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ABSTRACT 
 

In this paper, we consider the problem of modeling application 
scenarios characterized by variability over time and involving 
heterogeneous kinds of knowledge. The evolution of 
distributed technologies creates new and challenging 
possibilities of integrating different kinds of problem solving 
methods, obtaining many benefits from the user point of view. 
In particular, we propose here a multilayer modeling system 
and adopt the Knowledge Artifact concept to tie together 
statistical and Artificial Intelligence rule-based methods to 
tackle problems in ubiquitous and distributed scenarios. 
 
Keywords: Bayesian Network, Rule-Based Systems, Time-
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1.  INTRODUCTION 
Rule-based systems are the technology of choice for solving a 
wide variety of problems involving the understanding of 
complex phenomena and the planning of the consequent 
actions. 
A generic rule-based system is made of an inference engine, a 
knowledge base made of rules and a set of facts to be analyzed. 
The set of rules embodies the knowledge available about the 
particular scenario we want to model; therefore 
“understanding” means the interpretation of a pattern of 
events/facts obtained by matching the left part of some rules 
contained in the knowledge base and deriving the appropriate 
inferences. 
In many cases the set of applicable rules is static, i.e. it does not 
change in time. The applications of this simple, well-
established form of rule-based system are many: from medical 
diagnosis to network fault management, from environment 
monitoring to security risk analysis, we have thousands of 
commercial applications of such kind of technology. 
In this paper we are concerned with a more complex problem, 
that of modeling time-varying scenarios. 
In this case, the observed system and its reference environment 
change in time, passing through a series of macroscopic states, 
each one characterized by a specific set of relevant rules. 
Moving from one state to another, the meaning and importance 
of some events can change drastically, therefore the applicable 
inferences, as described by the rule set, must change 
accordingly. 
The crucial point from the system point of view is the difficulty 
for production rules to capture in a precise way the knowledge 
involved in decision making processes which are variable in an 
unpredictable way. The resulting rules set must be obtained as 
the product of an intensive knowledge engineering activity, 
being able to generate new portions of the knowledge base 
effectively and efficiently with respect to the changes in the 
application domain.  

Some examples of these application scenarios can help in 
clarifying the characteristics of the problems we intend to 
tackle. 
A first example is the evolution of the state of an elderly patient 
affected by a neurologic degenerative disease. Quite often the 
development of the disease does not proceed in a linear, 
predictable way; instead long periods of stationary conditions 
are followed by rapid changes, which lead to another, worse, 
long lasting state. In this case, the interpretation of some events 
(such as a fall, or a change in the normal order in which some 
routine actions are taken) can differ substantially depending on 
the macro-state of reference. 
Another case would be an application analyzing urban traffic, 
with the purpose to help a driver to take the best route to 
destination. The scenario being analyzed changes significantly 
with the hour of the day and the day of the week, as well as in 
response to events modifying the available routes, such as an 
accident or a street closure due to traffic works.  
In these situations, an efficient response of the system is very 
important, since the elaboration must be necessarily “real-
time”, and it is mandatory for the system to check continuously 
the knowledge-base to understand if it is consistent or not. In 
this paper we present an approach to the development of rule-
based systems which change their behavior dynamically 
according to the change in number and value of the problem 
variables. The approach is based on the notion of Knowledge 
Artifact (KA), a conceptual and computational tool for the 
acquisition and representation of heterogeneous knowledge 
involved in complex domains. 
For the sake of simplicity, in the rest of the paper we shall use 
the term “state” when referring to the macroscopic states 
described above, and the expression “evolving scenario” to 
indicate the situation where a system and its reference 
environment evolve across a sequence of states, that is the case 
of interest for our study.  
 

2.  RELATED WORK 
Our concept of state of an evolving scenario has some 
similarities with the situations studied in [1]. The main 
differences are that our scenarios develop on a longer time 
scale, one state can turn gradually into another one and its 
characterization may include components which are not 
immediately measurable, such as the mental conditions of an 
individual. However we employ some of the techniques 
described in [1]. 
The use of ontologies in a layered modeling approach has been 
discussed in [2]; in that paper, however, ontologies are 
employed to reason about contexts in a deterministic way, 
without modeling uncertainties and transitions across contexts. 
One of the cornerstones of our work is the concept of 
Knowledge Artifact. 
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In Computer Science, artifacts have been widely used in many 
fields like Distributed Cognition [3], CSCW [4] and MAS 
paradigm [5]. 
According to those definitions, artifacts are typically 
considered passive entities in literature: they can support or 
influence human and artificial agents reasoning, but they are 
not part of it, i.e. they don't specify how a product can be 
realized or a result can be achieved. In the Knowledge 
Management research field, Knowledge Artifacts are 
specializations of artifacts. According to Holsapple and Joshi 
[6], ``A knowledge artifact is an object that conveys or holds 
usable representations of knowledge.'' Salazar-Torres et al. [7] 
argued that, according to this definition, KAs are artifacts 
which represent ``[...] executable-encodings of knowledge, 
which can be suitably embodied as computer programs, written 
in programming languages such as C, Java, or declarative 
modeling languages such as XML, OWL or SQL''. 
 
Thus, Knowledge Management provides artifacts with the 
capability to become active entities, through the possibility to 
describe entire decision making processes, or parts of them. In 
this sense, Knowledge Artifacts can be meant as guides to the 
development of complete knowledge-based systems. 
 

3.  OUR APPROACH – PART I: THE PROBLEM 
REQUIREMENTS 

A direct solution to the problem of building a knowledge base 
coping with an evolving scenario consists in defining one or 
more state variables, whose values describe the present state, 
and putting a check on the state in the left parts of all the rules. 
In this way the knowledge base is partitioned into disjoint 
subsets, each one valid for a specific state, and the system 
tracks the scenario evolution by asserting the state variables. 
Such an approach leads to an unwieldy number of rules and to 
the risk of building an ambiguous/inconsistent knowledge base. 
Even more serious, however, is the problem of representing 
gradual changes: a set of “hard coded” descriptions of the 
possible states is not sufficient to model the transition period 
between contiguous states in the scenario evolution: as a matter 
of fact, it is assumed that the analyzed scenario jumps abruptly 
from one state to another, and this transition is reflected in the 
model by the firing of the rules which assert the new value(s) 
of the state variable(s). 
In some applications this model is perfectly adequate to reflect 
the reality. Consider for instance the application analyzing 
urban traffic mentioned above: its reference environment 
changes almost immediately when a street is closed due to 
traffic works, and a sharp state transition is perfectly justified. 
In many other cases, however, we need to track a more gradual 
evolution. An example is the evolution of neurologic 
degenerative diseases mentioned in the introduction: the 
transition from a given state of cognitive impairment to a worse 
condition may follow a non-linear pattern, where the patient 
switches back and forth between two states for some time, or 
shows initially the symptoms of the worse condition only with 
respect to some specific tasks or abilities. 
Another case is the change in traffic patterns with the hour of 
the day: here we have a different kind of transition, because the 
traffic flows typical of the morning rush hour transform 
smoothly into the flows typical of the late morning, giving rise 
to a sequence of intermediate states. 
All these examples refer to cases where the various possible 
states are known and can be modeled in advance, either by 
defining heuristically a set of rules or by some automatic 
knowledge base construction technique. 

In other situations, however, only the present state is embodied 
in the knowledge base as a set of rules, while we do not have a 
precise formalization of the new states where the scenario 
could evolve. This may be due either to a lack of knowledge 
about the characteristics of the scenario which is being 
considered, or to its intrinsic nature: as a matter of fact in some 
cases it is not possible to identify a set of distinct macroscopic 
states, because the scenario evolves across a continuum. 
Examples of this kind arise, for instance, in marketing studies, 
when we want to follow the evolution of the preferences of a 
large number of potential customers. 
In these cases, if we want to maintain the approach of using a 
rule-based system, we would need a solution capable of 
assessing the adequacy of the present set of rules, and 
modifying it by generating new rules dynamically, while the 
scenario evolves. However other technical solutions, for 
instance based on statistical decision making, are possible and 
may be preferable. Although this class of problems is outside 
the scope of our research, we will note when the techniques we 
have developed can be applied also to it. 
To summarize the discussion, we attempt to classify the 
evolving scenarios into some categories, and to select the 
appropriate technical approach for each one. 
Figure 1 depicts the various kinds of evolving scenarios we 
have discussed up to this point, which we will call as follows: 
sharp transition (“street closed”), morphing (from rush hour to 
mid-morning traffic), bouncing (for instance the evolution of 
the Alzheimer disease) and continuum (customer preferences). 
 

 
Figure 1: several kinds of evolving environments 
 
Note that this classification is somewhat simplified: for 
instance the traffic understanding application that we have 
hypothesized must face a scenario which exhibits both sharp 
transitions and morphing. 
 

4.  OUR APPROACH – PART II: THE LAYERED 
MODEL 

 
The basic principle on which our approach rests is a two-
layered approach to scenario modeling. The present state of the 
scenario is represented by the knowledge base of a standard 
rule-based system, while the set of all possible states is 
modeled by a higher level abstraction, namely by an ontology. 
With this approach we can distinguish clearly between the 
active set of rules which applies to the ongoing flow of events, 
providing a semantic interpretation of the current state and 
determining the reactive actions to be taken, and an (implicit) 
representation of all the possible rules which make sense, given 
a coherent view of the objects and relations which are 
admissible within the scenario evolutions. 
While the separation of two different modeling layers is a quite 
natural way to deal with evolving environments such as those 
represented in Figure 1, it is important to stress that the 
interaction of the two layers can follow different mechanisms. 
The upper layer can be considered just as an offline tool, 
producing several “fixed” scenario representations, which are 
fed into the rule-based system when some specific event 
occurs. In our approach, instead, both levels cooperate in real 
time: the upper layer has the task of maintaining and updating 
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the “running” knowledge base employed by the lower layer. 
This can also be done gradually, in order to track morphing 
transitions such as the one in Figure 1b. 
In the next section we will describe how the upper layer 
evaluates the adequacy of the current knowledge base and how 
the updating can be performed in the various transition 
scenarios. Let us conclude the present discussion with a review 
of the motivations justifying our layered approach. 
A first kind of motivations regards two modeling issues: timing 
and handling of unexpected events. 
The two layers respond to the modifications of the scenario 
according to two different time scales: the lower layer responds 
to single events occurring on a short time scale, while the upper 
layer tracks the long term evolutions, and typically responds to 
longer sequences of events, bearing some statistical 
significance. This separation allows dealing properly with the 
timing requirements, trading off precision with timeliness in 
the upper layer transitions and introducing, if necessary, real 
time capabilities at the lower layer (we will elaborate on this 
point later on). 
The rule-based system implementing the lower layer of the 
model is designed to work, in line of principle, in an open 
world (this expression should be interpreted here in a sense 
close to [8] and is quite different from the Open World 
Assumption in formal logic): this means that events that do not 
cause any rule to fire are simply discarded after a while, 
without any modification to the subsequent operations at the 
lower layer. On the other side, the upper layer assumes a more 
complete view of the world, and considers all the possible 
events, i.e. all the events allowed by the underlying ontology: 
for instance, the occurrence of very unlikely sequences of 
events can be seen as an indication of the lack of adequacy of 
the running knowledge base. 
Another kind of motivations is related to knowledge 
engineering issues. As a first observation, providing a high 
level of abstraction in the form of an ontology allows a human 
expert to perform a simpler verification of its correctness with 
respect to the specific domain of application. A second 
advantage regards the formal consistency of the running 
knowledge base, which is easily verifiable at the runtime. 
Finally we have the motivations related to implementation and 
performance. We are especially interested in distributed 
deployments of our architecture. For instance, in the case of the 
monitoring of elderly patients, it would be useful to implement 
the lower layer on portable wireless devices, such as tablets and 
smartphones, in order to provide a reaction to events which is 
both faster and more reliable (there are no risks and delays 
associated with temporary losses of connectivity); however the 
upper layer processing, which can be more computationally 
expensive and has less real time constraints, is more suited to a 
centralized implementation.  
Furthermore, the implementation of the lower layer as a 
separate entity can be optimized in various ways: as an 
example, time-consuming verifications of facts (e.g. 
measurements of a physical quantity) can be postponed until all 
the other left-side conditions of a rule are verified so that the 
rule could fire: this optimization is supported for instance by 
the “shadow facts” construct of Jess [9]. 
Figure 2 summarizes the observations we made about the 
layered modeling, and sketches a possible supporting 
architecture: note that we introduced specific functions which 
monitor the adequacy of the running knowledge base and 
manage the necessary updates. The precise nature of these 
functions will be described in the next paragraph. 
 

5.  OUR APPROACH PART III – TRACKING A 
CHANGING SCENARIO 

 
A Knowledge Artifact for Evolving Scenarios 
The most specific characteristics of our approach regard the 
methods we use for tracking the evolving scenarios.  
 

 
Figure 2: implementation of a layered model 
 
There are three main elements to be described: adequacy 
verification, new rule production and knowledge base 
management. The crucial aspect of them is that they must be 
correlated in order to capture the scenario variability without 
the risk of being inconsistent. To this aim, from the conceptual 
point of view, we adopted the notion of Knowledge Artifact 
(KA). 
More specifically, in our framework (see Figure 3) the KA is 
made of three main components: 
• an ontology-based description of the possible entities and 

of their possible relations in the considered scenario; 
• a Bayesian Network, employed to select the causal 

relations which are applicable in the present state of 
scenario evolution; 

• Production Rules, embodying the knowledge necessary to 
implement the Knowledge Base rules. 
 

 
 
Figure 3: graphical representation of KA elements. 
Relationships among them are shown by means of gray scale 
coloring 
 
The role of ontology 
With respect to the scenario in Figure 2, ontology is 
responsible for identifying the system inputs, outputs and 
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partial outputs, as well as the relationship among them. In other 
words, the ontology describes the structure of the application 
domain and identifies which are the important elements to 
consider for solving understanding problems. 
The ontology role is to check that the domain representation in 
terms of inputs, outputs and partial outputs is coherent: if new 
elements must be added to the scenario, they are added at the 
ontological layer. Moreover, the ontology allows deleting or 
modifying inconsistent nodes or relationships, according to the 
temporal evolution of the system. 
 
Rule extraction and Knowledge Base management 
A Bayesian Network is used for implementing the rule 
extraction functional block in Figure 2: given an output or 
partial output from the ontology, the related BN describes the 
causal flow from inputs to outputs, moving through partial 
outputs. 
BN allows checking the state of the scenario from the 
procedural point of view: if some modifications happen at the 
ontological layer, the BN tries to forecast the consequences in 
terms of new behaviors, i.e. new causal relationships to add. 
Moreover, it is responsible for the verification of the correct 
behavior of the system from the statistical point of view: it is 
able to generate new sets of most probable rules to extend the 
global system behavior according to the variations occurred at 
the ontological level. 
Finally, Production Rules allow defining the causal flow of a 
given BN in terms of rule-based constructs. A rule is made of a 
Left Hand Side (LHS) that is a logical clause involving one or 
more facts from the knowledge base and a Right Hand Side 
(RHS), which specifies actions to do in case the LHS is true. 
These actions could be modifications of the knowledge base, 
like insertion/deletion of new/obsolete facts or I/O operation, to 
get/return input/output values from/to the user. 
 A collection of rules is produced for each output of the system, 
while partial outputs (i.e. results of a computation useful to 
obtain an output, but not interesting for the user) are managed 
in the same way: of course, partial output must be executed 
before the outputs that they influence, following the causal 
relationships introduced by the BN. In this way, the correct 
division of the system into computational layers is defined. 
The rule management functional block in Figure 2, handles the 
insertion of the new rules in the running system and the 
elimination of obsolete rules (those suited to a past state of the 
environment, possibly conflicting with the new ones). In a non-
automatic implementation of the rule management a further 
task which could be carried out is the modification of the set of 
rules, performed by a human expert. 
 
Adequacy verification 
Dealing with time-evolving scenarios means that the set of 
rules employed by the KBS (the running KB) may become 
inadequate to our purpose due to a transition. 
In the most straightforward solution to this problem, the 
updating function can be accomplished by keeping the BN 
working on the stream of events/facts which are being fed into 
the KBS. In this way the BN is continuously re-computing the 
set of most probable rules, and the rule management functional 
block compares this set with the one being employed by the 
KBS, and performs the necessary updates. Figure 4 depicts this 
approach, taken in our case study (see below). 
 
The outlined procedure has only one critical parameter, which 
is the duration of the time window containing the events/facts 
which are taken in account for the computations of the BN. A 

large time windows causes a slow reaction by the system, but 
the updating process cannot be led astray by unlikely and 
isolated combinations of events, not indicating a state 
transition.  

 
Figure 4: a straightforward solution to the adequacy problem 
 
Conversely, a narrow time window is less significant from a 
statistical point of view, but allows a faster system reaction. 
The correct duration of the time window can be established 
with the help of a domain expert; quite obviously, shorter time 
windows are suited to environments which exhibit sharp 
transitions, larger windows are suited to morphing and 
continuum transitions, while bouncing ones require a more 
sophisticated approach (for instance handling different groups 
of rules with different time windows). 
Although the approach we have just discussed is perfectly 
reasonable in several practical applications, it is ill-suited to 
distributed implementations and real-time, data intensive 
problems, because it requires a large quantity of data being 
continuously sent from the distributed to the centralized level. 
An alternative approach consists in separating the task to 
realize that a transition is occurring (or is likely to occur) from 
the computation of the new set of rules. In this way the 
transition detection is performed by a dedicated functional 
block (adequacy verification in Figure 2), offloading the BN 
from a task which is not appropriate to it. The BN can then 
intervene for the computation of a more adequate set of rules, 
requiring the direct access to the monitored events for a much 
shorter time span. Moreover, the process of rule extraction can 
take advantage of the preliminary indications of the adequacy 
verification function. 
The crucial point in this approach is the implementation of the 
verification function. A possibility we are investigating is 
defining a very small set of rules (called monitoring rules), 
executed on a separate system, which can be considered 
reliable and timely indicators of an occurring transition. We 
have been able to identify monitoring rules for some practical 
problems, but the implementation of this alternative approach 
to adequacy verification requires some further work. 
 
Real Time behavior 
As stated above, one of the advantages of a layered approach is 
performance. More specifically, we want to obtain an 
architecture which can react in real-time to the modifications of 
the environment: technically, it must be possible to enforce 
predefined deadlines for the firing of a rule after the occurrence 
of relevant events. 
Of course, this requirement is significant for the KBS while an 
analogous requirement imposed to other parts of our system, 
and in particular to the BN, would not make sense in practical 
situations because the timing of the BN operations is 
constrained by the need to collect statistically significant data. 
The technology we employ for the implementation of the KBS, 
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based on the Jess platform, provides a very effective features 
for the support of real time requirements, the shadow facts. 
Shadow facts are Java Beans objects treated as facts in the 
knowledge-base. If they change their value, the inference 
engine is able to detect this change and execute again the KBS, 
being sure that no inconsistency between outputs and inputs 
will be generated. 
This implies that the presence in the left side of a rule of a 
shadow fact whose code embodies an update period of, say, 
100 milliseconds, guarantees that such rule will be ready to fire 
every 100 ms, possibly using new information about the 
environment gathered by the shadow fact. This feature 
therefore allows implementing real-time requirements directly 
into the KB rules. 
 

6. IMPLEMENTATION 
This section describes our implementation of the mechanism to 
generate, in real time, new rules according to the new 
observations. The model is implemented in JAVA and includes 
four main components responsible for the generation of new 
rules: 
• Monitoring agent (MA): a Thread whose task is to 

understand when a rule update is necessary. When this 
condition is expressed, it starts the updating procedure. 

• Expert system manager (ESM): it is the component 
responsible for the rule-based system’s management. It 
communicates with a JESS engine and with the manager 
of the “upper level”. 

• Bayesian Network manager (BNM): the Bayesian 
Network executor. It manages the net structure and its 
update. 

• JESS engine (JE): the manager of the JESS components. 
 
The MA component is the place where the adequacy 
verification algorithm can be implemented (see Figure 2). 
Moreover, it is responsible for the management of the domain 
ontology, managing the set of variables necessary to describe 
the problem. This set can vary over time, both in the number of 
variables involved and in their values, causing a transition from 
a state Si to a new state Sj. When such a transition occurs, MA 
starts the rule updating process. 
The updating procedure is accomplished through an 
asynchronous call to ESM: after this call ESM needs to have 
the list of posterior probabilities updated to extract new rules; 
for this reason it launches a synchronous call to the BNM 
waiting for the complete list of posterior probabilities for each 
node of the net. BNM computes an inference procedure for 
each possibility, given the evidences of the system. That is the 
heaviest operation from the computational point of view.  
Once the new posterior probabilities are processed, ESM is 
able to extract new rules. Only at this moment it interrupts JE, 
storing the new rules in the knowledge base.  
From the computational point of view, the three-tuple (MA, 
BNM, ESM) constitutes the KA implementation in our case 
study. According to the description above, the three 
components are related one another, as introduced in Section 4. 
The adoption of shadow facts in the communication between 
MA and the Jess Engine allows capturing the real time 
behavior of the framework: the state transition from Si to Sj 
causes the variation of a shadow fact object value or the 
instantiation/deletion of a new/existing shadow fact object. 
 
7.  CASE STUDY AND EXPERIMENTAL EVALUATION 
The case study we present in this section is related to the 
analysis of urban traffic. Nowadays, the need of having 

recommendations about mobility in the urban context is greater 
than ever, due to the ever-growing metropolitan areas, with 
higher population density. To satisfy this need, the diffusion of 
personal wireless devices, such as smartphones, allows 
monitoring of different variables, like the traffic conditions, 
itineraries calculus with distance and timing, and so on. 
Our application scenario uses a set of information that ranges 
from physical and psychological condition of the user to 
weather condition, day of the week, traffic condition, and so 
on. Each observation is collected from personal devices, like 
smartphones and wearable devices. 
 
Using these different kinds of information, we realized a 
simulator composed by different kinds of agents, whose goal is 
to reach the upper town of Bergamo from the lower town using 
one of the three possibilities available (i.e. bus, funicular and 
stairs).  
The goal of the case study is to compare a new version of the 
simulator, which makes use of the model introduced in this 
paper with a previous version, where a “classical” Bayesian 
inference procedure was adopted for taking the decision. 
Each agent is equipped with a decision engine, realized 
according to the model described so far, in particular the 
adopted BN is depicted in Figure 5. 
 

 
Figure 5: the case study BN nodes and relations 
 
This structure shows a high level representation of the causal 
model and it can be seen as the responsible for the generation 
of rules used by the “running” knowledge base (the lower level 
of the model). Every time an agent is created, the system 
provides it with the decision engine described earlier in this 
section (essentially a rule-based system exhaustive of all the 
possible situations expected from the scenario). There are two 
inputs used by each agent: the agent’s type is retrieved by the 
attributes of the agent itself, and the queue status is provided by 
the environment. The decision engine is now ready to be 
executed given the inputs provided. 
Please note that the rule-based systems produced are always 
different from each other, generating, as a consequence, 
heterogeneous agents.  
Only the chosen alternative is used by the agent as output of the 
decision engine, and it represents his choice in the 
environment. 
The details of the simulator are beyond the scope of this paper, 
however it is important to know that every agent is introduced 
in a controlled environment, and it has to take a decision about 
which transport to take 
The simulator creates three different types of agents: citizen 
agent (this type of agent is characterized by a deep knowledge 
of the territory and by a low tolerance to queue), nearby agents 
(this second type of agent is characterized by a moderate 
knowledge of the territory and a rather high tolerance to queue) 
and tourist agents (with no knowledge of the territory and a 
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high tolerance to queue). Assuming the nodes “Agent type” and 
“Queue status” as evidences, the BNM, as a first operation, 
generates all the possible LHS configurations: in the example 
there are 12 possible alternatives for each output node. After 
this preliminary computation the BNM generates a posterior 
distribution of probability for each configuration; for instance, 
one possible posterior distribution of probability obtained after 
the inference procedure is the following one:  
 
Node: Vehicle 
Configuration exploited: 
...... Node: Queue Outcome: none 
...... Node: Agent_Type Outcome: citizen 
Posterior probability distribution: 
--------- Outcome: funicolar Probability: 
0.7275 
--------- Outcome: bus Probability: 0.2515 
--------- Outcome: stairs Probability: 
0.021000000000000005 
 
Once the 24 probability distributions have been obtained, the 
ESM uses one of the three alternatives modeled to extract new 
rules, and then stores them in the JE; for instance the rule 
extracted by the previous distribution is the following, where 
LHS and RHS are separated by the => symbol:  
 
(defrule VEHICLEfunicolar13 (Queue none)  
(Agent_Type citizen)   
=>  
(assert (Result_Vehicle (Vehicle 
funicolar) (Reliability 0.7275)))) 
 
This is the complete sequence used for asserting the new rule in 
the knowledge base. Note that the RHS of the rule reports also 
a reliability value, retrieved from the posterior distribution of 
probability. The reliability of the rule is the value used by the 
model to understand when something is changing around the 
user: if the same rule, in a further updating procedure, obtains a 
different reliability value, the model realizes that something in 
the reliability of the rule is changed (for instance, if the value 
has grown, the given rule is more reliable). The new rule is 
now ready to be executed. What we observed, after various 
executions of the simulator, is quite interesting: compared to 
the “classical” decision mechanism, this new version provides 
different behaviors over the time.  
The original simulator version did not show a plausible 
behavior in all cases. Examining the queue composition of the 
most critical transport vehicle (the funicular), we noticed that 
the behaviors of citizens agents and nearby agents was often 
too similar. This conduct wasn’t expected. Initially we thought 
that the reason of this unexpected behavior was the BN’s 
structure itself: a more complex BN, capable of modeling more 
environment variables, would have been able to discern in a 
better way the agents’ behaviors.  
This conclusion is denied by the new version of the simulator. 
Analyzing the new funicular queue composition plot (see 
Figure 6) it’s clear how the agents’ behaviors are now very 
separated and more adherent to reality. The reason of this 
improvement is in the decision model itself: the rule execution, 
instead of a simple Bayesian inference whose result is not 
predictable, generates more characteristic agents, or rather 
better distinguishable between each other.    
 

8.  CONCLUSIONS AND FUTURE WORK 
In this paper, we have discussed the problem of modeling time 

evolving scenarios. This is a very important research trend in 
Computer Science, involving heterogeneous competencies. 
Indeed, the continuous evolution of mobile devices and  

 
Figure 6: a line chart representing the funicular queue 
composition overtime. 
 
applications offers new and stimulating challenges as well as 
opens to new possibilities to tackle it, allowing integrating 
easily and profitably different kinds of systems into unique 
conceptual and computational frameworks, such as the 
Knowledge Artifact concept in our approach.  
This is the motivation of our work, to understand how 
statistical and Artificial Intelligence methods like Bayesian 
Networks and rule-based systems can be exploited to 
automatically generate and use new knowledge when 
necessary.  
Future works will be mainly devoted to testing the applicability 
of the framework to develop systems characterized by variable 
conditions and parameters.  
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