

An Evolutionary Metaheuristic for the 2D Guillotine Cut Problem

José Ignacio Peláez
Department of Languages & Computer Sciences.

University of Malaga. Spain.

Research of Prometeo Project. University of Guayaquil.

Guayaquil, Ecuador.

jipelaez@uma.es

 A.H. Yanez
Department of Mathematics & Physical Sciences.

University of Guayaquil.

Guayaquil, Ecuador.

 alcibar.yaneze@ug.edu.ec.

Eduardo A. Santos
Department of Mathematics & Physical Sciences.

University of Guayaquil.

Guayaquil, Ecuador.

eduardo.santosb@ug.edu.ec

L.M. Moncayo
Department of Mathematics & Physical Sciences.

University of Guayaquil.

 Guayaquil, Ecuador.

 marcelo.moncayot@ug.edu.ec

ABSTRACT

The two-dimension guillotine cut is actually one of the most

interesting problems in modern industries like metallurgic, textile,

wooden... in which it’s needed to cut sheets in pieces with an

associated dimensions and benefits in the way to maximize the

final benefit. The purpose of this work is to present an

evolutionary metaheuristic for the two-dimension cut problem

using guillotine, also it’s shown how this approach can be applied

to solve these types of problems, it’s compared with other exact

algorithms and finally it’s defined an evolutionary representation

which may be used with different metaheuristics.

Keywords: Cut Problems, Soft Computing Application,

Optimization.

I. INTRODUCTION

The 2 dimensions cut problem using guillotine, from now CG2D,

is outstanding due to its transcendence in different industries like

metallurgic, wooden, textile, etc., it has been solved from the 60th

using different types of algorithms approached with traditional

techniques as dynamic or lineal programming [3][6], heuristic

methods [1], or even variants that use several types of techniques

[4] [7] [9] [10] [11]. To develop efficient algorithms for this

problem is very interesting and important for these industries

because of the increase in yield and competitiveness when

maximizing the benefit of the cuts made.

The CG2D consists on to divide a sheet in rectangular segments

where to locate pieces with a given size and value, so that the sum

of the values of the cut pieces are maximized. These types of

problems use patrons of cut where only is possible to cut

uninterruptedly on the sheet, these types of cuts are denominated

valid cuts. Figure 1.a shows a pattern of cut in 6 stages. The

number of the cut indicates the stage in which the cut has be

done. In this example the direction of cut in the first stage is

parallel to the axis-y; the second is parallel to the axis-x;

the third parallel to the axis-y; the quarter to the axis-x; the fifth

to the axis-y; and finally, the sixth to the axis-x. A sequence of

nonvalid cuts is shown in figure 1.b.

Formally the 2D guillotine cut (CG2D) is defined as follow: Be

0A = 00 , a rectangular sheet with length
0 and width

0

and, be R a set of m smaller rectangular pieces
mRRR ,...,, 21

 with

dimensions 11, , 22 , , ..., mm , , values

mvvv ,...,, 21
 and max cardinal

mbbb ,...,, 21
. The objective is to

make a cut pattern for
0A with maximum sum of the cuts pieces

using no more than
ib copies of each rectangle

iR in the pattern.

The followings restrictions must be satisfied:

52 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 6 - YEAR 2016 ISSN: 1690-4524

mailto:jipelaez@uma.es
mailto:alcibar.yaneze@ug.edu.ec
mailto:eduardo.santosb@ug.edu.ec
mailto:marcelo.moncayot@ug.edu.ec

1. All dimensions ii , for i = 1, 2,…, m are integers in the

axis-x or axis-y.

2. The directions of the pieces are fixed (a piece with length e and

width f is different of other piece with length f and width e).

To solve these types of problems have been applied a great

number of different techniques, from tradicional to artifical

intelligent techniques, even hibrid algorithms that mix different

types of approach [2] [5] [6] [8] [9] [10] [11]. One of these types

of solutions is the algorithm proposed by Christofides and

Hadjiconstantinou [5]. This algorithm will be used in this work to

compare results because it produces good results in small

problems, also it presents a search tree to solve the guillotine cut

in which, the size of the tree is limited by

pruning derived from relaxed solutions of a formulation of the

problem using dynamic programming with a method of upward

solutions space to optimize the pruning. The procedure of this

algorithm is the following: Be a rectangle 0A with size 00 ,

and be m pieces iR with size ii , , value iv and cardinality

ib
xyB .

1. Number of times that each piece can appear. First,

the number of repetitions
xyS for each piece

iR in the rectangle

0A are calculated; ib is determined.

caso otroen 0

 , si /,min
ˆ

yxxyb
SS

iiiii

ii

2. Cut points. All cut combinations (verticals L and

horizontals W) are determinated.

m1,...,ientero, y 0,1,/ 0

1

iii

m

i

ii bxxxL

m1,...,ientero, y 0,1,/ 0

1

iii

m

i

ii byyyW

3. Heuristic Solution. A heuristic solution is

calculated. It will be used to recalculated the weight of the pieces.

This solution is obtained using a greddy algorithm.

4. Calculation of superior level. Using dinamic

programming a superior level is calculated, in the way to obtain

the cuts for the pieces. The firts level is calculated without any

restrictions as follow:

 QGQFZ nnUB ,,,,,max 0000

where

 kF (x, y, q) is the optimal cut for the step k in a rectangle

with size (x, y) when the direcction of cut in the first stage is

parallel to the axis ‘y’. This value is calculated as follow:

 ,,,max,, 1 qyxGqyxF kk

',,'',,'max 1

,...,0',','
qqyxxGqyxF kk

qqLxxx

The first term corresponds to the case where there is no cut in (x,

y) parallel to axis-y in the first stage, which implies that the second

cuts is parallel to the axis-x. The second term corresponds to the

case in which exist at least a cut parallel axis-y in the first stage,

then x’L will be the cut with greater value in coordinate x

which produces two rectangles.

 The definition for the cut in the first stage parallel to the axis

‘x’ is similar:

 ,,,max,, 1 qyxFqyxG kk

',',',',max 1

,...,0',','
qqyyxFqyxG kk

qqWyyy

 For the base cases (stage 0) the function F and G are

calculated as follow:

 miqqyxvqyxF iiii
i

,...,1,,,/max,,0

 qyxFqyxG ,,,, 00 .

 The function q are calculated as

follow:

xyi Ss

iixy qsqSq

 In the calculation of F and G is applied a restriction for the

dinamic programming solution that consists on assigning a

weight to the pieces. The pieces must approve the restriction

imposed by Q then they can intervene in the solution. The

function Q is calculated using the following expression:

00
ˆˆ

ˆ

Ss

i

i

qsQ

 The stop condition for the dinamic algorithm is determined

with the following expresions:

0000

ˆ,,ˆ,, 00100 SFSF kk and

00

ˆ,, 00 SGk =
00

ˆ,, 001 SGk

5. Tree search. The solution calculated in the 4th step

using branch and boond is tested. If it is feasible, then it is

optimal, in other case a readjustment is made in the weight of

pieces to delimiting the solution. The tree search look for a valid

cut sequence to find a value UBZ , if this sequence is not found, a

non-valid sequence will be found which will be used to recalculate

the weight iq . Three types of cut are defined: cut-x, cut-y and

cut-0. Both first are vertical and horizontal cuts; and the last one

consist on using the cut rectangle to introduce a piece inside. If a

cut-0 is made then it will be impossible to cut in this rectangle.

6. Readjusting the weights. If the search tree doesn’t

find a feasible solution, a readjustment of the pieces weight must

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 6 - YEAR 2016 53

be made. The iq are modified based on the results obtained with

the tree. The pieces that produce non feasible soltions have less

possibilities to appear in the new solution. The iq is calculated as

follow

iiiii

iiiii

i

bbtq

bbtq
q

 si ,0max

 si

where t > 0

m

i

ii

LBUB

b

ZZ
t

1

22

1

The parameter is initialised to 1,0 for a number of consecutive

iterations, being reduced until it is minor than 05.0 .

i is the number of times that a rectangle i is used in the n-stages

for the cut pattern 0A , If ii b for all i = 1,…,m, then a

feasible solution for the CGC problen have been found, this

solution is necesarilly optimal; in other case an ascending set of

solutions is found to optimize the result of the superior level.

LBZ is the value of the inferior level (for a feasible solution) in

the optimal value for the CGC problem, obtained by a heuristic

procedure in the 3th step. UBZ is the actual value of the superior

level using the dinamic programing of the step 4. If UBZ = LBZ ,

then the algorithm finish with LBZ as the optimal solution for

the initial problem.

The procedure used to readjusting the weight of the pieces is

based on the following: if ii b for some piece i, then may be

reasonable to reduce this number to make it (more) feasible. A

procedure to make this is increase the value iq of a piece i with

ii b and, at the same time, decrease the weight for the pieces

in which the associated restrictions are satisfied (for example

pieces with ii b).

When the weight iq are readjusted, the algorithm back to

the step 4 to calculate the new UBZ only if is not less than

0.05, in this case the algorithm is stoped and a superior level is

obtained which may be used in other type of algorithm.

This technique is very effective in small problems, but it is

ineffective in problems of more size because the cut with

guillotine is a NP-complete problem. For this reason, in the last

years, the techniques of the artificial intelligence have been

applied in the resolution of this type of problems, especially the

genetic algorithms, because they are very appropriate to solve

problems in complex spaces [8]. In this work a genetic algorithm

is presented for the problem CG2D, and it has been organized as

follow: in the section 2 a genetic algorithm is presented to solve

the cut problem with guillotine; in the section 3 the results of this

algorithm are compared with others; and finally the conclusions

and future works are presented.

II. PROPOSED GENETIC ALGORITHM

In this section a genetic algorithm for the problem CG2D is

proposed and it is shown how it can be applied to solve this type

of problem. First the genetic representation given to the problem

is shown; second the function of adaptation is presented; third the

evolutionary process is described; and finally, the genetic

operators are presented.

In this work with the purpose of distinguishing among the pieces

given in a set R and the rectangles made by the cuts in
0A with

each stage during the cut process, from now on we refer to the first

as "pieces" and to the second as "rectangles.

A. Genetic Representation

The genetic representation for this problem is conditioned by the

decisions in the cut process. They are the following:

1. What rectangle cut.

2. What type of cut use? Cut parallel to axis-y (cut in coordinate

x), cut parallel to axis-x (cut in coordinate y), or to locate a

certain piece in a rectangle, this is denominated as cut-0.

3. Where to make the cut or what piece choose. In our algorithm

the cut process is made in two steps: first we cut to obtain

rectangles and after a process of assignment of pieces to this

rectangles is made. This assignment process is made

assigning the piece of more benefit. At first we determine the

cuts based on the size of the pieces, but after several

simulations it was verified that any modification in the

individuals produces non valid individuals (insufficient size

of area to locate the piece, to overcome the cardinality of the

piece) and therefore a very high computational cost that

makes that the algorithm is not operative.

Based on these decisions it is established that each individual is

formed by two chromosomes, a first denominated Type-Cut which

indicates the cut sequence, and a second named Cut which

indicates the coordinates where the cut is made.

 Type-Cut Chromosome: {x|y|0} [{x|y|0}]

 Cut Chromosome: {cut_coordinate} [{cut_coordinate}]

Example of individual:

 Type_Cut: “x,y,0,0,0”.

 Cut : “20,30”

In figure 2, the cut sequence for an individual is shown.

It’s made a cut in the axis x in coor 20; a cut in axis y in coor 30;

and three cut-0 in which three pieces are located.

54 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 6 - YEAR 2016 ISSN: 1690-4524

Figure 2. Cut sequence representation

An important aspect in the genetic representation is how to

determine in an easy and quick way if an individual represents a

sequence of valid cuts. We have been defined the following

representation rules to facilitate the computational aspect of the

algorithm:

1. The parentheses rule

The Parentheses rule allows us to determine in a simple way if an

individual describes a valid cut sequence. This rule consists in the

following: If cut-x and cut-y are represented as open parenthesis

and court-0 as closed parenthesis, and we add an opened initial

parenthesis, always we must obtain a correct structure of

parenthesis. Following an example is shown:

Valid chromosome:

Type_Cut chromosome: “x, y, 0, x, 0, 0, 0”

Parentheses rule: ((() ()))

Non valid chromosome:

Type_Cut chromosome: “x, 0, 0, x, 0, 0, 0”

Parentheses rule: (()) ()))

In this example two cut in the axis x have been done, with these

we obtain three rectangles, and five cuts type 0 have been made

too, that would be impossible to carry out because we have three

rectangles where to locate three pieces.

2. The cut rule

This rule avoids that the cut sequence surpass the size of the

rectangle; the cuts of the cut coordinate must be smaller than the

size of the axis where the selected rectangle is cut.

3. The lenght rule

This rule relates the size of the chromosomes, in way that an

individual that make k cuts (cut_x, cut_y) will have a type_cut

chromosome with ((k+1) 2) + 1 allele, and a cut chromosome of

longitude (k+1) allele.

B. Adaptation Function

The adaptation function used is very simple, this represents the

value of the pieces that have been located.

C. Evolutionary Process

The evolutionary process used in this algorithm is based on the

concept of cut stages. A cut stage represents the number of cuts

that have been done to obtain a solution, for example, those

individuals that have a cut will belong to the population of cut

stage 1, the individuals with two cuts will belong to the population

of cut stage 2., and so on. In this way, k+1 populations are

generated to represent cuts from the stage 0 to the stage k,

reducing the initial problem in smaller problems. It is needed

because it is not feasible from a point of view of computational

efficiency to evolve with individuals belonging to different stages.

Once shown the stage concept, the evolutionary process is the

following: first a population is generated for each cut stage; next

each population evolves in an independent way; when the

populations have evolved, the mean of the best individual of each

population is determined and those stages or populations that have

not overcome the mean are eliminated; this process is done until

we obtain an unique population.

Figure 3. Evolution process

D. Genetic operators

The genetic operators that have been developed are the following:

 Selection: The roulette algorithm has been used.

 Crossing: The crossing operator works at level of cut and

type-cut, then we have two types of crossing:

cut-x

cut-0

cut-0

cut-0

cut-y

A0

E
v
o

lu
ti

o
n

F
il

te
r

.....

.

.....

.

.....

.

Population

Stage i

Population

Stage j
Population

Stage p

Population

Stage i
Population

Stage j
Population

Stage m

Population

Stage j
Population

Stage m

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 6 - YEAR 2016 55

a) Crossing cut. An individual can cross with other

compatible individual, a cut-x or cut-y with other,

or a cut-0 with other one, because in another case

the parenthesis rule would not be fulfilled.

b) Crossing type-cut. The process is similar with the

previous one. When the cross is done in the type-

cut chromosome, also the cut chromosome is

interchanged.

 Mutation: The mutation operator also works at cut and cut-type

level, with two types of mutation:

a) Mutation type-cut. In this case, it is only possible

to mutate cut-x in cut-y and vice versa, in another

case parenthesis rule would be broken.

b) Mutation cut. In this case only changes the cut

value

III. COMPARISON OF THE ALGORITHM

The genetic algorithm developed in this work has been compared

with the algorithm proposed in [5], due to this algorithm produce

in most of the cases exact solutions in problems with small size.

The 18.31% of the simulations done with this algorithm produced

nonexact solutions, being these of the heuristic type. The next

table show the population data.

Table 1. Population data.

The generation of valid individuals in the evolutionary process

has forced to have populations of sizes between 150 and 200

individuals. The use of inferior populations produces a

diminution remarkable in the computational efficiency due to the

difficulty to generate individuals valued. Finished the simulations

the obtained results are showing in table 2.

Table 2. Simulation Results.

IV. CONCLUSIONS AND FUTURE WORKS

In this work an evolutionary metaheurística for the 2D cut

problem using guillotine is presented. Also it has been

demonstrated how it can be applied to solve this type of problem

and finally its results have been compared with another algorithm

that presents exact solutions in problems of small size.

Also a new genetic representation for this problem and the rules

of validation of chromosomes (parenthesis rule, cut rule and

length rule) that increase the computational efficiency of the

algorithm are developed.

Finally, this algorithm has been compared with another which

produces exact results, obtaining very satisfactory results that

animate to us to follow this line and to compare their results with

other algorithms and heuristics as Fans techniques.

ACKNOWLEDGEMENTS. This work is supported by

PROMETEO Project. University of Guayaquil. Government of

Ecuador.

REFERENCES

[1] Enrico Faggioli y Carlo Alberto Bentivoglio, “Heuristic and

exact methods for the cutting sequencing problem.”

European Journal of Operational Research, 110. pp. 564-

575. 1998.

[2] E. Falkenauer, “Genetic Algorithms and Grouping Problems”.

John Wiley and Sons. 1998.

[3] Julien Antonio, Fabrice Chauvet, Chengbin Chu y Jean Marie

Proth. “The cutting stock problem with mixed objectives:

Two heuristics based on dynamic programming”. European

Journal of Operational Research. 114. pp. 395-402. 1999.

[4] Mikuel Rönuqvist, “A method for the cutting stock problem

with different quañities.” European Journal of Operational

Reserach 83/1. pp. 57-68. 1995.

[5] Nicos Christofides y Eleni Hadjiconstantinou, “An exact

algorithm for ortogonal 2-D cutting problems using guillotine

cuts.” European Journal of Operational Research. 83. pp.

21-38. 1995.

[6] Ortmann, F. G., Ntene, N., & Vuuren, J. H. (2010). New and

improved level heuristics for the rectangular strip packing and

variable-sized bin packing problems. European Journal of

Operational Research, 203, 306-315.

[7] P.C. Gilmore, R.E. Gomory, “Linear problem.” Journal of

Operation Research. 9. 1961.

[8] R. Sharma, T. Balacahander, S. and, Q. Zhang, “A genetic

algorithm for the non-convex cutting stock problem.”

Transactions of the North American Manufacturing

Research Institute. XXV. pp.281-286. 1997.

[9] Wäscher, G., Haussner, H., & Schumann, H. (2007). An

improved typology of cutting and packing problems.

European Journal of Operational Research, 183, 1109-

1130.

[10] Wei, Lijun, Tian, Tian, Zhu, Wenbin and Lim, Andrew,

(2014), A block-based layer building approach for the 2D

guillotine strip packing problem, European Journal of

Operational Research, 239, issue 1, p. 58-69.

[11] Wong, L., & Lee, L. (2009). Heuristic placement routines for

two-dimensional bin packing problem. Journal of Mathematics

and Statistics 5 (4), Páginas 334-341. approach to the cutting

stock.

 Datas

Total Simulations 10.000

Poblation Size 150 to 200.

Number of Pieces Max 25

Number of Iterations 80 to 100 by

poblation/iteration

 Datas

Total Simulations 10.000

Best solutions with

genetic algorithm

1831

Same Solution 6368

Worst solution with

genetic algorithm

1801

56 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 6 - YEAR 2016 ISSN: 1690-4524

	SA204TE16.pdf

