
Inverted Pendulum Design With Hardware Fuzzy Logic Controller

Eric Minnaert
Electrical and Computer Engineering, South Dakota School of Mines and Technology

Rapid City, SD 57701, USA

Brian Hemmelman
Electrical and Computer Engineering, South Dakota School of Mines and Technology

Rapid City, SD 57701, USA

Dan Dolan
Mechanical Engineering, South Dakota School of Mines and Technology

Rapid City, SD 57701, USA

ABSTRACT

An inverted pendulum robot has been designed and built
using a fuzzy logic controller implemented in a Field
Programmable Gate Array (FPGA). The Mamdani fuzzy
controller has been implemented using integer numbers to
simplify its construction and improve system throughput.
An accelerometer and rate gyroscope are used along with
a complementary filter to monitor the state of the robot.
Using angular velocity and angle error the fuzzy
controller can successfully balance the inverted pendulum
robot.

Keywords: Fuzzy logic, fuzzy controller, robot, inverted
pendulum, FPGA, accelerometer, gyroscope,
complementary filter, real-time computing.

INTRODUCTION

The inverted pendulum problem is a classic
control systems problem [1,2]. Maintaining an
equilibrium position of the pendulum pointing up is a
challenge as this equilibrium position is unstable. As the
inverted pendulum system is nonlinear it is well-suited to
be controlled by fuzzy logic. Typically a fuzzy controller
is implemented in software running on some form of
microprocessor. Here, however, we demonstrate how an
integer-based fuzzy controller can be directly
implemented as hardware in a Field Programmable Gate
Array (FPGA). Sensor signal preprocessing has also
been integrated into the FPGA.

SYSTEM DYNAMICS

The balancing robot designed uses two planetary
gear motors mounted under a two circuit board frame
with the battery pack attached between the two PCBs
(Figure 1.) As the battery is a significant portion of the
mass of the robot it strongly influences the position of the
center of gravity.
 To properly understand the behavior of the
inverted robot we need to develop the system equations
that define its dynamic behavior. Figure 2 illustrates the
free body diagrams of the robot’s wheel and the body of

the robot. The diagrams show all the forces and moments
acting on the bodies so it is possible to write the system
equations. A summary of all system equation variables is
given in Table 1. The sum of forces on the pendulum
about an axis perpendicular to the pendulum can be

FPGA PCB

BatterySystem PCB

Center of
Gravity

DC Planetary Gear Motors with

Encoders

Figure 1. CAD Drawing of Balancing Robot.

Figure 2. Free body diagram of the robot’s body and
wheel.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 334 ISSN: 1690-4524

Table 1. List of terms and variables.

written as

() () ()
()θ

θθθθ

sin

cossincos

pgm
AFNFprpmxpm

=

+++ &&&&
. (1)

The sum of moments about the center of gravity of the
pendulum is

() () mTpIprAFprNF −=+ θθθ &&cossin (2)

and linear acceleration of the robot can be related to
angular acceleration of the wheel by

wrx φ&&&& = . (3)

The DC motor torque is related to the applied voltage by

m

em

m

m
m r

Vkk
r
Vk

T −= (4)

allowing us to solve for pendulum angular acceleration as

() ()
()2

cossin

pppm

memmwppmpp

rmIr
Vkkkrrmrrmgr

+

+−−
=

φθφθ
θ

&&&
&& . (5) φ angular position of the wheel

φ& angular velocity of the wheel

φ&& angular acceleration of the wheel
θ angular position of the pendulum

The sum of forces on the pendulum with respect to the x
axis can be written as
 θ& angular velocity of the pendulum () ()θθθθ sincos 2&&&&& pppppA rmrmxmF =++ . (6)

θ&& angular acceleration of the pendulum
x position of the robot

The sum of moments of the wheel about its center is x& velocity of the robot
x&&

NF

wNF

 acceleration of the robot
 normal force of the pendulum

 normal force of the wheel

wfmw rFTI +=φ&& (7)

and the sum of forces on the wheel about the x axis is

PF

AF
g

p

 force P

 force A
 acceleration of gravity

I pendulum inertia with respect to theta

fwA FxmF −= && (8)

allowing us to solve for wheel angular acceleration as

() ()
()22

2 sincos

wwwpwm

memmwppmwpp

rmrmIr
Vkkkrrmrrrmr

++

+−−
=

φθθθθ
φ

&&&&
&& . (9)

wI wheel inertia with respect to phi

wm

pm

pr

wr

mT

 mass of the wheel

 mass of the pendulum

 radius of the pendulum

 radius of the wheel

 torque produced by the motor

Equations 5 and 9 form the system equations for the robot.

SENSORS AND SENSOR FUSION

 An Analog Devices rate gyro (ADXRS150) and
accelerometer (ADXL202E) were used to make the
inertial measurements. The rate gyro has a single analog
output for the rotation in the z axis. The gyro is mounted
to match the rotation of the robot. The rate gyro
measures angular velocity and outputs a voltage of

() gg eTfv ++= θ& (10)

where f(T) represents the effect of temperature and eg
represents error, which is not known. As the rate gyro is
sensitive to temperature it provides an analog output
where temperature can be measured. A PIC
microcontroller reads the temperature of the rate gyro
regularly, converts it to the offset, f(T), and updates the
FPGA with the offset value (Figure 3). The FPGA then
subtracts the offset from the sampled value of the rate
gyro. Since eg is not known it cannot be subtracted from
the signal and so the remaining value of angular velocity
will be known as which is not guaranteed to be the

same as the actual angular velocity θ& . The values are
left in the measured units to save computation time in the
FPGA.

gθ&

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 3 35ISSN: 1690-4524

Temperature Profile for ADXRS150

y = -0.0998x + 32476

28400

28600

28800

29000

29200

29400

29600

29800

30000

30000 31000 32000 33000 34000 35000 36000 37000

Temperature Units

Ra
te

 G
yr

o
Un

its

Figure 3. Temperature profile for ADXRS150.

Figure 4. Accelerometer output wave (one channel).

 The ADXL202E has two PWM outputs (Figure
4); one represents the acceleration in the x axis and the
other represents the acceleration in the y axis. The
acceleration on a given axis is computed from the PWM
signal by

85.0
2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

T
T

a . (11)

A counter in the FPGA measures the high and low time
of each of the inputs and converts them to acceleration.
Figure 5 shows how the two input axes of the
accelerometer are oriented with respect to the robot and
gravity vector. Assuming the only acceleration on the
robot is the acceleration of gravity, the angle of the robot
can be calculated directly from the two outputs

center of
gravity

xa

ya

g ya

xa

θ

wheel

pendulum

Figure 5. Accelerometer configuration.

of the accelerometer using the arctangent function.
Because of this assumption the angle computed from the
accelerometer will be referred to as θa:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= −

y

x
a a

a1tanθ . (12)

The arctangent is computed with a CORDIC (Coordinate
Rotation Digital Computer) algorithm. The CORDIC
algorithm uses a series of shifts and adds (Equations 13
through 15) which are significantly less demanding than
computing products and powers needed by an infinite
series approach [3].

i
iiii dyxx −

+ −= 21 (13)

i
iiii dxyy −

+ += 21 (14)

()
⎩
⎨
⎧
+

<−
=−= −−

+ otherwise
zif

dwithdzz i
i

i
iii 1

01
2tan 1

1
 (15)

COMPLEMENTARY FILTER

 With the rotation, , and angle, , information
a complementary filter algorithm in the FPGA computes
a close estimate of the real angle of the robot. For clarity,
the subscripts a, g, and c denote outputs from the
accelerometer, rate gyro, and complementary filter
respectively. A complementary filter is used because the
rate gyro signal, , cannot be integrated directly without
diverging to infinity because e

gθ& aθ

gθ&

g is not known. The ideal
discrete integration of the rate gyro output would be

() () ()
t
k

kk g
gg ∆

+−=
θ

θθ
&

1 (16)

where k represents the discrete sample number. Also the
angle signal , aθ , cannot be used directly because it is
sensitive to disturbances and centripetal acceleration of
the pendulum [2].
 The complementary filter removes elements of
two signals,

gθ and aθ , that are dissimilar and keeps
elements that are similar. It does this be removing a
small amount of error, ec, on each computation cycle of
the filter. As mentioned previously, most, but not all, of
the offset has been removed from the rate gyro signal and
so the amount of error removed by the complementary
filter, ec, must be larger than the maximum amount of
remaining offset, eg. Without meeting this criterion the
error will accumulate and diverge to infinity. The
complementary filter computes the angle of the robot as

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 336 ISSN: 1690-4524

() () () ()ke
t
k

kk c
g

cc −
∆

+−=
θ

θθ
&

1 (17)

where

() () ()11 −−−= kkke acc θθ . (18)

Figure 6 illustrates how the complementary filter is able
to successfully track the actual angle of the robot without
diverging to infinity.

Figure 6. Complementary filter test data.

FUZZY LOGIC CONTROLLER

 A fuzzy logic controller is an excellent choice
for an inverted pendulum because it can easily be adapted
to the system. There are several different fuzzy logic
models. We have used the Mamdani model. Fuzzy
controllers deal with inputs as if they are inexact
quantities or “fuzzy” inputs [4]. An example of this
would be temperature. A room may be 68°F, but in terms
of a fuzzy controller it is considered to be a small amount
“cold”, a large amount “warm”, and a medium amount
“hot”.
 In most fuzzy systems, the degrees of
membership that each input belongs to the various
membership functions is represented as a fractional value
between 0 and 1. For the example above, the temperature
degrees of membership might be 0.05 “cold”, 0.7 “warm”,
and 0.25 “hot”. The precision of the degree of
membership may be a 32, 64, or 80 bit floating point
number. The hardware needed to deal with these
numbers is not simple or small. By using degrees of
membership in a range other than 0 to 1, the fuzzy logic
controller can be made with significantly less hardware
and can run at much higher sample rates [5, 6].
 If the degrees of membership ranged from 0 to
80 in integer values, the temperature of the previous
example would be 4 “cold”, 56 “warm”, and 20 “hot”.
Although the numbers will not be represented as

accurately, the fuzzy logic controller will perform the
same basic operations. The concept of a fuzzy controller
maintains that the inputs are inexact quantities anyway,
so the numerical precision may not be as important as the
rules and update rate of the fuzzy controller. When using
integer numbers, the fuzzy controller will only need
integer arithmetic operations instead of floating or fixed
point arithmetic. Also, the registers used to hold the
numbers will be smaller.
 For the inverted pendulum robot, there are two
inputs to the fuzzy logic controller. The first is the
angular velocity or the first derivative of angle with
respect to time. The second input is the angle error of the
robot. The error is the difference between the angle of
the robot and the desired angle of the robot. For the
purpose of this paper the desired angle is zero degrees, so
the angle error is -θ. As can be seen from Figure 2, θ is 0
when the pendulum is upright.
 The inputs θ and θ& must be adjusted to fit the
fuzzy controller before they are fed into it. Figures 7 and
8 show the membership functions for the θ and inputs.
The fuzzy controller utilizes 8-bit unsigned integers for
inputs so the actual

θ&

θ and values must be adjusted
accordingly to fit within a range of 0 to 255. After some
testing it was determined that the robot would be able to
maintain control over a window of -10 <

θ&

θ < +10
degrees. Thus the θ input was simply multiplied by a
factor of 12. This would center the “Neu”, or neutral
membership function at 0 though, so an offset of 130 is
added to keep all of the membership functions within the
0 to 255 range.

Figure 7. Fuzzy logic controller input membership
functions for angular position error.

Figure 8. Fuzzy logic controller input membership
functions for angular velocity.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 3 37ISSN: 1690-4524

Adjusting was not as straightforward. Initial
membership function locations were determined by
simulation and then later tuned by experimentation. The
end results is that is scaled and offset such that when
the robot is acted on by an external force it tends to
remain at the same angle

θ&

θ&

θ as it was before the
disturbance.
 Each of the inputs has five membership
functions: VNeg, Neg, Neu, Pos, and VPos. The “Neg”
represents negative values, and the “Pos” represents
positive values. If a “V” precedes “Pos” or “Neg” it
means that it is “Very” positive of “Very” negative.
“Neu” simply means it a neutral value or near zero. The
maximum degree of membership of each of these
functions is 80 and the minimum is 0.
 Much of the configurability and power of a
fuzzy logic controller is in the evaluation function or the
rule inference engine. Figure 9 shows the fuzzy rules
matrix for this fuzzy controller. Each column shows the
membership functions of angular position error and each
row shows the membership functions of angular velocity.
If the robot is experiencing a “VNeg” angular position
error and a “VPos” angular velocity, this is represented
by the lower left square of the matrix, and the
corresponding output for the fuzzy controller is “Pos”.
This represents the evaluation of one fuzzy rule.
Typically, each input will have a nonzero degree of
membership simultaneously in more than one
membership function. Thus, multiple rules must be
evaluated during each cycle in the fuzzy controller.
 Mamdani rule inference is used in the fuzzy
controller. That is, when evaluating a rule where two
input membership functions intersect in the rule inference
matrix, the minimum degree of membership of the two
input membership functions is assigned as the degree of
membership to the corresponding output membership
function. For example, if the angular velocity input has a
degree of membership of 25 “VPos” and the angular
position error has a degree of membership of 55 “Neg”
then the rule evaluation will result in the output
membership function “Pos” being assigned a degree of
membership of 25.

Figure 9. Fuzzy logic controller rule inference matrix.

Figure 10. Fuzzy logic controller output membership
functions.

 The last stage of fuzzy control is defuzzification
in which all of the output membership function degrees of
membership must be combined into a single output
control value. In this case the output is a PWM control
signal as seen in Figure 10. Here the output membership
functions have been centered on 130 in order to keep
them within the fuzzy logic controller’s data range of 0 to
255. The offset of 130 is subtracted from the fuzzy
controller’s output before being given to the actual motor
controller circuitry.
 The defuzzification technique used in this fuzzy
controller is a variation of the weighted average method.
After all Mamdani rule inferences have been evaluated
the maximum degree of membership of each of the output
membership functions is kept and the others are discarded.
The defuzzifier output is then computed according to

()∑
∑

=

i
i

i
zi

HA z

Cz
Q

i

)(max

]*))([max(

µ

µ
 (19)

where

 i ≡ the number of output membership functions
 µ(zi) ≡ degree of membership in zith membership

function
 Czi ≡ center of zith membership function.

SIMULATION RESULTS

 The ability of the fuzzy logic controller to
balance the inverted pendulum robot was first simulated
based on the system equations for the robot (Equations 5
and 9). To keep things simple the robot’s wheels and
motors were lumped together and modeled a single wheel
and a single motor. The actual masses of the
wheel/motor combinations and the body were measured
and their respective inertias computed. The entire system
was then modeled in Simulink. In the simulation shown
in Figure 11 the desired position of the robot is straight
up at 0 degrees for the first one second. Then from 1.0 to
1.5 seconds the robot should maintain an angle of +5
degrees followed by an angle of -5 degrees from 1.5
seconds to 2.0 seconds. Without friction, a negative
angle is needed to keep the velocity of the robot low,

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 338 ISSN: 1690-4524

otherwise the required speed of the robot will exceed the
motor’s maximum velocity and the pendulum will fall
over. Finally, the robot should return to a straight up
position after the 2.0 second mark. The time to peak
response is about 0.1 seconds for a 5 degree movement
and about 0.25 seconds for a 10 degree movement.

Figure 11. Simulation of the inverted pendulum and the
fuzzy logic controller.

HARDWARE RESULTS

 An actual inverted pendulum robot has been
built utilizing an FPGA board to implement the fuzzy
logic controller, complementary filter, as well as much of
the signal pre- and post-processing (Figure 12). A second
system board contains the motor driver circuitry and a
PIC microcontroller to handle some auxiliary functions.
The battery pack is mounted between the two boards.
After initialization in an upright position the robot is able
to successfully balance and maintain its equilibrium even
if disturbed by an outside force as long as the disturbance
is within limits. As previously mentioned, as long as the
robot’s angle is within -10 < θ < +10 degrees it is able to
successfully control itself and keep from falling over.

CONCLUSION

 An inverted pendulum robot capable of
balancing itself and maintaining equilibrium has been
designed and implemented in hardware using an FPGA-
based fuzzy logic controller. Integer inputs, outputs, and
degrees of membership are used in the fuzzy logic
controller to reduce computational complexity and the
amount of FPGA resources needed. A two-axis
accelerometer and a rate gyroscope used in combination
with a complementary filter make an effective and simple
solution for computing the actual angle of the robot. The
robot’s angular error and angular velocity are used as the
inputs to the fuzzy controller. As long as the robot is not
severely disturbed it is able to successfully maintain
control over a window of -10 < θ < +10 degrees.

Figure 12. Photo of actual inverted pendulum robot.

REFERENCES

[1] J. Lam, “Control of an Inverted Pendulum”,
University of California, Santa Barbara, 10 June 2004,
http://www.ece.ucsb.edu/~roy/student_projects/Johnny_L
am_report_238.pdf.

[2] R. Ooi, “Balancing a Two-Wheeled Autonomous
Robot”, University of Western Australia, 3 Nov. 2003,
http://www.cs.cmu.edu/~mmcnaugh/kdc/as7/2003-
Balance-Ooi.pdf.

[3] R. Andraka, “A Survery of CORDIC Algorithms for
FPGA Based Computers”, International Symposium on
Field Programmable Gate Arrays, 1998.

[4] J. Yen, and R. Langari, Fuzzy Logic: Intelligence,
Control, and Information, Upper Saddle River, NJ:
Prentice Hallm Inc., 1999.

[5] B. Hemmelman, “High Performance Real-Time
Fuzzy Logic System Using Field Programmable Gate
Arrays and VHDL”, Artificial Neural Networks In
Engineering (ANNIE) Conference, St. Louis, MO, 2004.

[6] L. Terum, and B. Hemmelman, “A One GigaFLIPS
Fuzzy Logic Control Chip Using Only Combinational
Logic and Field Programmable Gate Arryas, IEEE
Region 5 Conference, San Antonio, TX, 2006.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 3 39ISSN: 1690-4524

	S406IQ

