

Wei Ding

University of Maine at Fort Kent

Fort Kent, Maine 04743, USA

wei.ding@maine.edu

Alban Moreau

University of Brest

Brest, France

alban.moreau@etudiant.univ-brest.fr

Abstract— With the encouragement from success of P2P systems

in real world application, recently we have seen active research

on synergy of P2P systems and mobile ad hoc networks. The

paper proposes a solution for mobility disturbance problem in

initialization of ring-based P2P systems over ad hoc networks. It

is a decentralized ring construction protocol in presence of

mobility. A Mobile Ring Ad-hoc Networks (MRAN) protocol is

presented. MRAN is an extension of RAN [1] under the mobile

condition. Simulation result shows MRAN works well with

mobility. Upper bound of maximum speed of moving nodes is

investigated in simulation.

Keywords-mobility; topology; ring construction; peer-to-

peer;ad-hoc networks

I. INTRODUCTION

Decentralized computing is believed to have great potential
to replace the client/server model. As leaders of decentralized
computing, Mobile Ad-hoc Networks (MANETs) and Peer-to-
Peer (P2P) systems are recent hot topics. They share many
aspects in decentralization. However, their levels of real world
application are widely divergent. Cachelogic reported that in
January 2006 P2P traffic accounted for 71% of all Internet
traffic. Contrarily, only few applications of MANETs have
been commercialized. The synergy of P2P systems and
MANETs has stimulated considerable research effort. Though
most have focused on routing, initialization is indispensable.

In [1] a Ring Ad-hoc Networks (RAN) protocol was
proposed, which is an initialization protocol for ring-based P2P
systems over MANETs. The feasibility of RAN protocol is
mathematically proved. Simulation results support the proof in
static scenarios. In this paper we extend RAN to MRAN, i.e.
Mobile RAN, to cover mobile scenarios. Random walk model
is used. In [1], three algorithms are tested. Only distributed
exhaustive pattern (RAN-DE) performs well in both efficiency
and effectiveness. MRAN inherits RAN-DE. In this paper,
sometimes we use RAN as synonym as RAN-DE.

MRAN applies to some other models such as random
waypoint as well. It targets at walking based applications, like
conference, airport, museum, hospital, etc. The simulation
shows that MRAN is adaptive and flexible to mobility.

The problem from mobility is the topology disturbance.

Each node in a connected component of a MANET has a
virtual spanning tree called component tree, of which the root
is always itself. For a static MANET, the component tree is
fixed. With mobility, neighbor set of a node is not steady any
more. The change in the neighbor set tree causes the change of
component tree. Adjustment has to be made to remove
detached branches and to accommodate new arrived branches.
And nodes keep moving while we adjust to previous
movement.

The rest of paper is organized as follow. Section 2
introduces related works. Section 3 gives a review of RAN.
Section 4 analyzes the impact of mobility and possible counter
measures. Section describes our solution, the MRAN protocol.
Section 6 reports the simulation and gives the upper-bound of
mobility. Section 7 concludes the paper.

II. RELATED WORKS

Initialization or bootstrapping of a structured P2P system is
the initial procedure in which nodes are assigned IDs and
overlay topology is constructed. After it, the system should be
able to run normally. Bootstrapping could be traced back to the
very beginning of structured P2P systems. In 2001, Chord [2,
3] and Pastry [4] were developed. Since then bootstrapping has
been dominated by node joining approach. It was usually
concealed. [2, 3] and [4] did not describe how the ring should
be set up. Same are new systems like Virtual Ring Routing [5].
[6, 7, 8, 9] tried to transplant ring-based P2P systems into
MANETs. They handled bootstrapping similarly, either with
joining method or ignored bootstrapping.

Solutions came recently in P2P over wired networks. In
[10], T-Man protocol gave a simple and elegant solution for
topology construction. It found that many topologies could be
expressed with a ranking function, which is often as simple as
Euclidean distance. In [11] T-Man was applied directly in
Chord over wired networks. Ring Network [12] suggested an
intuitive algorithm for searching closest successor in node
identifier space.

RAN protocol [1] is probably the first workable approach in
initialization of ring-based P2P systems over MANETs. RAN
benefited from T-Man and Ring Networks. It builds a ring for
each connected component in a MANET. Upon this ring, ring-

Mobility Impact

in Initializing Ring-Based P2P Systems over
MANETs

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 5 63ISSN: 1690-4524

based P2P systems could run immediately without lengthy
stabilization.

III. REVIEW OF RAN PROTOCOL

A. Outline

Figure 1. Left shows neighborhood relation. Middle shows original

successor relation. Right is successor relation after running RAN

RAN is a decentralized message passing protocol to build a
ring for each connected component in a MANET. Each node
dynamically builds but does not store a component tree. It sets
itself as the root of the tree. Distance from node A to node B is

defined as maxIDID AB mod)(− . max is a relatively huge modulo.
The ring topology is determined by the successor relation
among nodes. At each step, if a node has shorter distance from
root, it is selected as the new successor. The procedure repeats
till the tree is traversed.

RAN integrates the overlay layer directly into Network and
MAC layers. Similarly dynamic source routing is integrated
into ring-based distributed hash table (DHT). It avoids direct
mapping of overlay layer into lower layers. Every node goes
through its component tree on the fly. No node keeps entire
component tree in storage. Only some parts of the tree exist in
memory when searching for next closer successor. This
statelessness considerably increases flexibility and robustness.

Three patterns are tested to find optimal balance between
effectiveness and efficiency. Two exhaustive patterns search
the entire tree for closer successor. So the ideal ring is
guaranteed. However, this exhaustion may suffer from high
overhead of time and message. RAN-DE has better
performance because only neighbors exchange messages and
no multi-hop message is transmitted. In RAN-DE, the root
sends a getCandidate message to each direct child. At all
following levels, each receiver of this message forwards the
message to its own children at the next level until leaf nodes
are encountered. From leaf nodes, the closest successor of the
root in the subtree is calculated and is returned to the parent
node in a candidate message. From one level to next upper
level, candidate messages are forwarded and integrated at
parent nodes. This procedure is repeated till the root node is
met. The downward execution is a limited flooding.

Three options could be applied to three patterns to improve
the efficiency. Plain option means no additional operation and
the search should end with a complete ring. The approximation
option loosens the end condition of search. A small fraction of

nodes are allowed to be left out of the final ring. In multicast
option a node sends message to all direct children by
multicasting.

Figure 2. Convert a connected component to a component tree

B. Variables

There are two types of variables. One is collective type,
which is for all component trees on this node. The other is
node-based. The important root_set is the set of root of
component trees that cover this node. For each node, these trees
use common resources on this node by time sharing. If we
ignore the microscopic details of sharing, we can simply think
these component trees as running on this node concurrently.
Other important collective variables are: the queue for
incoming messages in_queue, the queue for outgoing messages

out_queue, set of current one-hop neighbors Γ.

All node-based variables are referenced in the framework
of a component tree. So each node has n copies of node-based
data structures. Homonymous variables at a node are
differentiated by their root. The most important node-based
variable is r, ID of the root of component tree. It designates the
component tree to node-based variables. Other important node-
based variables are:

• candidate(r): closest candidate for r

• candidate_distance(r): ID space distance from r to
candidate(r)

• finished(r): indicate if the search for r’s closest
successor is finished

Messages are not normal variables. But they are similar
from the view point of data structure. Three messages are
defined in the distributed exhaustive pattern [1], namely,
getCandidate, candidate, and alreadyReceived. All are
transferred inside a certain component tree. All have fields r,
sender, and receiver. r is the root of the component tree.

C. Algorithm of Distributed Exhaustive Pattern

The algorithm is written in AP notation. u represents current

node.

(a1)

Protocol starts →

construct Γ

if Γ = ∅ then finished := true

1

10

8

7

4

1

10

8

7

4

1

10

8

7

4

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 564 ISSN: 1690-4524

reply_received := 0

for each h ∈ Γ do send getCandidate(u, u, h) to h

[]

(a2)

receive getCandidate(r, q, u) from q →

if r ∈ root_set

then send alreadyReceived(r, u, q) to q

else
root_set := root_set + {<r, q>}

candidate(r) := u

candidate_distance(u) := (u – r) MOD maximum

for each h ∈ (Γ - {q}) do send getCandidate(r, u, h) to h

[]

(a3)

receive candidate(r, cd, q, u) from q →

if r∉ root_set then return

x := parent of r in root_set

reply_received ++

d := (cd – r) MOD maximum

if d < candidate(r)

then
 candidate(r) := cd

 candidate_distance(r) := d

if u ≠ r

then

 if reply_received = |Γ| - 1

 then send candidate(r, candidate(r), u, x) to x

else

 if reply_received = |Γ|

 then finished := true

[]

(a4)

receive alreadyReceived(r, q, u) from q →

if r∉ root_set then return

x := parent of r in root_set

reply_received ++

already_received_neighbor ++

if u ≠ r

then

 if reply_received = |Γ| - 1

 then send candidate(r, candidate(r), u, x) to x

else

 if reply_received = |Γ|

 then finished := true

[]

IV. IMPACT OF MOBILITY

A. Types of Changes

For individual nodes, mobility changes their position. It
causes the fluctuation in its neighbor set, unless all its
neighbors are in a same collective mobility pattern. The change
of neighbor set in turn causes the change in network topology.
The topology change is shown in two aspects. First is the

change of connected components, which is more radical. The
second is the change of the component tree within unchanged
component set.

Now we elaborate on the change on the component tree. If
we look at the disturbance from in the framework of single
component tree, changes could be generalized into two types,
that is, changes from children nodes and changes from parent
nodes. Most changes from children nodes are lost branches (or
lost subtree). A change from parent nodes is usually remedied
by shift to hidden parent. The former is generic disturbance
occurring in most cases.

The latter only happens when the connected component is
highly connected, which means, a node may have more than
one possible parent nodes. Due to the requirement of tree
structure, it can only pick up one as its current parent. All
others become its hidden parents. They are still parent nodes by
radio range, but not used as parents in this particular root’s
component tree. Keeping hidden parents is very helpful in
dense or well-connected component to minimize the adaptation
overhead.

B. Lost Branch

In a component tree, there are three possible scenarios in
lost branches caused by mobility. To distinguish these three
scenarios, we define the concept of current line of search. In a
component tree, the search for the closest candidate in MRAN
is always done from root to leaves. In the protocol inherited
from the distributed exhaustive pattern in RAN, the search
starts from the root, simultaneously run down through all
braches of root toward the leaves. At each point in time, there
is only one active node on any path from root to a leave. At any
point in time, current line of search consists of active nodes
from all paths from the root to every leaf nodes.

There are two kinds of current line of search that are
slightly different. One is seen as real time ideal line of search,
which probably only exists in physical world, perceivable to
researchers, and always reflects the exactly accurate connected
component and corresponding component tree, and is not
skewed by disturbance from mobility. One is visible to
computers and embodied by data structure in storage, which is
likely vulnerable to disturbance from mobility. We use the
concept to clarify problem and define solution, so what we use
here is the former form, which is invisible to computer.

In the first scenario, a lost branch is below the current line
of search. There is almost no effect of this loss. Actually the
execution of a search protocol will not notice this change.

In the second scenario, the loss occurs on the current line of
search. That means, the sender has an incorrect neighbor set
when it sends out the getCandidate message, though it has the
right neighbor set very short time before the sending. If the
neighbor set is updated with much higher a rate, for example,
by using hello message, this scenario is impossible. Otherwise,
if the neighbor set is not updated that frequently, the receiver
node has left the radio range of the sender. But the sender has
not noticed this. This situation is a little tricky. The receiver
definitely can not tell the occurrence of this transmission. The
sender would not know as well if the message passing is not

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 5 65ISSN: 1690-4524

enforced with acknowledgement message. In this paper we
assume all message are acknowledged by a very short message,
which is processed with very high priority when received and
guaranteed to be sent immediately. Under this assumption, after
the sender updates to the correct neighbor set, the second
scenario could be reduced to the first scenario.

In the third scenario, the lost branch is above the current
line of search. According to the MRAN algorithm, everything
is still same on the downward running of the protocol.
Problems only arise when the execution reaches the bottom of
the component tree and the candidate message is sent back to
the root. Note that in every step of downward running, a return
path is calculated and sent along with the getCandidate
message. In this case, the root of the lost branch will not be
able to find parent node recorded from downward running. In
another word, the node finds that supposed parent is not in
neighborhood, the effort of returning of candidate should be
ended here. This branch should be cut off the component tree
of this particular root. In (a5) of AP notation of MRAN
algorithm (see Section 5), a node updates its parent set as soon
as it finds that it has lost current parent nodes. However, here is
a possibility of duplicated parent nodes if the component well
connected, which we will discuss in next section.

C. Hidden Parents

In above third scenario for a dense or well-connected
network, another possibility could be brought out by mobility.
We call it hidden parents. In a well-connected network, a node
of a certain component tree may have more than one nodes in
its radio range, which connect itself back to higher layers of
this component tree. Mobility disturbance may break links to
some hidden nodes, but it is unlikely that all links to hidden
nodes are broken. If a lost child node has unbroken links to
connect it to the remaining part of the component tree, it should
use this links to connect back to the original component tree.
The advantage of shifting is: the topology change due to
mobility could be minimized; so could overhead of adaptation.
If there are more than one links available, we simply use the
rule of first come first serve.

The hidden parent list is constructed when duplicate
getCandidate messages are received. By the rule of first come
first serve, the sender of first getCandidate message becomes
the current parent; following senders are saved along with
corresponding getCandidate messages. Saving of messages is
essential because the path from root is included in the message.
When the getCandidate message is too big or there are many
duplicated getCandidate messages in incoming queue, it is
advisable to just save the parent node ID (or index) and the
path.

The shifting adaptation is not limited to parent change. For
the current node, we also need delete the getCandidate
message from its lost parent in its incoming message queue,
and in the root set. This message should be the only messages

from the lost parent. These two pieces of information  node

ID and the path from root via new parent  should be used to
generate a new entry in the root set. When a candidate message
comes back from a leave, it only contains the root as the
destination. The root is used to look up the root set table, and

the new parent will be return as the receiver of the next
candidate message.

Obviously, hidden parents are accompanied with hidden
children. Hidden children are those nodes in neighborhood that
have sent alreadyReceived message to the current node.

D. Rescuing Descendent Nodes of a Definitely Lost Node

In last section, if no node in the hidden parent list is
connected to the current node, the current node is lost for sure.
We call this kind of node definitely lost node. Unlike in Section
3.1 where a lost branch is simply cut off from the original tree,
we choose another approach with much limited deviation from
the original component tree. The definitely lost node floods a
definitelyLost message to its descendents. In its subtree, a node
do similar thing as described in Section 3.2 after receiving this
definitelyLost message. It checks its own hidden parent list to
find a working hidden parent to connect itself back to the
original component tree. The definitelyLost message is
forwarded to receiver node’s children only if it finds itself lost
as well. That means it could not find a hidden parent in
neighborhood which could be used to replace its lost parent.

Note that a node can only send out a definitelyLost message
after it has received and forwarded a getCandidate message. In
another word, this children rescue procedure is not applicable
to nodes below the current line of search. It is also not
applicable to the root node of the component tree. The reason
is: a node below the current line of search has not had the
chance to compile its hidden parent list. The list could only be
finalized after a node is completely above the current line of
search.

V. MRAN

A. Possible Approaches

There are two radical solutions. One is to apply thorough
and frequent update to reflect mobility. Another is to apply no
update for mobility at all. The first approach totally abandons
previous component trees and restarts everything from the very
beginning. It would cause tremendous overhead in the
adjustment. More importantly, when average speed of mobility
is high, the rate of update of component trees may not be able
to catch up mobility change. With the second approach, MRAN
is reduced to the distributed exhaustive pattern of original RAN
protocol. The algorithm would not stop when there is an
unrecovered lost branch. The program will remain in an infinite
loop since the end condition is for the root of a component tree
to collect all response from its descendents. Obviously, a third
course has to be found to keep MRAN workable facing
mobility.

In this paper, a minimum adjustment approach is proposed
to handle mobility change. This minimum adjustment is
completed in rather short time so it will not be interfered by
next round mobility. It is independent to searching cycle of
MRAN protocol.

Similar to RAN, MRAN is based upon message passing.
MRAN keeps the major part of search algorithm of RAN. In
the downward flow of RAN, almost nothing is changed. The

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 566 ISSN: 1690-4524

getCandidate message is passed in the same manner exactly as
in RAN. Even in an already lost branch of a component tree,
the message will still be forwarded to leaves. In this largely
distributed setting, only way of inter-node communication is
message passing. To notify lower nodes an incorrect message,
we have to send another message. However, this correction
message could never catch the first wrong message, so no
remedy could be implemented. The only thing we can do is
letting it be.

B. Variables

MRAN inherits many variables from RAN. Following is

the list: mobility_interval: the period of mobility; Γ1(r): old set
of one-hop neighbors; unreplied_children(r): set of ID of
unreplied children; replied_children(r): set of IDs of children
that returned the candidate messages; candidate(r): current
closest candidate for r; candidate_distance(r): ID space
distance from r; hidden_parent(r); hidden_children(r).

Two more messages are added to RAN-DE in MRAN:
update and definitelyLost. They all have fields r, sender, and
receiver. update is for sending new candidate caused by
disturbance of mobility. New candidate is either from the lost
branches or from arrival of new neighbors. definitelyLost
message is used for sending signals to descendents so that they
can switch their parent link to other nodes if they have active
hidden parents.

C. MRAN Algorithm

(a1) of MRAN is similar to (a1) of RAN-DE. Only new
code is for resetting sets for replied children, unreplied
children, and hidden children. Actions involving those three
children sets are common in MRAN. Code in most actions has
them. (a2) in MRAN is also similar to (a2) in RAN-DE. The
minor difference is in MRAN, sender of late getCandidate will
not only receive an alreadyReceived message, but also be
added into the hidden_parent set.

Significant revision is made in the upward passing of the
candidate message, which is algorithm (a3) in both RAN and
MRAN. When a receiver node of the candidate message finds

that the root of the message is missing  the node ID does not
exist in root_set of current node, it deletes all messages with
same root in its incoming queue in_queue and outgoing queue
out_queue. This is usually caused by loss of parent nodes, both
active parent and hidden parents. However, (a3) does not
handle loss of parents. It is the mobility handler (a5) that
performs the frequent regular adjustments.

(a4) handles alreadyReceived(r, q, u) message. (a4) in
MRAN is similar to (a4) in RAN as well. The difference is (a4)
in MRAN will add the sender to the hidden children set.

Key part of MRAN is the mobility handler (a5). It deals
with lost branches, hidden parents, and new neighbors. For lost
branch, it just processes nodes at direct children level and does
not go any deeper. It removes lost children from
replied_children and unreplied_children sets. If the closest
candidate node is a lost child, new candidate needs to be
selected. For lost hidden parent node, it does the same thing.
For the lost children, it first checks if there currently is any

hidden parent. If there is, then it shifts from the lost one to any
available hidden parent. A selection may be needed when there
are multiple hidden parents. New arrival neighbors are
naturally treated as children nodes. A getCandidate message is
sent to each new child.

(a5)

End of mobility interval →

Update neighbor set Γ

for each root g ∈ root_set do // Update root_set

 if parent(g) ∉ Γ then lost_parent(g)

for each root g ∈ root_set do // Update lost children

 for each h ∈ (Γ1(g) – parent(g)) do

 if h ∉ Γ

 then

 if h ∈ unreplied_children(g)

 then unreplied_children(g) := unreplied_children(g) –

 {h}

 else if h ∈ replied_children(g)

 then replied_children(g) := replied_children(g) – {h}

 else if h ∈ hidden_parent(g)

 remove all messages with h as receiver in in_queue

 remove all messages with h as sender in out_queue

 if candidate(g) = h

 then

 candidate(g) := min {(k – g) MOD maximum}

 //k ∈ candidate_set(g)

 if finished(g) = true

 then send Update(g, candidate(g), u, parent(g)) to

 parent(g)

 // Update new comer

 for each h ∈ Γ do

 if h ∉ (Γ1(g))

 then
 unreplied_children(g) := unreplied_children(g) + {h}

 send getCandidate(g, u, h) to h

 if finished(g) = true

 then finished(g) := false

[]

(a6) and (a7) process update message and definitelyLost

message respectively. See Section V.B.

VI. SIMULATION

The simulator is written in Visual C++.NET 2005. It uses
discrete time step as general framework. The code is organized
like in AP notion. Actions are triggered by events such as
arrival of messages. All nodes are randomly located in a

100×100 meters square. All nodes are powered up at time 0.
Neighbor relation is solely determined by radio radius and
position of nodes. Connected components are determined by
neighbor relation. Some code from RAN simulator is reused.
The simulation assume a simple congestion recovery strategy,
it may be different as in real world.

A random walk model is used to simulate mobility. All
nodes move synchronously. They start a walk at same time and

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 5 67ISSN: 1690-4524

finish at the same time. The direction is randomly picked up

from [0, 2π), the speed is randomly picked up at [0, Speed
Limit]. The Speed Limit is usually between 1 meter/second and
100 meter/second. When a node hits the boundary, it is
bounced back exactly following rules of classical mechanics.
The ideal end condition is the complete formation of overlay
ring. However, it becomes very difficult when mobility is
present. So approximation option is often used.

Unlike in RAN, primary objective here is not efficiency
like time and numbers of messages. Nor is it completeness. Our
purpose is to find out the upper bound of mobility, that is, the
maximum speed as a scalar quantity.

In the simulation, MRAN works well with various setting
of mobility. Its execution is similar to RAN in static
environment. The difference is MRAN usually shows more
overhead in terms of time and message complexities. The
simulation result shows that the upper bound of speed is
proportional to nodes in the network. The intuition behind it is
the increase in node number reduces the average distance
between nodes, and generates larger and denser connected
component in which each node has more connection: more
children, more hidden parents, and more hidden children.

VII. CONCLUSION

This paper proposed a Ring Ad-hoc Networks protocol,
which is an initialization protocol for ring-based P2P systems
over MANETs. It constructs a ring DHT at P2P layer, at same
time, connects the ring in lower layer. It is an extension of
distributed exhaustive pattern in RAN [1] protocol. It has
solved the mobility adjustment problem in RAN. The
simulation shows MRAN works effectively in the presence of
mobility.

Figure 3. Speed upper bound as a function of network size

This paper analyzed in details various types of disturbances
caused by mobility and gave corresponding solution in MRAN.

Detailed algorithm change in MRAN is also discussed in
comparison with RAN.

This is a new area of research. Many things are waiting to
be done, for example, localization optimization in the ring
construction, the problem of returning of lost branches,
application in other synthetic individual mobility models,
application in group mobility models, and utilization of flexible
radio range.

REFERENCES

[1] Wei Ding and S. S. Iyengar, “Bootstrapping Chord over MANETs - All
Roads Lead to Rome,” in Proceeding of IEEE Wireless Communications
and Networking Conference 2007, Hong Kong, China, March 2007.

[2] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan, “Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications,” In Proceeding of ACM SIGCOMM 2001, pp.
149-160, San Diego, CA, August 2001.

[3] Frank Dabek, Emma Brunskill, M. Frans Kaashoek, David Karger,
Robert Morris, Ion Stoica, Hari Balakrishnan, “Building Peer-to-Peer
Systems with Chord, a Distributed Lookup Service,” In the Proceedings
of the 8th Workshop on Hot Topics in Operating Systems (HotOS-VIII),
Schloss Elmau, Germany, May 2001.

[4] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems,” Proceeding of
IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware), pp 329-350, Heidelberg, Germany, November 2001.

[5] Matthew Caesar, Miguel Castro, Edmund B. Nightingale, Greg O'Shea,
and Antony Rowstron, “Virtual Ring Routing: Network Routing
Inspired by DHTs,” Proc. ACM SIGCOMM 2006.

[6] Y. C. Hu, H. Pucha, and S. M. Das, “Exploiting the Synergy between
Peer-to-Peer and Mobile Ad Hoc Networks,” in Proceedings of HotOS-
IX: Ninth Workshop on Hot Topics in Operating Systems, Lihue, Kauai,
Hawaii, May 18-21, 2003.

[7] Himabindu Pucha, Saumitra M. Das, Y. Charlie Hu, “Ekta: An Efficient
DHT Substrate for Distributed Applications in Mobile Ad Hoc
Networks,” Sixth IEEE Workshop on Mobile Computing Systems and
Applications, pp. 163-173, 2004.

[8] T. Heer, S. Gotz, S. Rieche, and K. Wehrle, “Adapting Distributed Hash
Tables for Mobile Ad Hoc Networks,” Proceeding of Fourth Annual
IEEE International Conference on Pervasive Computing and
Communications Workshops, pp.173 – 178, 2006.

[9] Mei Li, Wang-Chien Lee, Anand Sivasubramaniam, “Efficient peer to
peer information sharing over mobile ad hoc networks,” the Second
WWW Workshop on Emerging Applications for Wireless and Mobile
Access (MobEA’04), New York City, NY, May 2004.

[10] M. Jelasity and O. Babaoglu, “T-Man: Gossip-based overlay topology
management,” In Engineering Self-Organising Applications (ESOA'05),
2005.

[11] Alberto Montresor, Márk Jelasity, Ozalp Babaoglu, "Chord on
Demand," Fifth IEEE International Conference on Peer-to-Peer
Computing (P2P'05), pp. 87-94, 2005.

[12] Ayman Shaker and Douglas S. Reeves, “Self-Stabilizing Structured Ring
Topology P2P Systems,” Proceeding of Fifth IEEE International
Conference on Peer-to-Peer Computing (P2P'05), pp. 39-46, 2005.

[13] T. Camp, J. Boleng, and V. Davies, “A Survey of Mobility Models for
Ad Hoc Network Research,” Wireless Communication & Mobile
Computing (WCMC): Special Issue on Mobile Ad Hoc Networking
Research, Trends and Applications, Vol. 2, No. 5, pp. 483-502, 2002.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 568 ISSN: 1690-4524

	S777PA

