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ABSTRACT 

 

The two-dimension guillotine cut is actually one of the most 

interesting problems in modern industries like metallurgic, textile, 

wooden... in which it’s needed to cut sheets in pieces with an 

associated dimensions and benefits in the way to maximize the 

final benefit. The purpose of this work is to present an 

evolutionary metaheuristic for the two-dimension cut problem 

using guillotine, also it’s shown how this approach can be applied 

to solve these types of problems, it’s compared with other exact 

algorithms and finally it’s defined an evolutionary representation 

which may be used with different metaheuristics. 

 

Keywords: Cut Problems, Soft Computing Application, 

Optimization. 

 
I. INTRODUCTION 

 

The 2 dimensions cut problem using guillotine, from now CG2D, 

is outstanding due to its transcendence in different industries like 

metallurgic, wooden, textile, etc., it has been solved from the 60th 

using different types of algorithms approached with traditional 

techniques as dynamic or lineal programming [3][6], heuristic 

methods [1], or even variants that use several types of techniques 

[4] [7] [9] [10] [11]. To develop efficient algorithms for this 

problem is very interesting and important for these industries 

because of the increase in yield and competitiveness when 

maximizing the benefit of the cuts made. 

 

The CG2D consists on to divide a sheet in rectangular segments 

where to locate pieces with a given size and value, so that the sum 

of the values of the cut pieces are maximized.  These types of 

problems use patrons of cut where only is possible to cut 

uninterruptedly on the sheet, these types of cuts are denominated 

valid cuts.  Figure 1.a shows a pattern of cut in 6 stages. The 

number of the cut indicates the stage in which the cut has be 

done.  In this example the direction of cut in the first stage is 

parallel to the axis-y; the second is parallel to the axis-x; 

 

the third parallel to the axis-y; the quarter to the axis-x; the fifth 

to the axis-y; and finally, the sixth to the axis-x.  A sequence of 

nonvalid cuts is shown in figure 1.b. 
 

 

 

 

 

 

 

 

 

 

Formally the 2D guillotine cut (CG2D) is defined as follow: Be 

0A  =  00 , a rectangular sheet with length 
0  and width 

0  

and, be R a set of m smaller rectangular pieces 
mRRR ,...,, 21

 with 

dimensions  11, ,  22 , , ...,  mm  , , values 

mvvv ,...,, 21
 and max cardinal 

mbbb ,...,, 21
. The objective is to 

make a cut pattern for 
0A  with maximum sum of the cuts pieces 

using no more than 
ib  copies of each rectangle 

iR  in the pattern. 

The followings restrictions must be satisfied: 
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1. All dimensions  ii  ,  for i = 1, 2,…, m are integers in the 

axis-x or axis-y. 

 

2. The directions of the pieces are fixed (a piece with length e and 

width f is different of other piece with length f and width e). 

 

To solve these types of problems have been applied a great 

number of different techniques, from tradicional to artifical 

intelligent techniques, even hibrid algorithms that mix different 

types of approach [2] [5] [6] [8] [9] [10] [11]. One of these types 

of solutions is the algorithm proposed by Christofides and 

Hadjiconstantinou [5]. This algorithm will be used in this work to 

compare results because it produces good results in small 

problems, also it presents a search tree to solve the guillotine cut 

in which, the size of the tree is limited by 

 

pruning derived from relaxed solutions of a formulation of the 

problem using dynamic programming with a method of upward 

solutions space to optimize the pruning. The procedure of this 

algorithm is the following: Be a rectangle 0A  with size  00 ,  

and be m pieces iR with size  ii  ,  , value iv  and cardinality 

ib 
xyB . 

 

1. Number of times that each piece can appear. First, 

the number of repetitions 
xyS for each piece 

iR  in the rectangle 

0A  are calculated; ib  is determined.  
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2. Cut points. All cut combinations (verticals L and 

horizontals W) are determinated.  
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3. Heuristic Solution. A heuristic solution is 

calculated. It will be used to recalculated the weight of the pieces. 

This solution is obtained using a greddy algorithm. 

 

4. Calculation of superior level. Using dinamic 

programming a superior level is calculated, in the way to obtain 

the cuts for the pieces. The firts level is calculated without any 

restrictions as follow: 

 

    QGQFZ nnUB ,,,,,max 0000   

where 

 

 kF (x, y, q) is the optimal cut for the step k in a rectangle 

with size (x, y) when the direcction of cut in the first stage is 

parallel to the axis ‘y’. This value is calculated as follow: 

 

    ,,,max,, 1 qyxGqyxF kk   

    



 


',,'',,'max 1

,...,0',','
qqyxxGqyxF kk

qqLxxx
 

 
The first term corresponds to the case where there is no cut in (x, 

y) parallel to axis-y in the first stage, which implies that the second 

cuts is parallel to the axis-x.  The second term corresponds to the 

case in which exist at least a cut parallel axis-y in the first stage, 

then x’L will be the cut with greater value in coordinate x 

which produces two rectangles. 

 

 The definition for the cut in the first stage parallel to the axis 

‘x’ is similar: 

 

    ,,,max,, 1 qyxFqyxG kk   

    



 


',',',',max 1

,...,0',','
qqyyxFqyxG kk

qqWyyy
 

 

 For the base cases (stage 0) the function F and G are 

calculated as follow: 

 

   miqqyxvqyxF iiii
i

,...,1,,,/max,,0    

   qyxFqyxG ,,,, 00  . 

 

 The function q are calculated as 

follow:   




xyi Ss

iixy qsqSq  

 

 In the calculation of F and G is applied a restriction for the 

dinamic programming solution that consists on assigning a 

weight to the pieces. The pieces must approve the restriction 

imposed by Q then they can intervene in the solution. The 

function Q is calculated using the following expression:  

 






00
ˆˆ

ˆ

Ss

i

i

qsQ

 

 

 The stop condition for the dinamic algorithm is determined 

with the following expresions:  

 

   
0000

ˆ,,ˆ,, 00100   SFSF kk    and 

 

 
00

ˆ,, 00  SGk =  
00

ˆ,, 001  SGk  

 
5. Tree search. The solution calculated in the 4th step 

using branch and boond is tested. If it is feasible, then it is 

optimal, in other case a readjustment is made in the weight of 

pieces to delimiting the solution. The tree search look for a valid 

cut sequence to find a value UBZ , if this sequence is not found, a 

non-valid sequence will be found which will be used to recalculate 

the weight iq . Three types of cut are defined: cut-x, cut-y and 

cut-0. Both first are vertical and horizontal cuts; and the last one 

consist on using the cut rectangle to introduce a piece inside. If a 

cut-0 is made then it will be impossible to cut in this rectangle. 

 

6. Readjusting the weights. If the search tree doesn’t 

find a feasible solution, a readjustment of the pieces weight must 
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be made. The iq  are modified based on the results obtained with 

the tree. The pieces that produce non feasible soltions have less 

possibilities to appear in the new solution. The iq  is calculated as 

follow 

 

 

 

 
   


















iiiii

iiiii

i

bbtq

bbtq
q





  si             ,0max

  si                       
 

where  t > 0 
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The    parameter is initialised to 1,0 for a number of consecutive 

iterations, being reduced until it is minor than 05.0 . 

 

i  is the number of times that a rectangle i is used in the n-stages 

for the cut pattern 0A , If ii b  for all i = 1,…,m, then a 

feasible solution for the CGC problen have been found, this 

solution is necesarilly optimal; in other case an ascending set of 

solutions is found to optimize the result of the superior level. 

 

LBZ  is the value of the inferior level (for a feasible solution) in 

the optimal value for the CGC problem, obtained by a heuristic 

procedure in the 3th step. UBZ  is the actual value of the superior 

level using the dinamic programing of the step 4. If UBZ = LBZ , 

then the algorithm  finish with LBZ  as the optimal solution for 

the initial problem. 

 

The procedure used to readjusting the weight of the pieces is 

based on the following: if ii b  for some piece i, then may be 

reasonable to reduce this number to make it (more) feasible. A 

procedure to make this is increase the value iq  of a piece i with 

ii b  and, at the same time, decrease the weight for the pieces 

in which the associated restrictions are satisfied (for example 

pieces with ii b ).  

 

When the weight iq  are readjusted, the algorithm back to 

the step 4 to calculate the new UBZ  only if   is not less than 

0.05, in this case the algorithm is stoped and a superior level is 

obtained which may be used in other type of algorithm. 

 

This technique is very effective in small problems, but it is 

ineffective in problems of more size because the cut with 

guillotine is a NP-complete problem. For this reason, in the last 

years, the techniques of the artificial intelligence have been 

applied in the resolution of this type of problems, especially the 

genetic algorithms, because they are very appropriate to solve 

problems in complex spaces [8]. In this work a genetic algorithm 

is presented for the problem CG2D, and it has been organized as 

follow: in the section 2 a genetic algorithm is presented to solve 

the cut problem with guillotine; in the section 3 the results of this 

algorithm are compared with others; and finally the conclusions 

and future works are presented. 

 

II.   PROPOSED GENETIC ALGORITHM 

 

In this section a genetic algorithm for the problem CG2D is 

proposed and it is shown how it can be applied to solve this type 

of problem. First the genetic representation given to the problem 

is shown; second the function of adaptation is presented; third the 

evolutionary process is described; and finally, the genetic 

operators are presented. 

 

In this work with the purpose of distinguishing among the pieces 

given in a set R and the rectangles made by the cuts in 
0A  with 

each stage during the cut process, from now on we refer to the first 

as "pieces" and to the second as "rectangles. 

 

A. Genetic Representation 

 

The genetic representation for this problem is conditioned by the 

decisions in the cut process. They are the following: 

 

 
1. What rectangle cut. 

 

2. What type of cut use? Cut parallel to axis-y (cut in coordinate 

x), cut parallel to axis-x (cut in coordinate y), or to locate a 

certain piece in a rectangle, this is denominated as cut-0.  

 

3. Where to make the cut or what piece choose. In our algorithm 

the cut process is made in two steps: first we cut to obtain 

rectangles and after a process of assignment of pieces to this 

rectangles is made. This assignment process is made 

assigning the piece of more benefit. At first we determine the 

cuts based on the size of the pieces, but after several 

simulations it was verified that any modification in the 

individuals produces non valid individuals (insufficient size 

of area to locate the piece, to overcome the cardinality of the 

piece) and therefore a very high computational cost that 

makes that the algorithm is not operative. 

 

Based on these decisions it is established that each individual is 

formed by two chromosomes, a first denominated Type-Cut which 

indicates the cut sequence, and a second named Cut which 

indicates the coordinates where the cut is made. 

 

 Type-Cut Chromosome: {x|y|0} [{x|y|0}] 

 Cut Chromosome: {cut_coordinate} [{cut_coordinate}] 

 

Example of individual:   

 

 Type_Cut: “x,y,0,0,0”. 

  Cut : “20,30” 

 

 

In figure 2, the cut sequence for an individual is shown.  

It’s made a cut in the axis x in coor 20; a cut in axis y in coor 30; 

and three cut-0 in which three pieces are located. 
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Figure 2. Cut sequence representation 

 

An important aspect in the genetic representation is how to 

determine in an easy and quick way if an individual represents a 

sequence of valid cuts. We have been defined the following 

representation rules to facilitate the computational aspect of the 

algorithm: 

 

1. The parentheses rule 

 

The Parentheses rule allows us to determine in a simple way if an 

individual describes a valid cut sequence. This rule consists in the 

following: If cut-x and cut-y are represented as open parenthesis 

and court-0 as closed parenthesis, and we add an opened initial 

parenthesis, always we must obtain a correct structure of 

parenthesis. Following an example is shown: 

 

Valid chromosome: 

 

Type_Cut chromosome:  “x, y, 0, x, 0, 0, 0” 

Parentheses rule:     (    (   (    ) (     )   )  ) 

 

Non valid chromosome: 

 

Type_Cut chromosome: “x, 0, 0, x, 0, 0, 0” 

Parentheses rule:     (   (    )  )  (    )  )   )  

 

In this example two cut in the axis x have been done, with these 

we obtain three rectangles, and five cuts type 0 have been made 

too, that would be impossible to carry out because we have three 

rectangles where to locate three pieces. 

 

2. The cut rule 

This rule avoids that the cut sequence surpass the size of the 

rectangle; the cuts of the cut coordinate must be smaller than the 

size of the axis where the selected rectangle is cut. 

 

3. The lenght rule 

 

This rule relates the size of the chromosomes, in way that an 

individual that make k cuts (cut_x, cut_y) will have a type_cut 

chromosome with ((k+1) 2) + 1 allele, and a cut chromosome of 

longitude (k+1) allele. 

 

B.  Adaptation Function 

 

The adaptation function used is very simple, this represents the 

value of the pieces that have been located. 

 
C. Evolutionary Process 

 

The evolutionary process used in this algorithm is based on the 

concept of cut stages. A cut stage represents the number of cuts 

that have been done to obtain a solution, for example, those 

individuals that have a cut will belong to the population of cut 

stage 1, the individuals with two cuts will belong to the population 

of cut stage 2., and so on. In this way, k+1 populations are 

generated to represent cuts from the stage 0 to the stage k, 

reducing the initial problem in smaller problems. It is needed 

because it is not feasible from a point of view of computational 

efficiency to evolve with individuals belonging to different stages. 

 

Once shown the stage concept, the evolutionary process is the 

following: first a population is generated for each cut stage; next 

each population evolves in an independent way; when the 

populations have evolved, the mean of the best individual of each 

population is determined and those stages or populations that have 

not overcome the mean are eliminated; this process is done until 

we obtain an unique population. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

Figure 3. Evolution process 
 

D.  Genetic operators 

 

The genetic operators that have been developed are the following: 

 

 Selection:  The roulette algorithm has been used.  

 

 Crossing:  The crossing operator works at level of cut and 

type-cut, then we have two types of crossing: 
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a) Crossing cut. An individual can cross with other 

compatible individual, a cut-x or cut-y with other, 

or a cut-0 with other one, because in another case 

the    parenthesis rule would not be fulfilled.  

 

b) Crossing type-cut. The process is similar with the 

previous one. When the cross is done in the type-

cut chromosome, also the cut chromosome is 

interchanged. 

 
 Mutation: The mutation operator also works at cut and cut-type 

level, with two types of mutation: 

 

a) Mutation type-cut. In this case, it is only possible 

to mutate cut-x in cut-y and vice versa, in another 

case parenthesis rule would be broken. 

 

b) Mutation cut. In this case only changes the cut 

value 

 

 

 

 

III.   COMPARISON OF THE ALGORITHM 

 

The genetic algorithm developed in this work has been compared 

with the algorithm proposed in [5], due to this algorithm produce 

in most of the cases exact solutions in problems with small size. 

The 18.31% of the simulations done with this algorithm produced 

nonexact solutions, being these of the heuristic type. The next 

table show the population data. 

 

 

 

 

 

 

 

 

 

Table 1. Population data. 

 
The generation of valid individuals in the evolutionary process 

has forced to have populations of sizes between 150 and 200 

individuals.  The use of inferior populations produces a 

diminution remarkable in the computational efficiency due to the 

difficulty to generate individuals valued. Finished the simulations 

the obtained results are showing in table 2. 

 

Table 2. Simulation Results. 

 

 

 

 

 

 

 

 

 
IV.    CONCLUSIONS AND FUTURE WORKS 

 

In this work an evolutionary metaheurística for the 2D cut 

problem using guillotine is presented. Also it has been 

demonstrated how it can be applied to solve this type of problem 

and finally its results have been compared with another algorithm 

that presents exact solutions in problems of small size.   

 

Also a new genetic representation for this problem and the rules 

of validation of chromosomes (parenthesis rule, cut rule and 

length rule) that increase the computational efficiency of the 

algorithm are developed.   

   

Finally, this algorithm has been compared with another which 

produces exact results, obtaining very satisfactory results that 

animate to us to follow this line and to compare their results with 

other algorithms and heuristics as Fans techniques. 
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 Datas 

Total Simulations 10.000 

Poblation Size 150 to 200. 

Number of Pieces Max 25 

Number of Iterations  80 to 100 by 

poblation/iteration  

 Datas 

Total Simulations 10.000 

Best solutions with 

genetic algorithm 

1831 

Same Solution 6368 

Worst solution with 

genetic algorithm 

1801 
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