biological process is 

time-varying, auto-regressive and may be associated with 

internal and external factors. 

b) The unknown functional form of the population trajectory. 

Lower order parametric polynomials may be inadequate to 

capture complex nonlinear trends. In theory, polynomials are 

capable of approximating continuous functions arbitrarily 

closely when allowed to be of sufficiently large degree 

(Weierstrass’s approximation theorem). However. applying 

higher order parametric polynomials may not only have 

numerical limitations in model fitting but also have limiations 

in their clinical interpretation. Moreover, polynomials have a 

significant shortcoming, i.e., they operate in a global fashion. 

Therefore, splines may be a more appropriate approach by 

providing a series of piecewise polynomials, joined in a 

visually smooth fashion, and typically formed as an additive 

combination of locally defined low order polynomials (or 

basis functions). 

c) The unknown number of change points and position of 

change points occurring within the period of interest.  

When these two parameters are known, piece-wise linear 

regression modeling may be used to segment a process into 

its sub-processes.  An application of this concept would be to 

consider the subprocess of ovarian aging as a series of stages 

and identify characteristics of each stage including the cut 

points demarking the beginning and ending of the stage and 

the rate of change within each stage.  However, in most cases, 
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these parameters are unknown and have to be identified either 

by domain knowedge (e.g., biology), by algorithms, or by a 

combination of both. This gives rise to the uncertainty of 

model selection which must be addressed during model 

development. 

d) The efficiency of the algorithm detecting change. It might 

be optimal and necessary to detect the change in a timely 

manner using an on-line algorithm for time-series data with a 

long run period, e.g., industrial quality monitoring and 

control. However, in repeated (or longitudinal) health studies, 

the number of entities (e.g., units or study participants) is 

usually much greater than the number of repeated measures 

creating a data environment where off-line detection may be 

the more appropriate option. 
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Figure 1a: Individual and mean profiles of  logE2 with 

illustration of segmentation: SWAN 
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Figure1b: Individual and mean profiles of logFSH with 

illustration of segmentation: SWAN 

 

Thus, it is highly desirable to have a flexible method for 

modeling this kind of complex process and identifying 

biologically-relevant change points. This paper describes the 

development of a systematic and novel methodology for 

addressing longitudinal epidemiological dynamic data. It 

incorporates factors at multiple levels by integrating non-

parametric estimations of instantaneous changes in a dynamic 

trajectory, parametric curve segmentation based on piecewise 

linear mixed models while using a Bayesian Model Averaging 

(BMA) approach. The method is applied to two large-scale 

longitudinal epidemiological hormone studies [Michigan Bone 

Health and Metabolism Study (MBHMS) and the Study of 

Women's Health Across the Nation (SWAN)] to identify when, 

where, how rapidly, and how long the patterns change around 

the FMP. 

This paper is organized as follows. Section 2 provides an 

overview of the change detection. The systematic structure of 

the algorithm and mathematical models are described in detail 

in section 3. Section 4 demonstrates the algorithms applied to 

data from the MBHMS and SWAN studies. Finally, section 5 

concludes with results and identifies the need for future work. 

 

2. OVERVIEW OF CHANGE DETECTION 

Change detection problems are of theoretical importance in 

research with potential applications in diverse areas in which 

there are dynamic processes and spatial or temporal data. 

Questions associated with change detection may include:  (a) 

are there any changes occurring? (b) how many change points 

are there? and (c) when and where are the change points? In 

general, change point detection is the process to identify point(s) 

at which properties of sequential data change [5]. Statistically, 

change detection is related to the detection of the changes in 

probability distribution of a stochastic process or time series.  

Methodologically and quantitatively, the parametric and non-

parametric methods for change detection and piecewise linear 

models have been described, e.g., kernel and nearest-neighbor 

nonparametric regression[6], data iteration in regression for 

searching threshold (DIRST)[7], Sprent’s assumption of 

enforced continuity[8], the smallest residuals sum of squares 

(RSS) and “optimization” as a criteria for satisfying the 

estimation on thresholds[9], smoothing the connection of two 

adjacent models[10], and piecewise regression models[11~12]. 

Sigmoid (or double-sigmoid) functions are an appealing tool to 

model curves of S-shapes and has been used in numerous 

applications including, e.g. hormone profiles [3], fatigue profiles 

in mice[13], pattern recognition[14], and growth patterns[15]. 

Algorithms to describe change detection include on-line, off-

line, Bayes, and minimax, as identified in references 16 through 

23. 

Frequently, studies are limited in that 1) response data are 

assumed to be independent and ignore potential sources of the 

correlation within the longitudinal data; 2) model uncertainties 

are not considered; 3) the study sample size is limited; 4) 

functional forms are assumed to be parametric with a known 

prior shape; and 5) sources of variability, including between-

subject heterogeneity, within-subject biological variation, and 

measurement error are not fully modeled. Each of these features 

is relevant in public health, clinical and epidemiological studies 

and they have to be considered during the model development. 

 

3. THE SYSTEMATIC STRUCTURE AND MODELS 

Motivated by the need to model the functional form of the 

female ovarian aging process with an unknown prior shape, we 

developed an integrated methodology that incorporates four 

major steps (see Figure 2 for the systematic structure that 

progresses from the longitudinal data inputs, through the 

modeling, to the specified change outputs of interest). 
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The function of each module and input-output relationship are 

described in Figure 2 and sections 3.1-3.4. 

Figure 2 Systematic structure of the proposed integrative 

approach 

 

3.1 Semi/non-parametric stochastic mixed model 

The parametric assumptions for modeling longitudinal data 

might not be appropriate for some circumstances, e.g., 

relationships between hormone change and time may not be 

appropriately modeled by quadratic or cubic terms or other 

simple functional forms (e.g., sigmoid, exponential, etc) due to 

nonlinearity, unknown shape and multiple change points. 

Therefore, a semi-/non-parametric stochastic mixed effects 

modeling approach is appropriate to characterize complicated 

curves when there is inadequate prior knowledge available 

about its shape[24]. In general, the semi-parametric stochastic 

mixed model can be formulated by: 

  
ijijii

T

ijij

T

ijij tUtfY ε++++= )()( bZβX     (1) 

where: 
ijY  is the response for the ith (i = 1,2,…, m) subject at 

time point 
ijt (j=1,2,…,

in ); β is a 1×p  vector of regression 

coefficients associated with covariates 
ijX of interest. )(tf  is 

a twice-differentiable smooth function of time; 
ib  are 

independent 1×q  vectors of random effects associated with 

covariates 
ijZ ; )( iji tU  are independent random processes 

used to model serial correlation;
ijε  are independent 

measurement errors. 

The fundamental assumptions for this model are: 
ib , )( iji tU , 

and 
ijε  ~ iid 2,0( σN ). 

ib  ~ normal (0, D(φ)), D is a positive 

definite matrix depending on a parameter vector φ; )( iji tU  is 

a mean zero Gaussian process with covariance function or a 

non-homogeneous Ornstein-Uhlenbeck (NOU) process, 

cov( )(tU i
, )( sU i

) = γ(ζ, α; t, s) depending on a parameter 

vector ζ and a scalar α, which is used to characterize the 

variance and correlation of the process )(tU i
.  

As a special case, in order to capture the characteristics of the 

logHormone mean and variance (in these examples, E2 and FSH) 

as they vary over time, the model can be formulated as a non-

parametric form: 
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where )( tU i
 is a NOU process satisfying: 
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where: 
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Each subject's serial correlation is assumed to be the same. The 

smoothing function )(tf  represents the response mean profile 

for the population of subjects over time. 

 

3.2 Change characteristics of population mean profile 

Assume the population mean response profile/trajectory 

changes over time and follows a non-linear pattern. The 

instantaneous changes of these trajectories can be characterized 

by rate of change, acceleration / deceleration, and curvature 

which are first- and second-order derivatives of the mean profile, 

as well as the hinge/bend of the mean profile integrating the rate 

of change and acceleration, respectively. The cubic spline 

approach is used to estimate the rate of change as well as 

acceleration or deceleration.  

Assume the time t is equally spaced with step 
kk tth −= +1

 

( 1,...,2,1 −= nk ), where n  is the total number of 

distinguishable time points. Let )(tf be the response mean 

profile (trajectory) and )(3 tS be its cubic spline approximation 

with the following property:  

    3,2,1,0),()()( 4
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The rate of change can be approximated by solving " m " 

equations: 
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where )( kk tfm ′= , 1,...,3,2 −= nk . The 
1m  and 

nm  can 

be approximated by the 5-points method using first and last 5-

points, respectively, 
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The acceleration / deceleration can be approximated by solving 

" M " equations: 
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where )( kk tfM ′′= , 1,...,3,2 −= nk . The 
1M  and 

nM  

values satisfy the boundary conditions: 
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m
h
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The instantaneous curvature of mean profile, representing the 

degree of bend of the curve, is approximated by  

    ( )
2/3

2
)(1/)( kk tftf ′+′′                                               (11) 

The 95% confidence bands of these characteristics can be 

obtained by using a bootstrapping approach [25]. 

 

3.3 Piecewise linear mixed model to segment the process 

Given the number and position of change points, the piecewise 

linear mixed model is developed to capture segment 

characteristics (i.e., rate of change within each segment). 

Statistical comparisons of the slopes from two consecutive 

segments around a change point are tested to ascertain if one 

slope is different than the adjacent slope. The piecewise linear 

mixed model is formulated as follows:  

Assume the independent variable of interest 1
RTt ⊂∈  

(e.g., the time to the FMP as an event of interest in ovarian 

aging). Let  
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Then, the mean structure of piecewise linear mixed effect model 

is given by: 
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where ),...,2,1( Llxijl = are the covariates for ith subject at time 

ijt and L is the total number of covariates of interest. The 

random effects include random intercept and random slopes. 

The variance-covariance structure and model assumptions 

follow a linear mixed model [26]. 

 

3.4 Bayesian model averaging (BMA) to estimate the change 
points and durations of sub-processes 

The change points in the population mean response profile are 

estimated based on values obtained from the above processes 

and are used to segment the trajectory of interest (in this case, 

hormone trajectories) into stages. Around each identified 

change point, time is increased by a specified step and a 

sequence of piece-wise linear mixed models is fitted. The 

sequence of models is integrated using a BMA method to 

account for the uncertainty associated with the model selection 

process. The posterior mean and variances of the quantity of 

interest ∆  (e.g., regression parameter, rate of change, length of 

time-window, etc) are [27]: 
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where K  is the total number candidate models, 

),|(ˆ
kk MDE ∆=∆ ; },,,{ 21 KMMM L=M  denotes the set of 

all models being considered and ∆  is the quantity of interest, 

e.g., a parameter of the regression model; and )|( DMpr k
is 

the posterior probability of model 
kM . More specifically, we 

employed the posterior probability as [28~29]  
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where )( kMBIC  is the Schwarz’s Bayesian Information 

Criterion (BIC) of model k and )( kMBIC  is the mean of BICs 

over all models being considered. The prior model probability 

)( kMpr  is assumed to be from the uniform distribution 

)( kMpr  = K/1 . The BIC is used to form a weighted average 

over all models, in which these weights depend on the degree to 

which the data support each model, i.e., the better the fitted 

model, the greater the weight. 

 

4. APPLICATION: LONGITUDINAL HORMONE DATA 

This proposed method has potential important applications in 

biological and epidemiological studies as it allows description 

of a variable in terms of critical change points while identifying 

discrete segments or stages that may have clinical and 

epidemiological relevance, e.g., defining stages of ovarian aging 

and the menopausal transition characterized by reproductive 

hormone data for serum levels of estradiol (E2) and follicle-

stimulating hormone (FSH). 

 

4.1 Biological, clinical and epidemiological relevance 

It is known that, during women's reproductive lives and into the 

early menopausal transition, population levels of the circulating 

hormone estradiol (E2) change minimally when measured in the 

early follicular phase and assessed either cross-sectionally or 

longitudinally. However, more information about the dynamics 

of change in E2 as women transition through menopause as well 

as of follicle-stimulating hormone (FSH) patterns across the 

reproductive period and through the menopausal transition is 

needed to help refine definitions of increasingly diminished 

ovarian reserve (representing the quantity and quality of the 

ovarian follicle pool) and to properly stage the transition from 

prime reproductive capacity to menopause and post-

reproductive life. 
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Here, we are interested in understanding when, how rapidly, and 

how long the E2 and FSH levels change around the time of the 

final menstrual period (FMP).  

 

4.2 Description of the data 

The proposed methodology is applied to characterize the 

dynamics of the female ovarian aging process using serum E2 

and FSH data from two large-scale longitudinal epidemiological 

studies: Michigan Bone Health and Metabolism Study 

(MBHMS) [1~2] and Study of Women’s Health Across the 

Nation (SWAN) [30]. 

MBHMS is a population-based longitudinal study of the natural 

history of reproductive endocrinology as it relates to the 

development of musculoskeletal and metabolic diseases and 

functional limitations in Caucasian women during young and 

mid-adulthood. MBHMS includes 664 age-eligible (24-44 years 

in 1992/3) women covering a 15-year period from 1992/3 

through 2006/7, excluding 18- and 14-month funding lapses in 

1997 and 2003, respectively. 629 women contributed one or 

more sex steroid data points to the longitudinal data analyses. 

On average, participants contributed more than 9 annual sex 

steroid data points out of a total possible 11 annual 

opportunities, as of 2007.   

SWAN is a multi-site, longitudinal cohort study being 

conducted in community-based groups of women. In SWAN, 

participants were enrolled at seven clinical sites in the following 

geographic areas: Boston MA, Chicago IL, the Detroit area MI 

(and excluding the MBHMS population), Los Angeles CA, 

Hudson County NJ, Oakland CA, and Pittsburgh PA.  All sites 

used a single common assessment protocol. At baseline, 3302 

women who belonged to one of five ethnic/racial groups were 

recruited including Caucasian (n=1550), African American 

(n=935), Japanese (n=281), Chinese (N=250), and Hispanic 

(n=286). Eligibility criteria for entry into the SWAN 

longitudinal cohort were: age 42 to 52 years; intact uterus and at 

least one ovary; no current use of estrogens or other medications 

known to affect ovarian function; at least one menstrual period 

in the three months before screening; and, self-identification as 

a member of one of the five eligible ethnic groups. The 3302 

women contributed one or more sex steroid data points to the 

longitudinal data analyses with the mean value 7 out of a total 

possible 10 annual opportunities from baseline to follow-up 9. 

More specifically, these analyses include data from 1215 

women from SWAN with a definitive FMP and at least one 

hormone value from baseline through follow-up 09, providing 

9404 observations from FMP +/ 8 years (Table 1); and 181 

women with 1672 data points from MBHMS (Table 2) with a 

definitive natural FMP date (i.e., no ambiguity generated by 

exogenous hormone use or reproductive surgery). These 

MBHMS data provide us with information for hormone levels 

at the time of FMP +/- 10 years. 

Measured reproductive hormones are the primary independent 

variables, and included E2 and FSH. In MBHMS, a fasting 

venipuncture serum sample was acquired in days 2-7 of the 

follicular phase of the menstrual cyle.  If women were no longer 

cycling regularly, venipuncture was secured on the anniversary 

(+ 15 days) of their initial annual visit.  In SWAN, women were 

scheduled for venipuncture prior to 10 am on days 2-5 of a 

spontaneous menstrual cycle occurring within 60 days of 

recruitment at the baseline visit, and annually thereafter. Two 

attempts were made to obtain the day 2-5 sample. If a timed 

sample could not be obtained, a random fasting sample was 

taken within a 90-day window of the anniversary of the baseline 

visit.  

In both studies, blood was refrigerated 1-2 hours after 

phlebotomy and then, following centrifugation, the serum was 

aliquotted, frozen, and batched for shipment to the central 

laboratory for assay.  The same laboratory and assays were used 

for both studies. 

FSH assays were conducted in singlicate and E2 assays in 

duplicate using an ACS-180 automated analyzer (Bayer 

Diagnostics Corporation, 115 Norwood Park South, Norwood, 

MA). E2 concentrations were measured with a modified, off-

line ACS-180 (E2-6) immunoassay. Inter- and intra-assay 

coefficients of variation averaged 10.6% and 6.4%, respectively, 

over the assay range and the lower limit of detection was 1 

pg/mL. Serum FSH concentrations were measured with a two-

site chemiluminometric immunoassay.  Inter- and intra-assay 

coefficients of variation were 12.0% and 6.0%, respectively, 

and the lower limit of detection was 1.1 IU/L. The absolute 

concentrations of FSH are somewhat higher in this assay as 

compared to values from many clinical laboratories, based on 

differences in the standards selected. 

In the model development, both hormones are natural 

logarithm-transformed to satisfy the model assumptions. 

 

Table 1: Descriptive characteristics (median (IQRa) or n(%)) of 

SWAN women with an observed naturally-occurring FMP 

(n=1215) 

Variables Groups Baseline 

n=1212 

Follow-up 09 

n=833 

Age (years)  47.16(4.02) 56.01(3.96) 

BMI(kg/m2)  26.37(9.62) 27.32(9.66) 

FSH(IU/L)  19.25(20.94) 99.30(53.80) 

E2 (pg/mL)  55.08(59.30) 18.40(10.35) 

AA 386 ( 31.85% ) 283 ( 33.97% ) 

CA 511 ( 42.16% ) 352 ( 42.26% ) 

CH 121 ( 9.98% ) 98 ( 11.76% ) 

HI 71 ( 5.86% ) N/A 

Raceb 

JP 123 ( 10.15% ) 100 ( 12% ) 

Worse 181 ( 14.93% ) 135 ( 16.21% ) 

Same 762 ( 62.87% ) 287 ( 34.45% ) 

Better 260 ( 21.45% ) 398 ( 47.78% ) 

Overall  

health  

status 

Missing 9 ( 0.74% ) 13 ( 1.56% ) 

Never 691 ( 57.01% ) 497 ( 59.66% ) 

Past 285 ( 23.51% ) 195 ( 23.41% ) 

Present 209 ( 17.24% ) 125 ( 15.01% ) 

Smoking  

at baseline 

Missing 27 ( 2.23% ) 16 ( 1.92% ) 
aIQR: interquartile range 
bRace: AA = “African American”, CA = “Caucasian”, CH = 

“Chinese”, HI = “Hispanic”, JP = “Japanese” 
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Table 2: Descriptive characteristics (mean (SD) or %) of 

MBHMS women with a naturally-occurring and observed FMP 

(n=181) 

Variables Groups Initial  

exama 

Most  

recentb 

Age(years)  39.9  ± 3.4 55 ± 3.5 

BMI(kg/m2)  27.3  ± 5.6 29.4 ± 6.4 

FSH(IU/L)  6.2 ± 4.7 63.8 ± 34.1 

BMI<30 74% 53% Obesity(%) 

BMI>30 26% 47% 

Never 54% 50% 

Former 23% 37% 

Smoking 

Current 23 % 13% 

Premenopause 81% -- 

Perimenopause 5% -- 

Postmenopause 2% 100% 

Surgical 

menopause 

-- -- 

Menopausal  

status 

Exogenous 

hormone use c 

12% -- 

aInitial examination for more than 95% of cohort (n = 600/629) 

is 1992/93 (excluding potential information from women who 

were pregnant or lactating) 
bCurrent examination is 2007/08 for the 80.4% of the cohort 

enrollees (n = 506/629) who are still alive, living within 2.5 

hours of the clinical site, and participating in the study.  
cOral contraceptive or hormone therapy use 

 

4.3 Results 

Figure1 shows randomly selected 100 individual hormone 

profiles from 1215 women around the FMP using SWAN data 

and provides an illustration of the segmented sub-processes to 

characterize the population ovarian aging with “pre- 

determined” cut-points. The black line and red line are two 

piece-wise linear mixed models. lk is the length of time-span of 

logHormone window of interest around the FMP. The change 

points and duration of lk are estimated under the developed 

method. 

For SWAN data, the four logFSH change points (95% CI) in 

years around FMP are -6.53 (-6.63, -6.43), -2.05 (-2.07, -2.03),  

-0.40 (-0.39, -0.41), and 2.00 (1.99, 2.01 ), respectively. The 

length of the time-window defined by change point pairs (
21, PP ) 

and (
42 ,PP ) are 4.48 (4.38, 4.58) and 4.05 (4.03, 4.07), 

respectively. The three logE2 change points (95% CI) in years 

around FMP are -2.03 (-2.07, -1.99), -0.01 (-0.03, 0.01), and 

2.17 (2.15, 2.19), respectively. The length of the time-window 

defined by change point pair (
31, PP ) is 4.19 (4.15, 4.23). 

The smoothed and segmented population mean profiles of 

SWAN data are shown in Figure 3a. For SWAN, the identified 

change points are about -7, -2, +2 for logFSH,  and -2, +2 for 

logE2 with time FMP = 0 enforced because it has conceptual 

importance in defining the menopause transition. Table 3 shows 

the annualized rate of changes in SWAN logFSH and logE2 with 

change points rounded up to integer values -7, -2, 0, +2 years 

around FMP (which is 0).  

For progressive segment comparisons of slopes as shown in 

Figure 3a, logFSH segments “-2 to 0” vs “-7 to -2” and “+2 to 

+8” vs “0 to +2 ” have significant changes in the adjacent slopes 

(p value<0.0001). For logE2 segments “-2 to 0” vs “-8 to -2” and 

“+2 to +8” vs “0 to +2 ” have significant changes in the adjacent 

slopes (p value<0.0001). For both hormones, the slopes of 

segment “0 to +2 ” and segment “-2 to 0” are not significantly 

different (p value ≈ 0.8). However their instantaneous slope 

curves are different as shown in Figure 3b~3c. 

Table 3 Annualized hormone rate of change: SWAN 

Annualized rate of change (SEa) Number of 

years around 

FMP log (FSH IU/L) log (E2 pg/mL) 

-8 

-7 

-8 ~ -7: 

-0.0553(se=0.0696) 

p=0.4266 

-2 -7 ~ -2: 

0.1189(se=0.0073) 

p<0.0001 

-8 ~ -2 

-0.0069(se=0.0087) 

p=0.4251 

0 -2 ~ 0: 

0.4654 (se=0.0121) 

p<0.0001 

-2 ~ 0 

-0.2924(se=0.0159) 

p<0.0001 

+2 0 ~ +2 

0.1583(se=0.0119) 

p<0.0001 

0 ~  +2 

-0.3024(se=0.0159) 

p<0.0001 

+8 +2 ~ +8 

-0.0031(se=0.0068) 

p=0.6484 

+2 ~ +8 

0.0143(se=0.0087) 

p=0.0986 
a SE: standard error 

 

MBHMS data provides a more extended time –span around the 

FMP ( ± 10 years). As seen in Figure 4a~4d, a major decline in 

logE2 rate of change lasts about 4 years (i.e., ± 2 years around 

FMP) (Figure 4b). A minor decline in logE2 rate of change 

occurs around +7 years post FMP, which is not observed in 

SWAN logE2. A parametric functional form might not detect 

this 2nd decline. Figure 4c shows that the acceleration / 

deceleration of logE2 decline may start earlier than the time at 

which significant changes are observed in rate of change. The 

instantaneous curvature curve (Figure 4d) of the mean profile, 

integration of rate of change and acceleration, has two local 

maxima around -2 and +2 years around FMP. 

 

Figure 3a: Smoothed and segmented mean profiles for logFSH 

and logE2:SWAN 
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Figure 3b: Rate of change (95%CI) for logE2:SWAN 

 

Figure 3c: Rate of change (95%CI) for logFSH:SWAN 

 

 

Figure 4a: Smoothed and segmented mean profiles for 

logE2:MBHMS 

 

Figure 4b: Rate of change (95%CI) for logE2:MBHMS 

 

Figure 4c: Acceleration (95%CI) for logE2:MBHMS 

 

Figure 4d: Curvature (95%CI) for logE2:MBHMS 

For a more epidemiological discussion of the implications of 

these findings please refer to [1~2] using MBHMS data and one 

forthcoming paper on E2 and FSH changes using SWAN 

data[31]. 

5. CONCLUSIONS AND FUTURE WORK 

Motivated by the study of the ovarian aging process around the 

final menstrual period in mid-life women defined by the 

longitudinal hormone measures E2 and FSH from longitudinal 

cohorts, we formulated the problem of staging the menopausal 

transition as a change detection problem by comparing slopes 

from two adjacent time-windows within a study frame. An 

integrative and novel approach developed to characterize the 

complex longitudinal patterns of change in biological dynamic 

processes in populations includes four steps: modeling the 

population mean profile using semi- / non- parametric stochastic 

mixed models, approximating instantaneous change 

characteristics including rate of change, acceleration / 

deceleration and curvature, segmenting the overall process into 

sub-processess using piecewise linear mixed models, and 

estimating the quantities of interest using a Bayesian Modeling 

Averaging Approach, accounting for model selection 

uncertainty. 

This approach has the capability to estimate the instantaneous 

population mean profile and population change characteristics, 

change point(s), the length of time-windows defined by any two 

change points of interest, and the mean rate of change of 

derived sub-processes. The major advantage of the methodology 

is that it does not assume parametric functional forms and thus 

can be applied to model those complex change patterns in 
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biological/epidemiological dynamic processes with little prior 

knowledge of the shape.  

During the model development, boopstrapped confidence 

intervals of rate of change and model average-based change 

points are evoked. So one element requiring future work 

includes conducting some comparative studies with parametric 

settings as well as improving computational efficiency by 

optimizing the algorithm. In nature, this work represents off-line 

change detection using all available data within Bayes 

perspective. However, in MBHMS and SWAN, more data are 

being collected at subsequent follow-up visits. So future work 

includes determining the feasiblility of adaptively updating the 

change points or detecting new change points when additional 

and informative data enters into the data pool. In 

epidemiological studies, there are correlated ordinal outcomes 

which might be addressed having similar constraints, i.e., log-

odds as a funciton of some variable (e.g, time) might be 

complex and unknown, e..g, nonlinear, nonparametric.  Thus, it 

would be valuable to extend this approach to longitudinal 

ordinal outocmes. 
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