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ABSTRACT 
 

An inverted pendulum robot has been designed and built 
using a fuzzy logic controller implemented in a Field 
Programmable Gate Array (FPGA).  The Mamdani fuzzy 
controller has been implemented using integer numbers to 
simplify its construction and improve system throughput.  
An accelerometer and rate gyroscope are used along with 
a complementary filter to monitor the state of the robot.  
Using angular velocity and angle error the fuzzy 
controller can successfully balance the inverted pendulum 
robot. 
 
Keywords: Fuzzy logic, fuzzy controller, robot, inverted 
pendulum, FPGA, accelerometer, gyroscope, 
complementary filter, real-time computing. 
 

INTRODUCTION 
 

The inverted pendulum problem is a classic 
control systems problem [1,2].  Maintaining an 
equilibrium position of the pendulum pointing up is a 
challenge as this equilibrium position is unstable.  As the 
inverted pendulum system is nonlinear it is well-suited to 
be controlled by fuzzy logic.  Typically a fuzzy controller 
is implemented in software running on some form of 
microprocessor.  Here, however, we demonstrate how an 
integer-based fuzzy controller can be directly 
implemented as hardware in a Field Programmable Gate 
Array (FPGA).  Sensor signal preprocessing has also 
been integrated into the FPGA. 
 

SYSTEM DYNAMICS 
 

The balancing robot designed uses two planetary 
gear motors mounted under a two circuit board frame 
with the battery pack attached between the two PCBs 
(Figure 1.)  As the battery is a significant portion of the 
mass of the robot it strongly influences the position of the 
center of gravity. 
 To properly understand the behavior of the 
inverted robot we need to develop the system equations 
that define its dynamic behavior.  Figure 2 illustrates the 
free body diagrams of the robot’s wheel and the body of 

the robot.  The diagrams show all the forces and moments 
acting on the bodies so it is possible to write the system 
equations.  A summary of all system equation variables is 
given in Table 1.  The sum of forces on the pendulum 
about an axis perpendicular to the pendulum can be 
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Figure 1.  CAD Drawing of Balancing Robot. 
 

 
 
Figure 2.  Free body diagram of the robot’s body and 
wheel.
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Table 1.  List of terms and variables. 
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The sum of moments about the center of gravity of the 
pendulum is 
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and linear acceleration of the robot can be related to 
angular acceleration of the wheel by  
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The DC motor torque is related to the applied voltage by 
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allowing us to solve for pendulum angular acceleration as 
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φ&  angular velocity of the wheel 
 

φ&&  angular acceleration of the wheel 
θ  angular position of the pendulum 

The sum of forces on the pendulum with respect to the x 
axis can be written as 
 θ&  angular velocity of the pendulum ( ) ( )θθθθ sincos 2&&&&& pppppA rmrmxmF =++ . (6) 

θ&&  angular acceleration of the pendulum 
x  position of the robot  

The sum of moments of the wheel about its center is x&  velocity of the robot  
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and the sum of forces on the wheel about the x axis is 
 

PF

AF
g

p

 force P 

 force A 
 acceleration of gravity 

I  pendulum inertia with respect to theta 

fwA FxmF −= &&     (8) 
 
allowing us to solve for wheel angular acceleration as 
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wI  wheel inertia with respect to phi 
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 mass of the wheel 

 mass of the pendulum 

 radius of the pendulum 

 radius of the wheel 

 torque produced by the motor 

 
Equations 5 and 9 form the system equations for the robot. 
 

SENSORS AND SENSOR FUSION 
 
 An Analog Devices rate gyro (ADXRS150) and 
accelerometer (ADXL202E) were used to make the 
inertial measurements.  The rate gyro has a single analog 
output for the rotation in the z axis.  The gyro is mounted 
to match the rotation of the robot.  The rate gyro 
measures angular velocity and outputs a voltage of 
 

( ) gg eTfv ++= θ&                  (10) 
 
where f(T) represents the effect of temperature and eg 
represents error, which is not known.  As the rate gyro is 
sensitive to temperature it provides an analog output 
where temperature can be measured.  A PIC 
microcontroller reads the temperature of the rate gyro 
regularly, converts it to the offset, f(T), and updates the 
FPGA with the offset value (Figure 3).  The FPGA then 
subtracts the offset from the sampled value of the rate 
gyro.  Since eg is not known it cannot be subtracted from 
the signal and so the remaining value of angular velocity 
will be known as which is not guaranteed to be the 

same as the actual angular velocity θ&  .  The values are 
left in the measured units to save computation time in the 
FPGA. 

gθ&
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Temperature Profile for ADXRS150
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Figure 3.  Temperature profile for ADXRS150. 
 

 
 
Figure 4.  Accelerometer output wave (one channel). 
 
 The ADXL202E has two PWM outputs (Figure 
4); one represents the acceleration in the x axis and the 
other represents the acceleration in the y axis.  The 
acceleration on a given axis is computed from the PWM 
signal by 
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A counter in the FPGA measures the high and low time 
of each of the inputs and converts them to acceleration.  
Figure 5 shows how the two input axes of the 
accelerometer are oriented with respect to the robot and 
gravity vector.  Assuming the only acceleration on the 
robot is the acceleration of gravity, the angle of the robot 
can be calculated directly from the two outputs 
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Figure 5.  Accelerometer configuration. 

of the accelerometer using the arctangent function.  
Because of this assumption the angle computed from the 
accelerometer will be referred to as θa: 
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The arctangent is computed with a CORDIC (Coordinate 
Rotation Digital Computer) algorithm.  The CORDIC 
algorithm uses a series of shifts and adds (Equations 13 
through 15) which are significantly less demanding than 
computing products and powers needed by an infinite 
series approach [3]. 
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COMPLEMENTARY FILTER 

 
 With the rotation, , and angle, , information 
a complementary filter algorithm in the FPGA computes 
a close estimate of the real angle of the robot.  For clarity, 
the subscripts a, g, and c denote outputs from the 
accelerometer, rate gyro, and complementary filter 
respectively.  A complementary filter is used because the 
rate gyro signal, , cannot be integrated directly without 
diverging to infinity because e

gθ& aθ

gθ&

g is not known.  The ideal 
discrete integration of the rate gyro output would be 
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where k represents the discrete sample number.  Also the 
angle signal , aθ , cannot be used directly because it is 
sensitive to disturbances and centripetal acceleration of 
the pendulum [2]. 
 The complementary filter removes elements of 
two signals, 

gθ and aθ , that are dissimilar and keeps 
elements that are similar.  It does this be removing a 
small amount of error, ec, on each computation cycle of 
the filter.  As mentioned previously, most, but not all, of 
the offset has been removed from the rate gyro signal and 
so the amount of error removed by the complementary 
filter, ec, must be larger than the maximum amount of 
remaining offset, eg.  Without meeting this criterion the 
error will accumulate and diverge to infinity.  The 
complementary filter computes the angle of the robot as 
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where 
 
( ) ( ) ( )11 −−−= kkke acc θθ .                (18) 

 
Figure 6 illustrates how the complementary filter is able 
to successfully track the actual angle of the robot without 
diverging to infinity. 
 

 
 
Figure 6.  Complementary filter test data. 
 

FUZZY LOGIC CONTROLLER 
 
 A fuzzy logic controller is an excellent choice 
for an inverted pendulum because it can easily be adapted 
to the system.  There are several different fuzzy logic 
models.  We have used the Mamdani model.  Fuzzy 
controllers deal with inputs as if they are inexact 
quantities or “fuzzy” inputs [4].  An example of this 
would be temperature.  A room may be 68°F, but in terms 
of a fuzzy controller it is considered to be a small amount 
“cold”, a large amount “warm”, and a medium amount 
“hot”. 
 In most fuzzy systems, the degrees of 
membership that each input belongs to the various 
membership functions is represented as a fractional value 
between 0 and 1.  For the example above, the temperature 
degrees of membership might be 0.05 “cold”, 0.7 “warm”, 
and 0.25 “hot”.  The precision of the degree of 
membership may be a 32, 64, or 80 bit floating point 
number.  The hardware needed to deal with these 
numbers is not simple or small.  By using degrees of 
membership in a range other than 0 to 1, the fuzzy logic 
controller can be made with significantly less hardware 
and can run at much higher sample rates [5, 6]. 
 If the degrees of membership ranged from 0 to 
80 in integer values, the temperature of the previous 
example would be 4 “cold”, 56 “warm”, and 20 “hot”.  
Although the numbers will not be represented as 

accurately, the fuzzy logic controller will perform the 
same basic operations.  The concept of a fuzzy controller 
maintains that the inputs are inexact quantities anyway, 
so the numerical precision may not be as important as the 
rules and update rate of the fuzzy controller.  When using 
integer numbers, the fuzzy controller will only need 
integer arithmetic operations instead of floating or fixed 
point arithmetic.  Also, the registers used to hold the 
numbers will be smaller. 
 For the inverted pendulum robot, there are two 
inputs to the fuzzy logic controller.  The first is the 
angular velocity or the first derivative of angle with 
respect to time.  The second input is the angle error of the 
robot.  The error is the difference between the angle of 
the robot and the desired angle of the robot.  For the 
purpose of this paper the desired angle is zero degrees, so 
the angle error is -θ.  As can be seen from Figure 2, θ is 0 
when the pendulum is upright. 
 The inputs θ and θ&  must be adjusted to fit the 
fuzzy controller before they are fed into it.  Figures 7 and 
8 show the membership functions for the θ  and  inputs.  
The fuzzy controller utilizes 8-bit unsigned integers for 
inputs so the actual 

θ&

θ  and  values must be adjusted 
accordingly to fit within a range of 0 to 255.  After some 
testing it was determined that the robot would be able to 
maintain control over a window of -10 < 

θ&

θ  < +10 
degrees.  Thus the θ  input was simply multiplied by a 
factor of 12.  This would center the “Neu”, or neutral 
membership function at 0 though, so an offset of 130 is 
added to keep all of the membership functions within the 
0 to 255 range. 

 

 
 
Figure 7.  Fuzzy logic controller input membership 
functions for angular position error. 
 

 
 
Figure 8.  Fuzzy logic controller input membership 
functions for angular velocity. 
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Adjusting  was not as straightforward.  Initial 
membership function locations were determined by 
simulation and then later tuned by experimentation.  The 
end results is that  is scaled and offset such that when 
the robot is acted on by an external force it tends to 
remain at the same angle 

θ&

θ&

θ  as it was before the 
disturbance. 
 Each of the inputs has five membership 
functions: VNeg, Neg, Neu, Pos, and VPos.  The “Neg” 
represents negative values, and the “Pos” represents 
positive values.  If a “V” precedes “Pos” or “Neg” it 
means that it is “Very” positive of “Very” negative.  
“Neu” simply means it a neutral value or near zero.  The 
maximum degree of membership of each of these 
functions is 80 and the minimum is 0. 
 Much of the configurability and power of a 
fuzzy logic controller is in the evaluation function or the 
rule inference engine.  Figure 9 shows the fuzzy rules 
matrix for this fuzzy controller.  Each column shows the 
membership functions of angular position error and each 
row shows the membership functions of angular velocity.  
If the robot is experiencing a “VNeg” angular position 
error and a “VPos” angular velocity, this is represented 
by the lower left square of the matrix, and the 
corresponding output for the fuzzy controller is “Pos”.  
This represents the evaluation of one fuzzy rule.  
Typically, each input will have a nonzero degree of 
membership simultaneously in more than one 
membership function.  Thus, multiple rules must be 
evaluated during each cycle in the fuzzy controller. 
 Mamdani rule inference is used in the fuzzy 
controller.  That is, when evaluating a rule where two 
input membership functions intersect in the rule inference 
matrix, the minimum degree of membership of the two 
input membership functions is assigned as the degree of 
membership to the corresponding output membership 
function.  For example, if the angular velocity input has a 
degree of membership of 25 “VPos” and the angular 
position error has a degree of membership of 55 “Neg” 
then the rule evaluation will result in the output 
membership function “Pos” being assigned a degree of 
membership of 25. 

 
 
Figure 9.  Fuzzy logic controller rule inference matrix. 
 

 
Figure 10.  Fuzzy logic controller output membership 
functions. 
 
 The last stage of fuzzy control is defuzzification 
in which all of the output membership function degrees of 
membership must be combined into a single output 
control value.  In this case the output is a PWM control 
signal as seen in Figure 10.  Here the output membership 
functions have been centered on 130 in order to keep 
them within the fuzzy logic controller’s data range of 0 to 
255.  The offset of 130 is subtracted from the fuzzy 
controller’s output before being given to the actual motor 
controller circuitry. 
 The defuzzification technique used in this fuzzy 
controller is a variation of the weighted average method.  
After all Mamdani rule inferences have been evaluated 
the maximum degree of membership of each of the output 
membership functions is kept and the others are discarded.  
The defuzzifier output is then computed according to 
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where 
 
  i ≡ the number of output membership functions 
  µ(zi) ≡ degree of membership in zith membership 

function 
  Czi ≡ center of zith membership function. 
 

SIMULATION RESULTS 
 
 The ability of the fuzzy logic controller to 
balance the inverted pendulum robot was first simulated 
based on the system equations for the robot (Equations 5 
and 9).  To keep things simple the robot’s wheels and 
motors were lumped together and modeled a single wheel 
and a single motor.  The actual masses of the 
wheel/motor combinations and the body were measured 
and their respective inertias computed.  The entire system 
was then modeled in Simulink.  In the simulation shown 
in Figure 11 the desired position of the robot is straight 
up at 0 degrees for the first one second.  Then from 1.0 to 
1.5 seconds the robot should maintain an angle of +5 
degrees followed by an angle of -5 degrees from 1.5 
seconds to 2.0 seconds.  Without friction, a negative 
angle is needed to keep the velocity of the robot low, 
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otherwise the required speed of the robot will exceed the 
motor’s maximum velocity and the pendulum will fall 
over.  Finally, the robot should return to a straight up 
position after the 2.0 second mark.  The time to peak 
response is about 0.1 seconds for a 5 degree movement 
and about 0.25 seconds for a 10 degree movement. 
 

 
 
Figure 11.  Simulation of the inverted pendulum and the 
fuzzy logic controller. 
 

HARDWARE RESULTS 
 
 An actual inverted pendulum robot has been 
built utilizing an FPGA board to implement the fuzzy 
logic controller, complementary filter, as well as much of 
the signal pre- and post-processing (Figure 12).  A second 
system board contains the motor driver circuitry and a 
PIC microcontroller to handle some auxiliary functions.  
The battery pack is mounted between the two boards.  
After initialization in an upright position the robot is able 
to successfully balance and maintain its equilibrium even 
if disturbed by an outside force as long as the disturbance 
is within limits.  As previously mentioned, as long as the 
robot’s angle is within -10 < θ  < +10 degrees it is able to 
successfully control itself and keep from falling over. 
 

CONCLUSION 
 
 An inverted pendulum robot capable of 
balancing itself and maintaining equilibrium has been 
designed and implemented in hardware using an FPGA-
based fuzzy logic controller.  Integer inputs, outputs, and 
degrees of membership are used in the fuzzy logic 
controller to reduce computational complexity and the 
amount of FPGA resources needed.  A two-axis 
accelerometer and a rate gyroscope used in combination 
with a complementary filter make an effective and simple 
solution for computing the actual angle of the robot.  The 
robot’s angular error and angular velocity are used as the 
inputs to the fuzzy controller.  As long as the robot is not 
severely disturbed it is able to successfully maintain 
control over a window of -10 < θ  < +10 degrees. 

 
 
Figure 12.  Photo of actual inverted pendulum robot. 
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