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ABSTRACT 

 

This paper examines optimization possibilities of Self-

Initialization Quadratic Sieve (SIQS), which is enhanced version 

of Quadratic Sieve factorization method. SIQS is considered the 

second fastest factorization method at all and the fastest one for 

numbers shorter than 100 decimal digits, respectively. Although, 

SIQS is the fastest method up to 100 decimal digits, it cannot be 

effectively utilized to work in polynomial time. Therefore, it is 

desirable to look for options how to speed up the method as 

much as possible. Two feasible ways of achieving it are code 

optimization and parallelism. Both of them are utilized in this 

paper. The goal of this paper is to show how it is possible to take 

advantage of parallelism in SIQS as well as reach a large speed-

up thanks to detailed source code analysis with optimization. 

Our implementation process consists of two phases. In the first 

phase, the complete serial algorithm is implemented in the 

simplest way which does not consider any requirements for 

execution speed. The solution from the first phase serves as the 

reference implementation for further experiments. An 

improvement of factorization speed is performed in the second 

phase of the SIQS implementation, where we use the method of 

iterative modifications in order to examine contribution of each 

proposed step. The final optimized version of the SIQS 

implementation has achieved over 200x speed-up. 

 

Keywords: Factorization, SIQS, Parallelism, OpenMP, 

Profiling, RSA cryptanalysis. 

 

 

1. INTRODUCTION 

 

A factorization is a process which aims at finding the factors of 

a given composed number in reversible fashion. The 

factorization is NP-hard computational problem which means 

that it cannot be efficiently resolved in polynomial time. One of 

the example areas, where factorization is being utilized, is the 

RSA cipher cryptanalysis [16]. The RSA presumes that for 

sufficiently long keys (2048 bits and longer), the attacker is 

unable to compute this computational problem and decipher an 

encrypted message.   

 

Many factorization methods have been presented, while SIQS is 

one of them. It is described for example by Contini in [5]. SIQS 

is the most optimized version of QS which is the fastest method 

for factorization of composite numbers up to 100 decimal digits 

(332 bits) and the second fastest in general [14], [15]. The 

drawback of SIQS is its difficult comprehensibility. On the other 

hand, it is much more comprehensible in comparison to General 

Number Field Sieve [2]. The factorization speed of SIQS 

depends on many aspects. As we will show later, it is possible to 

split SIQS into several submodules. Each submodule has its own 

complexity and issues which have to be considered and resolved 

separately in order to make implementation efficient. In this 

paper, we discuss common issues and present our approaches to 

deal with them. Our approaches are primarily based on a code 

profiling analysis and memory utilization analysis which are 

accompanied by a parallelism.  

 

The paper is organized as follows. Section 2 describes SIQS in 

detail and splits it into logical submodules. Section 3 proposes 

our approach and describes the methodology and the process of 

SIQS implementation. The performance issues and optimization 

process for achieving faster factorization are covered in Section 

4. Section 5 discusses SIQS demands on a memory subsystem 

as well as a way of optimizing them. Section 6 presents the 

influence of parallelism on the factorization speed. The 

comparison of our optimized SIQS implementation with another 

one is covered in Section 7. The conclusion summarizing the 

achieved results is presented in Section 8. 

 

 

2. THE SIQS FACTORIZATION 

 

The Quadratic Sieve (QS) is one of the most used methods for 

factorization of large composite numbers. QS is described by 

Pomerance in [14], [15], and it origins from the Fermat 

factorization method, which is based on the fact that each odd 

number can be expressed as a subtraction of two squares: 
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𝑛 = 𝑢2 − 𝑣2 = (𝑢 − 𝑣)(𝑢 + 𝑣) (1) 

 

Fermat factorization method sets 𝑢 = ⌈√𝑛⌉, and if 𝑢2 − 𝑛 ≠ 𝑣2, 

then a factor is not found, 𝑢 is incremented by 1 and the process 

is repeated again. Fermat factorization is very time consuming, 

because this method is efficient only if the composite number is 

composed of a product of two close numbers. 

 

Kraitchik proposed improvements of the Fermat factorization 

method in [15]. He found out that we do not need to look only 

for numbers where the equation 𝑛 = 𝑢2 − 𝑣2 is true, but it is 

enough to find number, where 𝑢2 − 𝑣2 is a multiple of 

composite number 𝑛. It can be also written as: 

 

𝑢2 ≡ 𝑣2 (𝑚𝑜𝑑 𝑛) (2) 

 

We can realize that using this method can lead to gaining trivial 

factors as a result (i.e. 𝑛 and 1) which does not pose any value 

for factorization. If inequality 𝑢 ≢ ±𝑣 (𝑚𝑜𝑑 𝑛) is true, then the 

result is non-trivial and each factor can be computed as 

𝐺𝐶𝐷(𝑢 − 𝑣, 𝑛) or 𝐺𝐶𝐷(𝑢 + 𝑣, 𝑛), where 𝐺𝐶𝐷 means greatest 

common divisor. Kraitchik suggested that it is efficient to find 

numbers 𝑢𝑖 for 𝑖 ∈ {1, … , 𝑘}, which are subject to: 

 

        𝑢2 = 𝑢1
2 × … × 𝑢𝑘

2  

               ≡ (𝑢1
2 𝑚𝑜𝑑 𝑛) × … × (𝑢𝑘

2 𝑚𝑜𝑑 𝑛) = 𝑣2 (3) 

 

The fact that we can write every number 𝑚 as a product of all its 

prime factors: 

 

𝑚 = ∏ 𝑝𝑖
𝑒𝑖 , (4) 

 

where 𝑝𝑖 are primes and 𝑒𝑖 are their exponents, helps us to solve 

the Eq. (3). Considering the exponents of the prime factors of 

number 𝑚, we can make a vector: 

 

𝑒(𝑚) = (𝑒1, 𝑒2, … ) (5) 

 

which is also called a relation. We are looking for a square, 

however the vector of exponents provides us with higher amount 

of information than we need. Thus, the vector of exponents is 

usually reduced to modulo 2. The goal of this method is to find 

vectors that produce a square. If the sum of two or more vectors 

results in the null vector, then a square is found. The precise 

number of vectors needed to find the null vector is described by 

Brillhart and Morrison in [12]. As we are always limited by 

available memory, it is appropriate to limit the length of the 

exponents in a vector. 

 

As the next step, we have to determine how large factor base 

should be used before performing a factorization by the QS. The 

factor base is a set of the first 𝐹 primes. The 𝐹-th prime of the 

factor base is denoted as 𝐵. Every number that has only prime 

factors smaller or equal to 𝐵 is called 𝐵-smooth number. Only 

𝐵-smooth numbers are used to find the null vector. In order to 

find the null vector, we have to gather at least 𝐹 + 1 vectors. If 

a linear dependency exists among vectors, then at least one 

instance of the null vector occurs in a set of vectors. Notice that 

squares gained by this method may not lead to a non-trivial 

result, and therefore it is always necessary to check whether   

𝑢 ≢ ±𝑣 (𝑚𝑜𝑑 𝑛) is true. 

 

The SIQS method is an improvement of QS which uses 

polynomial for generating numbers: 

𝑄𝑎,𝑏(𝑥) = 𝑎(𝑎𝑥2 + 2𝑏𝑥 + 𝑐), (6) 

 

instead of: 

 

𝑄(𝑥) = 𝑥2 − 𝑛 (7) 

 

as QS does. The method of computing the coefficients 𝑎, 𝑏 and 

𝑐 is described in [5]. QS uses only one polynomial to find            

𝐵-smooth numbers, however, SIQS can use many polynomials 

to find 𝐵-smooth numbers thanks to the coefficients represented 

by the polynomials. Therefore, the SIQS uses variable 𝑥 only at 

a specified interval. The polynomial is changed after depleting 

the whole interval, and thus searching for 𝐵-smooth numbers is 

more efficient. 

 

The SIQS algorithm can be divided into several submodules and 

every submodule can be implemented in many different ways. 

As we mentioned earlier, the factorization is NP-hard 

computational problem, and therefore it is desirable to 

implement it as efficiently as possible. This paper divides the 

SIQS algorithm into the following parts: 

 

A. SIQS parameters configuration, 

B. polynomial generation, 

C. sieving and 

D. resolution of linear dependency, 

 

which will be closer described in following rows. 

 

A. SIQS Parameters Configuration 

The SIQS parameters configuration part has significant impact 

on the factorization speed because this part affects the whole 

process of the factorization. The major parameters that we 

configure in this phase are the size of the factor base and the size 

of the sieving interval. Each parameter has its own influence on 

the performance of SIQS. If the parameters are chosen 

improperly, then the factorization fails or is not efficient. It is 

necessary to make dedicated configuration of parameters for 

every input composed number in order to make the method more 

efficient. 

 

B. Polynomial Generation 
The implementation of polynomial generation influences the 

speed and a quality of generated polynomials. The high quality 

polynomials are desirable for speeding up the factorization, 

because they cause higher likelihood of finding the relation and 

also lower the likelihood of duplicate relations' occurrence. The 

process of polynomials generation and quality discussion about 

them can be found in [3]. We experimentally found out, that the 

logarithm of coefficient 𝑎 of the given polynomial should not 

differ by more than 0.01 from its optimal value. According to 

[5], the optimal value of the coefficient 𝑎 is computed by solving 

the equation: 

 

𝑎𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =
√2𝑛

𝑀
 (8) 

 

It should be noted that coefficient 𝑎 is created as a product of 𝑠 

primes from factor base, and thus causes 𝑎 being very close to 

its optimal value (not equal to it). 

 

C. Sieving 

The sieving phase is the most time consuming phase of SIQS 

and its objective is to gather the necessary amount of unique 

relations. Sieving can be divided into three parts: 
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A. computation of polynomial roots, 

B. candidate selection and 

C. candidate verification 

 

Computation of polynomial roots has to be done for every prime 

that we have in our factor base. If the sum of primes' logarithms 

for a given 𝑥 of the current polynomial exceeds the threshold, 

then 𝑥 is marked as a candidate. The threshold is computed by 

solving the equation [5]: 

 

𝑙𝑜𝑔(2𝑥√𝑁) (9) 

 

The candidates are verified after the candidate selection. If a 

candidate is successfully verified, then a relation is created. The 

candidate verification is performed by division using all primes 

in the factor base. If the result of a division is equal to 1, then the 

candidate is successful. The candidate verification part does not 

take a lot of time, as there are only few candidates necessary to 

be verified. 

 

D. Resolution of Linear Dependency 

The last phase of the SIQS represents resolution of linear 

dependency. This phase performs transformation of relations to 

a matrix which is exploited for finding of linear dependent rows. 

Usually, several linear dependencies are found. Each linear 

dependency is then checked whether it leads to a factor of the 

given composed number. 

 

 

3. IMPLEMENTATION DETAILS 

 

The SIQS method has been implemented in the C++ language 

on x86-64 architecture. C++ has been chosen because its 

standard libraries provide many data types that are often used in 

the implementation as well as there are many C++ based 

profiling tools available. The next reason, why we have chosen 

C++, is OpenMP [4] support which is employed for our 

parallelism. Also, MPIR library (version 2.6.0) has been 

employed because it is capable of holding very large numbers 

and provides various operations with them. The Single Large 

Prime Variation (SLPV) has been implemented in order to speed 

up the SIQS algorithm [7], [8]. 

 

Our implementation consists of two phases. In the first phase, 

the complete and functional algorithm is implemented in the 

simplest way which does not consider the requirements for 

execution speed. Then, the soundness of the implementation is 

verified on the smaller numbers that have up to 40 decimal 

digits. This version serves as the reference SIQS implementation 

for further experiments. 

 

The speed optimization is the second phase of our SIQS 

implementation, where the method of iterative optimization has 

been utilized. The SIQS algorithm is composed of several steps 

which are logically connected. Each step has its own time 

complexity ranging from the linear complexity to the cubic one. 

With increasing length of the composite numbers, each iteration 

of optimization reveals specific critical parts of the algorithm. 

Every optimization phase is examined and the influence on the 

execution time as well as the memory consumption is measured. 

Also, the influence of the performance on the initial settings is 

                                                 
1 https://sourceforge.net/projects/msieve/ 

evaluated. The latest version of our implementation has been 

compared to the MSieve1 which is an open source 

implementation of SIQS. 

 

A. Multiple Interpretations of SIQS Algorithm 

Our implementation of SIQS follows theoretical and 

mathematical principles described in [5]. There are many ways 

of implementing the SIQS method which is the reason why 

different SIQS implementations exist. Therefore, each 

implementation of the SIQS algorithm may differ in its 

factorization speed compared to the other ones. In the following 

sections we closely describe the main principles which make our 

implementation unique. 

 

B. NEXKSB and Binary Search Tree 

To ensure that our polynomial generation submodule is able to 

generate polynomials of high quality, the part for generation of 

coefficient 𝑎 has been implemented according to [3]. The 

NEXKSB algorithm has been implemented for lexicographical 

prime selection [13] which enables us to ensure that the 

coefficient 𝑎 always differs at least in one prime. Using the 

NEXKSB algorithm, we select the first 𝑠 − 2 primes for 

generating of the coefficient 𝑎. Our reference implementation 

utilizes NEXKSB with selection of 𝑠 − 3 primes. 

 

Binary Search Tree (BST) is implemented in order to provide us 

the remaining primes [6]. BST aims at ensuring that the 

logarithm of the coefficient 𝑎 is as close as possible to its optimal 

value. Each node of BST contains a pair of primes from the 

selected subset of the factor base together with a logarithm of 

their product. The floating point data type is used as a key in the 

BST implementation. First, the optimal value of the coefficient 

𝑎 is computed. Then, 𝑠 − 2 primes are selected by the NEXKSB 

algorithm followed by the logarithm computation of the product 

of these primes. The key for searching in BST is the difference 

between the optimal value of the coefficient 𝑎 and the previous 

logarithm value. The algorithm enables us to traverse in BST 

until the closest key is found. The difference between the input 

key and the closest one represents the difference between the 

generated coefficient 𝑎 and its optimal value. As we mentioned 

in Section 2.B, the difference should not be higher than 0.01 

which is achieved by appropriate selection of primes in a subset 

of the factor base. 

 

C. Gaussian Elimination Method 

When the required amount of the relations is gathered, we need 

to find the relations which produce the null vector. Thus, we 

create the matrix of relations. Then, the Gaussian Elimination 

(GE) method is utilized in order to find the null vector among 

rows in the matrix of relations [10]. Sieving process usually 

gathers more than enough amount of relations. Thanks to this, 

more than one null vector may exist among the gathered 

relations. The GE method finds all null vectors that exist in the 

matrix. Referring to Section 2, it may happen that an instance of 

the null vector will result into trivial factor – which is not 

desired. As we have more than one null vector available, it is 

very unlikely that all of them will lead to trivial factors2. 

 

D. The Utilization of Parallelism 

This section describes how the parallelism is implemented in our 

SIQS algorithm. As was previously mentioned, the SIQS 

algorithm can be divided into logically separated parts. The first 

2 If it happens, then we need to repeat the whole process of 

factorization. 
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of them is parameters configuration of the SIQS which performs 

adjustments of many parameters before the sieving process can 

start. There is no possibility of any efficient parallelism, as the 

parameters are being adjusted as a complex unit. 

 

When the parameters are adjusted, we can generate the 

polynomials and start sieving. We are able to generate many 

polynomials which are independent to each other, and thus they 

can also independently contribute to the factorization itself. This 

fact enables us to exploit many program threads, whereas each 

of them generates one polynomial. Each program thread can 

perform the sieving process independently to the other threads, 

as it has its own polynomial generated. When polynomials are 

depleted, gathered relations are stored in the shared array of the 

relations. If there are not enough relations gathered yet, the 

thread can continue in generating new polynomial and repeats 

the process of sieving with new polynomial. 

 

Notice, that in practice, it is not possible to sieve fully 

independently because of two reasons. The first reason is that a 

situation, where two threads generate the same polynomial 

leading to the acquirement of the same relations, may occur. To 

avoid this situation, we have to control the access to the 

NEXKSB by using a critical section provided by OpenMP 

directive #pragma omp critical. The second reason is the 

fact that two threads may find a relation at the same time. 

Therefore, the storage of gathered relations has to be controlled 

by other critical section. Except of these two situations, each 

thread runs independently to the others. 

 

With growing length of a factorized number, these situations 

occur more rarely which also contribute to parallelism 

efficiency. Only the sieving process and polynomial generation 

are parallelized in the first phase of our implementation. The 

pseudo-code of the parallel algorithm is shown in Algorithm 1. 

 

Algorithm 1: Proposed parallelism of the SIQS 

 Input: Composed number 

Output: Factor 

  

1: ConfigureSIQS(); 

2: begin #pragma omp parallel 

3:     while (num_of_relations < desired_num) do 

4:         GeneratePolynom(); 

5:         Sieve(); 

6:     end while 

7: end 

8: SolveMatrix(); 

9: ComputeResult(); 

 

 

4. EXPERIMENTS AND RESULTS  

 

The speed measurements were performed and examined after the 

implementation and validation of our reference version. The first 

measurement was executed on 30 numbers with 40 decimal 

digits and 30 numbers with 50 decimal digits. Later, we chose 

one number for each length (60, 70, 80 and 90 decimal digits) as 

the representative demonstrating the behavior of our 

implementation. Each number in our testing dataset was a semi-

prime, which means that it was a product of two prime numbers. 

The reference version of our implementation was executed both 

in serial and parallel mode. Development and measurements 

                                                 
3 https://software.intel.com/en-us/intel-vtune-amplifier-xe 

were performed on a machine equipped with Intel i7 4700MQ 

having 4 physical cores. The Hyper-Threading and the 

TurboBoost technologies were enabled during our experiments. 

The goal of the performed measurements was to evaluate the 

speed of the SIQS algorithm and its behavior depending on 

increasing size of a factorized number. The results are depicted 

in Table 1. The column Task represents the size of a factorized 

number expressed in decimal digits. 

 

TABLE 1 

Performance of reference version 

Task Serial Mode Parallel Mode Speed-up 

40 dec 72.68s 22.71s 3.20 

50 dec 984.07s 307.96s 3.20 

60 dec 9144.23s 3217.55s 2.84 

 

As the performance of the reference version was not sufficient 

enough, the code profiling was executed in order to find and 

examine the most time consuming parts of the code. The Intel 

VTune Amplifier XE 20133 was employed for profiling 

purposes. 

 

A. Profiling and Optimization 

We identified the critical parts of the code by using the profiling 

tool. The profiling was performed in iterations, where each 

iteration revealed the most critical part of the algorithm. After 

each iteration, the solution for the actual issue was proposed and 

implemented. Thanks to this approach, we achieved a significant 

speed-up. The overall influence of the proposed modifications is 

shown in Table 2. 

 

TABLE 2 

Impact of optimization – serial mode 

Task 
Reference 

Version 

Optimized 

Version 
Speed-up 

40 dec 72.68s 2.12s 34.28 

50 dec 984.07s 12.49s 78.79 

60 dec 9144.23s 102.19s 89.48 

 

The essential modifications were applied to the sieving process 

and the resolution of linear dependency part. Also, optimized 

memory management brought significant contribution to the 

speed-up of the algorithm. All data objects were allocated at the 

time they were required, and de-allocated when they had no 

longer been needed. 

 

The way of storing the relations was changed as well. Before the 

modifications, the relations were stored as an array of Boolean 

data type, where each item held information about one prime. 

This approach allowed a programmer to easily work with the 

relations and perform required operations with the relations, 

however operations with Boolean data type were very time 

consuming. Therefore, we proposed the modification which 

substituted the Boolean data type to the integer one. The 

relations were then stored as an array of integers, where each of 

them held information about multiple primes. Thus, the 

operations performed on the relations were applied on multiple 

primes at the same time. 

 

At the beginning of the sieving process, the roots of the 

polynomial are being computed for each prime in the factor base. 

The roots determine values of variable 𝑥 in which the 

polynomial is divisible by the given prime. It means that we are 
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able to identify all the factors of the given value considering the 

polynomial with specified 𝑥. Factors of each 𝑥 value are stored 

during the sieving process considering specified polynomial. 

This immediately allowed us to check whether the candidate is 

a 𝐵-smooth number by dividing it by the factors of the candidate. 

Moreover, the profiling revealed that the storing of factors was 

inefficient, and therefore it was better to ignore previous 

proposal and just use the Trial Division method [7] for validation 

of the candidate. 

 

B. Expanding the Parallelism 

The next goal of our optimization phase was to parallelize the 

sieving process and resolution of linear dependency in order to 

achieve the maximum utilization of the CPU. We analyzed the 

possibilities and performed appropriate modifications. We 

proposed removal of unacceptable relations after sieving as one 

of the possibilities for further optimization. As unacceptable 

relations are threat relations which are singletons, duplicates and 

null vectors. Singleton is a relation that contains a prime which 

is not present in any other relation. Therefore, the singleton will 

never be part of a set of relations forming the null vector. 

Duplicate relations have more than one occurrence in the array 

of gathered relations, and thus naturally form null vectors 

leading to the trivial factor. Also, the situation leading to trivial 

factor is similar in the null vector but in this case it is necessary 

to check whether one of them does not lead to a non-trivial result. 

If so, the resolution of linear dependency can be skipped and the 

result can be immediately displayed. The removal of 

unacceptable relations always requires to go through the whole 

array of gathered relations in order to check whether any 

unacceptable relation is present. 

 

During this process, the iterations are independent of each other 

which means this part can also be parallelized. We utilized the 

OpenMP directive #pragma omp parallel for in this 

case. 

 

Regarding the resolution of linear dependency accomplished by 

GE method, we realized that its iterations are independent of 

each other too, therefore this part can be also parallelized using 

the same directive as in previous case. 

 

The results achieved by the mentioned optimization and the code 

parallelism are depicted in Table 3 and Table 4. It can be seen 

that the modifications caused large speed-up, e.g. number with 

60 decimal digits (198 bits) was factorized 100 times faster 

compared to the reference version. This also shows that although 

SIQS is considered as the second fastest factorization method in 

general, the speed of two individual implementations may differ 

in significant scale. 

 

TABLE 3 

Performance after optimization – parallel mode 

Task 
Reference 

Version 

Optimized 

Version 
Speed-up 

40 dec 22.71s 1.32s 17.20 

50 dec 307.96s 3.87s 79.58 

60 dec 3217.55s 32.23s 99.83 

 

TABLE 4 

Performance of optimized version 

Task Serial Mode Parallel Mode Speed-up 

40 dec 2.12s 1.32s 1.61 

50 dec 12.49s 3.87s 3.22 

60 dec 102.19s 32.23s 3.17 

5.  OPTIMIZATION OF MEMORY ACCESS 

 

During the profiling process, we reached a state where further 

modifications led to factorization speed-up of numbers up to 60 

decimal digits, but on the other hand, factorization of numbers 

with more than 70 decimal digits (235 bits) became slower than 

before. Therefore, we performed code profiling of factorization 

of numbers with 60 and 70 decimal digits. The results of the 

profiling are depicted in Figure 1 and Figure 2. It can be seen 

that distribution of time consumption significantly differs in both 

cases. 

 

 

Fig. 1. Code profiling of the factorization of number with 60 

decimal digits 

 

Fig. 2. Code profiling of the factorization of number with 70 

decimal digits 

Profiling of memory demands of factorization was performed 

using number with 70 decimal digits. The requested memory 

bandwidth is depicted in Figure 3 by orange (light) color. It 

shows that memory requirements were such a high that the 

memory subsystem was not capable of transferring the requested 

amount of data which further led to CPU stall. Average memory 

latency equaled to 76 cycles and Cycles Per Instruction (CPI) 

equaled to 4.707 which is far away from the optimal state. It was 

even faster to perform some computations again instead of 

storing them in memory and fetching them later. The section of 

the code which had the highest requirements on memory 

bandwidth was a part of the sieving process – see Algorithm 2. 

For each prime, we update the array of the roots by adding the 

logarithm of the current prime in the index where the prime is a 

root of the polynomial. 
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Algorithm 2: The part of code with the highest requirements 

on memory bandwidth 

  1: for (i = 0; i < number of primes; i++) do 

  2:     for (root = roots[i].root1; 

  3:            root < positive endpoint of interval; 

  4:            root += roots[i].prime) do 

  5:         xValues[root] += logPrime[i]; 

  6:     end for 

  7:     for (root = roots[i].root2; 

  8:            root < positive endpoint of interval; 

  9:            root += roots[i].prime) do 

10:         xValues[root] += logPrime[i]; 

11:     end for 

12:     for (root = roots[i].root1_neg; 

13:             root < negative endpoint of interval; 

14:             root += roots[i].prime) do 

15:         xNegValues[root] += logPrime[i]; 

16:     end for 

17:     for (root = roots[i].root2_neg; 

18:            root < negative endpoint of interval; 

19:            root += roots[i].prime) do 

20:         xNegValues[root] += logPrime[i]; 

21:     end for 

22: end for 

 

Then, we need to check the array whether the threshold of 

overall sum of logarithms is not exceeded in the examined index. 

If the threshold is exceeded, then the current index is marked as 

the candidate. Every prime has two roots4 on the positive side of 

the given interval and two roots on the negative one. Therefore, 

we have to store the information about these cases in two arrays. 

For example, we store circa 5000 primes for factorization of 

number with 70 decimal digits. Also, we have to store the 

information about the sums of logarithms for the whole interval. 

When number with 70 decimal digits is being factorized, the 

interval is set to [−196608; 196608] in that case. Furthermore, 

as the logarithms of primes are frequently used during the 

factorization, their values are computed in the phase of the SIQS 

configuration and stored in the arrays for further usage. These 

arrays have to be available for read and write operations during 

the sieving. The size of the arrays increases with every bigger 

number we try to factorize, and thus it puts higher and higher 

demands on memory subsystem. 

 

The critical part of the code was modified in the following way. 

We divided the interval into blocks and the sums of logarithms 

were updated for each prime within the current block. When the 

block was updated, the algorithm proceeded to the next block. 

This approach significantly reduced demands on the memory 

subsystem because only a part of the interval was processed in a 

specific time. This increased the likelihood of storing required 

data in the cache memory of the CPU which provided data faster. 

The new requirements on the memory bandwidth of the 

factorization of number with 70 decimal digits are depicted in 

Figure 3 by green (dark) color. We can see that our memory 

access modification decreased requirements on the memory 

bandwidth by approximately 50 percent. 

 

                                                 
4 Exception is the prime 2 which has only one root. 

 

Fig. 3. Memory demands when factoring number with 70 

decimal digits 

Also, we measured the influence of our memory access 

modification on the factorization speed. The results are shown 

in Table 5. It should be noted that beside the mentioned 

modification we also slightly changed the approach to 

polynomial generation. In the actual version of our 

implementation, the coefficient 𝑎 was created by using 

NEXKSB algorithm for selecting the first 𝑠 −  2 primes. The 

last two primes were chosen using BST. This modification 

significantly reduced factorization time for smaller numbers 

than 50 decimal digits but has negligible impact on speed-up of 

large numbers. 

 

TABLE 5 

Influence of memory modification – parallel mode 

Task Before After Speed-up 

40 dec 1.32s 0.25s 5.28 

50 dec 3.87s 2.95s 1.31 

60 dec 32.23s 14.77s 2.18 

70 dec 583.67s 143.67s 4.06 

 

Thanks to our memory modification, the factorization time of 

numbers with 70 decimal digits was 4𝑥 shorter than in the case 

where modification was not utilized. The average memory 

latency had been reduced from 76 to 14 cycles and the CPI had 

been reduced from 4.707 to 1.023. Table 6 depicts achieved 

speed-up of the current SIQS version in comparison with the 

reference one. We achieved more than 200 times speed-up in the 

case of numbers with 60 decimal digits. We also performed 

factorization of larger numbers than 70 decimal digits. Number 

with 80 decimal digits (266 bits) was successfully factorized in 

50 minutes and 30 seconds as well as number with 90 decimal 

digits (299 bits) which was successfully factorized in 6 hours and 

32 minutes. 

 

TABLE 6 

Performance after memory optimization – parallel mode 

Task 
Reference 

Version 

Optimized 

Version 
Speed-up 

40 dec 22.71s 0.25s 90.84 

50 dec 307.96s 2.95s 104.39 

60 dec 3217.55s 14.77s 217.84 

 

 

 

 

 

 

 

56                              SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 14 - NUMBER 3 - YEAR 2016                             ISSN: 1690-4524



6.  PARALLELISM EFFICIENCY 

 

The current section performs measurements of parallelism 

efficiency which evaluates the speed-up of parallelism 

considering the final optimized version of the SIQS 

implementation. The results obtained by experiments on Intel i7 

are shown in Table 7. It can be seen that the performance had 

been improved from this point of view as well. The factorization 

is at least 3𝑥 faster for each size of measured number which is 

the outcome of the parallelism only. 

 

TABLE 7 

Parallelism efficiency – Intel i7 4700MQ 

Task Serial Mode Parallel Mode Speed-up 

40 dec 0.82s 0.25s 3.28 

50 dec 9.76s 2.95s 3.31 

60 dec 51.83s 14.77s 3.51 

70 dec 464.98s 143.67s 3.24 

 

In order to show how CPU can affect the factorization speed, our 

implementation was later tested on more powerful CPU, Intel 

Xeon E5 1650v2 having 6 physical cores. Hyper-Threading and 

TurboBoost were enabled on the Intel Xeon during the tests as 

well as it was enabled in the case of Intel i7. The factorization 

speed of our implementation executed on the Intel Xeon is 

shown in Table 8. 

 

TABLE 8 

Parallelism efficiency – Intel Xeon E5 1650 v2 

Task Serial Mode Parallel Mode Speed-up 

40 dec 0.83s 0.20s 4.15 

50 dec 9.29s 1.58s 5.88 

60 dec 52.07s 7.83s 6.65 

70 dec 459.40s 71.16s 6.46 

 

It can be seen that the performance of our implementation in 

parallel mode was significantly faster on Intel Xeon than on Intel 

i7, which was primarily caused by the fact that Intel Xeon 

provided more logical threads than Intel i7 (12 vs 8). 

Furthermore, the Intel Xeon had higher ratio of available cache 

memory per logical thread. Therefore, it was more likely that 

required data were stored in the cache, and thus available much 

faster than in the case of Intel i7 having smaller cache per logical 

thread. On the other hand, the factorization speed of Intel Xeon 

was very similar to the Intel i7 in serial mode. We can see that 

the high frequency base of Intel Xeon did not provide significant 

difference of speed in serial mode comparing to Intel i7. The 

previous results showed that chosen CPU can have significant 

influence on the factorization speed. Also, the high base 

frequency does not guarantee that the factorization will be fast 

because its speed depends on many other factors. 

 

A. TurboBoost & Factorization Speed 

We measured the factorization speed of our implementation in 

serial mode with the TurboBoost technology enabled on Intel i7. 

Thus, the factorization in serial mode run on higher frequency 

compared to the parallel mode. Precisely, the factorization ran 

on 3.4GHz in serial mode and 2.4GHz in parallel mode, 

respectively. As the next step, we disabled TurboBoost and 

watched raw contribution of the parallelism employed in the 

factorization implementation. The results are depicted in      

Table 9. Comparing the current results with those from Table 7, 

we can conclude that there is only little difference in parallel 

mode which does not harvest from TurboBoost, however, the 

impact is much more significant in the case of serial mode. 

Therefore, disabling TurboBoost caused parallelism being more 

efficient and achieved factorization speed-up of more than 4𝑥. 

 

TABLE 9 

Parallelism efficiency – Intel i7 4700MQ 

(disabled TurboBoost) 

Task Serial Mode Parallel Mode Speed-up 

40 dec 1.11s 0.32s 3.47 

50 dec 13.51s 3.00s 4.50 

60 dec 72.01s 16.05s 4.49 

70 dec 641.98s 143.67s 4.47 

 

 

Fig. 4. Profiling – Scalability 

It should be noted that TurboBoost was controlled by the actual 

power consumption, therefore TurboBoost was activated only if 

the power consumption was low during the start of the 

factorization in parallel mode. However, TurboBoost was 

deactivated after a short time due to high utilization of all 

available logical threads causing high power consumption. 

Nevertheless, it causes only a little difference in the factorization 

time of parallel mode. 

 

We also evaluated the scalability which is depicted in Figure 4. 

We can see that the speed-up significantly increased with each 

added logical thread up to four which correspond to the physical 

threads of the CPU in this case. When more than four logical 

threads were utilized, Hyper-Threading was enabled, and 

therefore further speed-up was not increased in a such significant 

scale as in the case of utilizing only physical threads. 

 

 

7.  COMPARISON WITH MSIEVE 

 

We compared our latest version of SISQ with public open source 

implementation of SIQS called MSieve. Both implementations 

were compared in serial mode. The reason of such comparison 

is to show differences in the raw performance and to omit 

diversity between OpenMP which is utilized in our work and 

MPI which is utilized by MSieve. The results of the comparison 

are shown in Table 10. Notice that our implementation is 

referred as SIQS. 

 

TABLE 10 

Comparison of our implementation with MSieve – Serial mode 

Task SIQS MSieve 

40 dec 0.82s 0.15s 

50 dec 9.76s 0.56s 

60 dec 51.83s 3.55s 

70 dec 459.40s 39.03s 

 

 

ISSN: 1690-4524                              SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 14 - NUMBER 3 - YEAR 2016                             57



There can be seen that our implementation was not as fast as 

MSieve but our goal was not to make the fastest implementation 

of SIQS ever but rather to analyze implementation and 

performance issues as well as explain the ways of resolving 

them, and thus improve efficiency of the raw SIQS algorithm. 

 

 

8.  CONCLUSION 

 

The paper presents the process of iterative performance 

optimization of the SIQS factorization method. In the first phase, 

the complete and functional plain SIQS algorithm is 

implemented which serves as the reference implementation for 

our further experiments. In the second phase, a speed 

optimization of the reference implementation is being performed 

by iterative application of various optimization techniques, 

while new critical parts of the code are being identified and 

optimized in each iteration. 200𝑥 speed-up has been achieved in 

comparison to the reference version. We also performed 

efficiency evaluation of a parallelism on the latest optimized 

version of SIQS running on the two CPUs with enabled 

TurboBoost. 3𝑥 speed-up has been achieved on the CPU with 4 

physical cores while the speed-up of more than 6𝑥 has been 

achieved on the CPU with 6 physical cores. The speed-up has 

been even better when TurboBoost has been disabled. 

 

In the future work we plan to implement modification based on 

[1] which may reduce the sieving time. We also plan to replace 

the SLPV by Double Large Prime Variation method which 

makes the sieving process more efficient [11]. Next, we plan to 

employ OpenMPI library which allows the utilization of cluster 

of computers [9]. 
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