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In an instance where desired pre-defined actions,

various video classification and recognition models
can be trained to discover those classifications
and their location within the video. Absent that
information, one might still be tasked with identifying
interesting portions within a video, a process which—if
done manually—is onerous and time-consuming as
it requires manual inspection of the video itself.
Recognizing high-level interesting segments within
a whole video has been a general area of interest
due to the ubiquity of video data. However the size
of the data makes storage, retrieval, and inspection
of large collections of videos cumbersome. This
problem motivates the task of generating shortened
clips highlighting the primary content of a video,
relieving the burden of having to watch the entire
video. This paper presents an unsupervised method
of creating shortened clips of videos, enabling the
rapid review of the most interesting content within
a video. Our method uses features extracted from
pre-trained action recognition models as input to
online moving window robust principal component
analysis to generate summaries. The procedure is
tested on a publicly available video summarization
dataset and demonstrates comparable performance
to state-of-the-art in an un-augmented setting while
requiring no training.

1. Introduction and Related Works
Summarization of a video into a compact form is a

difficult task that has been approached from several
angles. These include extracting key-frames, defining
shot boundaries, summarization by text, and creating
continuous but shortened video. The method described
here focuses on the last of these, with the specific goal
of capturing the informative segments of the video.
The greatest challenge of this task is defining what

constitutes ‘informative’ or ‘interesting’, which can
depend on the application and perspective of the viewer.
Two common criteria are representativeness, which can
be thought of as how well each segment encapsulates
1The authors would like to thank Elizabeth Cary and Lee Burke for
acting as peer-editors for this paper.

demands non-redundancy of segments of the summary.
Evaluation is also difficult due to the lack of a large
scale dataset that has frame-level ground truth, and
the fact that ‘ground truth’ is far more ambiguous than
in other vision tasks.
Low-level features such as GIST, HOG, color

histograms, and optical flow have been used in
frameworks that attempt to define an ‘interestingness’
metric [10][11], align themselves with content that
draws human attention [6][13], or combine the
features so as to capture semantic content [23].
Convolutional neural networks are now commonly
used as feature extractors, and have shown modest
improvements over using shallow features [25][26].
Extracted features are used in various schemes to

select which frames are included in the summary,
usually focusing on the mentioned goals of diversity
and representativeness. In [15] a k-mediods problem
is solved to select a diverse set of segments.
Determinantal point processes (DPP) have been used to
enforce the diversity of returned segments [9][14][24].
In [27], a reinforcement learning model was trained
with the reward function directly trying to capture the
notions of diversity and representativeness.
Due to the lack of a large labeled dataset, and

the ambiguity of what constitutes ground truth,
unsupervised approaches have historically been more
common. These often include a step which segments
the video into optimally diverse subsets and then
assigns scores to each subset to produce a summary
[11][15][16]. In [14] an adversarial framework
is used to train a frame selector that produces
maximally representative summaries. Highlights
defined as outliers in the latent space of an autoencoder
framework were used to create summaries in [21].
Supervised approaches based on recurrent neural

networks can effectively capture the sequential nature
of video content and have shown state-of-the-art results
[25][26]. The unsupervised frameworks in [27] and
[14] were extended to supervised versions that slightly
improved performance. Human annotated summaries
have also been used to fine-tune DPP methods to select
optimal subsets [9][24][25].
We investigate an approach that requires no training

(given pre-trained models), and makes use of robust

behaviors, or other categories are known a priori,
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principal component analysis (RPCA)[4] to select
summary segments. RPCA based methods have been
used to perform foreground detection in video, that is
to separate anomalous foreground elements from the
background [3]. Like [21], our summary is a ‘highlight
reel’, defined by anomalous events in the video, in our
case as detected by an RPCA based algorithm. There
are many difficulties to this approach, but most boil
down to the lack of a globally consistent representation
in a video [2]. Various adjustments have been made to
RPCA based algorithms to account for one or more
of these challenges [3]. Our method uses features
extracted from action recognition models to create a
more consistent and semantically meaningful input to
this class of algorithms.
In Section 2 we give a brief overview of RPCA and

convolutional neural networks as applied to action
recognition, the reasoning behind their use in this
task, and the particular flavor of RPCA and action
recognition model chosen. Section 3 details the novel
methodology, and Section 4 covers the evaluation
procedure, followed by a discussion of the results.

2. Preliminaries

2.1 Notation
We refer to matrices with upper case letters (A, L, S),

vectors or lists with bolded lower case letters (a, l, s),
and scalars with unbolded lower case letters (st,j , q1).
The dimensions are given in subscripts when we feel
it may be unclear. We use t ∈ {1, 2, ...τ} to index
over matrix columns, sequences of video segments, or
sequences of feature embeddings of video segments.
The size of the feature space of action recognitionmodel
output is given by d.
2.2 RPCA
Robust principal component analysis attempts to

reconstruct an additive representation of a matrix in
the presence of gross errors. Specifically, given a matrix
M = L + S, where L is a low rank matrix and S is
a sparse matrix of errors, we want to retrieve L and
S. This is accomplished by solving the optimization
problem:

min
L,S
‖L‖∗ + λ‖S‖1 : L+ S = M

Where ‖L‖∗ and ‖S‖1 are the nuclear norm and
L1 norm of L and S respectively and λ is a tuning
parameter. There are theoretical guarantees that the
algorithm will recover L exactly under a wide range of
conditions [4].
In our application to video summarization, we are

most interested in the sparse matrix S. The elements
of this matrix should be mostly zero, and columns for
which this is not true indicate observations that are
not representative of the underlying data generating

process. Our approach favors these observations for
inclusion in the produced summary.
The standard RPCA algorithm above has a

particularly glaring drawback in that it cannot deal
with inconsistent subspaces over time [20][3]. The
observations (frames) in a video that have drastically
different content across time are less dependent - in
other words L, which represents the true underlying
subspace, is poorly approximated by a low rank matrix.
A standard approach to overcoming this problem is

moving window robust principal component analysis
(MWRPCA), which updates the underlying subspace
based on iterative computation of RPCA-PCP [4] on
nwin samples in a sliding window. The limitation of
this approach is that for large matrices, there is a severe
computational bottleneck [20].
The solution proposed in [8] is to update the

subspace in an online manner, however that algorithm
loses the benefit of the sliding window. The online and
sliding window approaches are combined in [20] to
create an online moving window RPCA (OMWRPCA)
algorithm and an overview of their implementation is
given here. The goal remains the same: to recover
the components L and S. To accommodate the online
updating of L, it is further decomposed into a product
of matrices L = UV , where U forms a basis for the
low rank subspace, and the columns of V are the
coordinates of the low rank portion of the observations
with respect to the basis elements. The loss function to
be minimized is:

min
U,V,S

1

2
‖M − UV − S‖2F +

λ1
2

(‖U‖2F +‖V ‖2F )+λ2‖S‖1

Where ‖U‖F is the Frobenius norm of U . Now
consider a sequence of observations, revealed one at
a time m1,m2, ...,mT . The values of L and S will be
determined one column at a time as the observations
are revealed by minimizing an empirical version of the
loss function. Generally:

DecomposeM into L and S by OMWRPCA
Input: M , Matrix to be decomposed

U0, Initial estimate of U
1: for t ∈ 1, 2, ..., T do
2: Reveal observation mt = M[:,t]
3: Find columns vt, st of V and S given mt

4: Find Ut given Ut−1

5: L[:,t]← Utvt
6: S[:,t]← st
7: end for
8: return L, S

Where A[:,t] is code syntax for all rows of column
t of matrix A

The steps to find vt, st, and Ut in OMWRPCA are an
extension of those in [8] but are calculated based on
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the previous nwin samples instead of a running average
of all the currently revealed samples. The advantage
of this is that it can better handle quickly changing
subspaces. This is desirable in our case since we want
to detect abrupt changes in scene so as to identify a
diverse set of content, but at the same time quickly
update the estimated subspace to detect anomalous
events within the new scene. OMWRPCA is the variant
of RPCA we employ for video summarization.

2.3 Video Action Recognition Models
Determining actions within video is an ongoing area

of research in computer vision, with successful models
trained on very large datasets becoming available
only in recent years [12]. The task is a classification
problem, where we want to predict the action label of
a short video clip. For example, the benchmark dataset
UCF-101 [17] contains videos where the labels are
categories such as ‘applying eye makeup’ and ‘baseball
pitch’.
The state-of-the-art models in [5][7] are extensions

of convolutional neural network architectures for image
recognition where the convolutions are applied over
three dimensional volumes (time × width × height).
The convolution over the time dimension captures
information about motion over short time periods in
the final feature representation. Action recognition
networks are also often trained on input that explicitly
capture motion information[19]. In addition to visual
and motion information separately, these models also
capture the interaction between the two. We rely
upon these semantically meaningful representations to
provide input to OMWRPCA that is stable across video
sections that have similar semantic content.

3. Methods

Our approach combines OMWRPCA and action
recognition models to identify sections of a video
which will be included in a summary; the procedure
is outlined in Figure 1. The steps involved roughly
separate into feature extraction, scoring, and frame
selection.
3.1 Feature extraction

To create the input to OMWRPCA, we extract features
from across an entire video using pre-trained action
recognition models. In our experiments, we make use
of the C3D [18] and i3D [5] architectures. The input
dimensions for a single sample for each model used
in the rest of this document are given below. i3D uses
one or both of two possible inputs, raw RGB frames or
depth 2 optical flow stacks.

C3D : (16× 112× 112× 3)

i3D(rgb) : (32× 224× 224× 3)

i3D(flow) : (32× 224× 224× 2)

For the C3D model, we take the approach described
in the source paper, which is to obtain three model
inputs of dimension 16 × 112 × 112 × 3, where each
segment overlaps by 8 frames. For each of these inputs,
the output of the second to last fully connected layer
is extracted, yielding three vectors of dimension 4096.
Finally, the three outputs are averaged and the result
is L2-normalized to produce the final feature vector of
dimension 4096. For the i3D model, a single input of
dimension 32×224×224×3 is obtained, and the output
of the final global average pooling layer is flattened
to produce a feature vector of dimension 3072. The
spatial (second and third) dimensions are obtained by
resizing individual frames to 171× 128 and 256× 256
and then taking a center crop of dimension 112× 112
and 224× 224 for C3D and i3D respectively.
To form the input to OMWRPCA, we need a sequence

of feature vectors that cover the whole video. To
accomplish this, we extract short, continuous segments
of frames from across the entire length of an input video.
The segments have width equal to the time dimension
of the input for whichever feature extractor we are
using, and begin at evenly spaced points throughout
the video. In our experiments, this spacing is chosen
to be half width of each segment, so that there is some
overlap. Features are then extracted from each segment
and are sequentially arranged as columns in a matrix
which is the input to OMWRPCA:

Fd×τ =

 | | |
f1 f2 ... fτ
| | |


Where ft is the feature representation of a video

segment, indexed by t. It is worth noting the distinction
between the feature indices and the frame indices. The
features represent a chunk of frames at some position
in the video.
3.2 Scoring
After we have obtained F , the matrix of video

features, we want to identify which feature vectors
we should choose to create a summary by assigning
each of them a score, defined in Procedure 1. The
score relies on the output of OMWRPCA, namely the
low rank and sparse matrices L and S. Intuitively,
non-sparse columns of S indicate segments which are
noticeably different than the nwin−1 segments leading
up to that point. Additionally, we assume an unstable
underlying subspace L, and so expect it to contain
several independent representations of the various
scenes in the video. We seek to form a video based
on the criteria of diversity and representativeness.
To achieve representativeness, we select feature

vectors whose corresponding component in S is
non-sparse. These feature vectors hopefully correspond
to new semantic content within the video. To identify
non-sparse sections, we sum over the columns of the
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Figure 1: Overview of summary creation procedure using C3D model.

Procedure 1: Compute a vector of scores for each
feature index.

Input: Fd×τ , Matrix of feature vector columns
1: Ld×τ , Sd×τ ← OMWRPCA(F )

With lt and st as the length d columns of L and S
respectively at index t:

2: p1×τ ← [p1, p2, ...pτ ] : pt =
∑d
j=1 |sj,t|

3: md×1 ← median({l1, l2, ..., lτ})
4: Qd×τ ← [q∗

1 , q
∗
2 , ...q

∗
τ ] : q∗

t = |lt −m|
5: q1×τ ← [q1, q2, ...qτ ] : qt =

∑d
j=1 q

∗
j,t

6: return r = p� q (element wise product)

absolute value of S (Proc 1. Step 2). As the sliding
window of OMWRPCA moves forward in time, the new
subspace will eventually become the new normal, the
corresponding columns of S will tend to be sparse, and
the column sums pt will be relatively small, but not
before several sections have been flagged as potential
candidates, forming a representative chunk of novel
video content.
This procedure involving the column sums of S

works well for identifying video segments which are
locally distinct, however it will still pick up on identical
transitions at different points in the video (i.e. the same
camera pan from foreground to sky). Though these
similar transitions might still warrant inclusion, we
penalize their score using information obtained from
L. The penalization is done by computing the absolute
distance from the median (vector) of all columns of
L (Proc 1. Steps 3-5). Intuitively, segments which
are closer to the median feature representation of the
entire video are penalized for redundancy; this is the
mechanism by which we attempt to enforce diversity.
The score vector r is the element wise product of the

two resulting score vectors p and q. Indices with high
scores correspond to video segments that were both

different than the previous nwin − 1 segments and far
from the median video content, in terms of the action
recognition feature representation of the video.
3.3 Frame Selection
To select frames from our scores for each feature

index, we either consider the raw values of r or the
difference between the current and previous indices
rt ← rt − rt−1 : t ∈ 1, 2, ...τ . We form a summary by
selecting the feature indices with the highest scores and
storing the corresponding video frames until we have
frames equal to some desired proportion of the total
frames in the video. The range of frames corresponding
to a feature index t is given by: (t ·w, t ·w+ ∆x) where
w is the spacing (number of frames) between each
video segment, and ∆x is the time dimension (number
of frames) of the input to our feature extractor. See
Procedure 2.

4. Evaluation

4.1 Dataset and Criteria
To test the model, we use the publicly available

SumMe dataset [11], which consists of 25 videos
each with multiple human summaries. Specifically,
subjects were asked to pick segments from a video that
they believed best summarized its content, with lower
and upper limits of 5% and 15% of the whole video.
Our scoring method follows that of [11] and [25],
which compare an automatic video summary against all
human generated summaries for that video. Specifically,
given n user summaries corresponding to video i:
bij : j ∈ {1, 2, ..n}, and a single automated video
summary ai, compute the F1 measure fij between
ai and each user summary bij:

fij =
2 · pij · rij
pij + rij

: pij =
ai ∩ bij
|ai|

, rij =
ai ∩ bij
|bij |
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Then, within a video i either take the mean or
maximum F1 measure across summaries j. Finally,
take these maximum/mean scores and average across
all videos i to get a final score.
As in [11][25] we constrain our summaries to

be approximately 15% of the whole video (slightly
more since the last segment appended will overflow).
Several parameters were changed to test the effect on
performance. These included the size of the OMWRPCA
sliding window, the strength of the L1 penalty on S
(λ2 in the objective function), the spacing between
segments used as input to the feature extractors, the
model used (C3D vs i3D), whether to score a feature
index by its raw value or difference from the previous
value, and a slightly higher proportion of selected
frames.
For the window size, nwin, several runs ranging from

nwin = 2 to nwin = 10 found that a width of 5 is usually
best. There was no appreciable difference in changing
the λ2 value from its default of d−0.5. A spacing of 8 and
16 were best for the C3D and i3D models, respectively,
and using the raw values of the score vector rather
than the difference produced the highest F1-scores on
SumMe.

Procedure 2: Create summary from feature scores.
Input: r, Vector of scores from Procedure 1

γ, Size of summary, as a proportion of
total video frames.

1: r ← argsort(r)
2: Initialize empty list of frames F
3: while len(F ) < γ · len(V ideo) do
4: t← pop(r) (Index of next highest score)
5: frames← [t · w, t · w + ∆x] ∩ N
6: F ← F ∪ frames
7: end while
8: return F

Where len(x) is the number of elements in x,
t←pop(x) removes the first element in x and assigns
it to t, and argsort(x) arranges the indices of x in
descending order by the value of x. See 3.3 for
descriptions of w and ∆x.

4.2 Results
Performance against other reported results on

SumMe is shown in Table 1. Parentheses indicate
the use of augmented training data, [27] and [14]
report both supervised and unsupervised approaches.
We did not investigate any uses of augmented data as
our method does not share any updated parameters
across videos, and so we compare scores in the
un-augmented setting using maximum F1-score as
the comparison metric: Our method reports the
highest scores among all unsupervised approaches,
and beats all but the method of [27] among

Method (†= supervised) Mean F1-score Max F1-score
CNN + Cluster [15] 0.182 —

Interestingness [11] 0.234 0.393
Reinforcement Learning [27] — 0.414 (0.428)

Adversarial [14] — 0.391 (0.434)
DPP [24] † — 0.409

LSTM + DPP [25] † — 0.386 (0.429)
Adversarial [14] † — 0.417 (0.436)

Reinforcement Learning [27] † — 0.421 (0.439)
Hierarchical RNN [26] † — (0.443)

C3D + OMWRPCA 0.210 0.403
i3D + OMWRPCA 0.220 0.419

Table 1: F1-scores for ours and other results. Mean
and maximum columns correspond to taking the mean
or maximum F1-score across summaries within a
video before averaging across all videos. Parentheses
indicate scores achieved using training data augmented
from other videos. Best scores for supervised and
unsupervised methods in bold.

supervised competitors, where our procedure has
the advantage of requiring no training.
On such a dataset as SumMe, where there are

multiple ground truths for a single input, a metric such
as maximum F1-score is useful, but difficult to interpret.
To further evaluate performance, a visual inspection of
the results can show areas where the model performs
well, and where it fails, as determined by its ability to
pick up on obvious peaks.
Figure 2 shows the segments selected by the

procedure against the proportion of users that included
a particular frame in their summary for all 25 videos.
Remember that the F1-score is not computed against
the top values of the red line shown, but pairwise
against every user summary for a given video, which
are aggregated in Figure 2 for visualization purposes.
For content such as ‘Paintball’ and ‘car over camera’

in which objects and humans make periodic and abrupt
appearances in the video, the model performs well, as
seen in Figure 2, highlighted green. The model fails to
pick up on subtle changes, such as the middle spike in
‘Cooking’ (Figure 2, row 1 column 3), where indeed
there is not enough signal in either L or S to warrant
inclusion in the summary. The produced summary for
‘St Maarten Landing’ is another example of this type of
failure (Figure 2, row 2 column 1).
Another type of failure can be seen in ‘paluma jump’

(Figure 2, row 4 column 1), where the procedure
focuses too heavily on the end of the video and misses
two important spikes. The last section of ‘paluma
jump’ has a substantially different background than
the first 80% of the video. In terms of the scoring,
the last section is far from the global median feature
representation, and its segments are penalized much
less severely than the previous 80% of video segments.
An adjustment was made to Procedures 1 and 2 in an
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Figure 2: Segments selected by i3d + OMWRPCA (blue) against proportion of users who included a segment in
the summary (red) for all 25 videos in SumMe [11]. Successful and unsuccessful identification examples bordered
in green and red respectively.
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Figure 3: Boxplots of pairwise F1-scores between automated and user summaries for each video.
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attempt to remedy this type of failure. When iteratively
selecting segments, we compute a different score vector
r at each iteration instead of a static score vector. The
update is described in Procedure 3. At each selection
step, the median vectorm is computed as the median of
the global median and all columns of L corresponding
to already selected feature indices (I). Intuitively, we
are dissuading the algorithm from selecting a new
segment whose underlying representation is close to
that of already selected segments, hopefully improving
the diversity of the resulting summary. This does not
actually improve F1-score, but ‘fixes’ the type of failure
seen in videos such as ‘paluma jump’ and ‘St. Maarten
landing’, i.e. we see frame selection at the spikes where
previously there were none.

Procedure 3: Updated scoring procedure with running
median.

Input: γ Size of summary, as a proportion of
total video frames.

F Matrix of feature vector columns
1: Ld×τ , Sd×τ ← OMWRPCA(Fd×τ )

With lt and st as the length d columns of L and S
respectively at index t:

2: md×1 ← median{l1, l2, ..., lτ}
3: p1×τ ← [p1, p2, ...pτ ] : pt =

∑d
j=1 |sj,t|

4: Initialize empty list of frames U , list of medians
M = {m}, empty list of already selected indices I

5: while len(U) < γ · len(V ideo) do
6: m∗

d×1 ← median(M)
7: Qd×τ ← [q∗

1 , q
∗
2 , ...q

∗
τ ] : q∗

t = |lt −m∗|
8: q1×τ ← [q1, q2, ...qτ ] : qt =

∑d
j=1 q

∗
j,t

9: r1×τ ← p� q (element wise product)
10: r[i]← −∞,∀i ∈ I
11: t← argmax(r)
12: frames← [t · w, t · w + ∆x] ∩ N (See 3.3)
13: U ← U ∪ frames
14: I ← I ∪ t
15: M ←M ∪ L[:, t]
16: end while
17: return U

See 3.3 for descriptions of w and ∆x.

4.3 Further Discussion
All this raises the question about how we might

redefine what constitutes a ‘good’ summary or evaluate
performance. One approach could be to pass our
summarized video to another machine learning task
that requires a fixed length video representation. This
is a common requirement in the task of video captioning
[1][22]. Another approach could be to define a
threshold for how much agreement between human
raters is necessary to define a segment as important.
Performance would then be the algorithm’s ability to
select such segments given some budget of frames as a

proportion of the total video frames.
The SumMe dataset is very small, and the difficulty

of creating a large dataset that has frame-level
labeling remains a challenge to effective evaluation.
The evaluation metric of pairwise F1-score is also
problematic. Boxplots of the F1-scores between our
manually created summary and each user summary
for all videos are shown in Figure 3, and illustrate the
variance in agreement. For videos with high variance
in F1-scores, the difference between the average and
maximum F1-score can be rather egregious. Depending
on the application, a method which achieves the
highest possible average pairwise-within-video-average
F1-score (approximately .454) may still not produce
the most desirable summary. Algorithms attempting to
achieve high F1-score will necessarily ignore segments
that are selected by only a few human raters, as these
are ‘wasted frame guesses’ in terms of F1 with a cap of
15% of the video length, though someone might still
be interested in capturing these odd occurrences.

5. Conclusion

This work investigates the combination of deep
action recognition model features with the sparse and
low rank decomposition methods of robust principal
component analysis as an unsupervised approach
to video summarization that shows competitive
results to state-of-the-art on a standard benchmark
dataset. The model is simple to implement, employing
two well defined procedures of action recognition
model feature extraction and online moving window
robust principal components decomposition with easily
tunable hyperparameters to adjust the length and
compactness of the produced summary.
Generated summaries perform well in maintaining

diversity in most cases and pick up on semantically
meaningful content. Evaluation on larger datasets,
on different objectives rather than diversity and
representativeness, and on different measures of
success rather than F1-score are all directions for future
exploration. Finally, it may be of interest to extend
this framework to a trainable version that can take
advantage of augmented training data.
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