

 Impact of Optimization and Parallelism on Factorization Speed of SIQS

Dominik BREITENBACHER

 Faculty of Information Technology, BUT

Bozetechova 1/2, 612 66 Brno, Czech Republic

Ivan HOMOLIAK

 Faculty of Information Technology, BUT

Bozetechova 1/2, 612 66 Brno, Czech Republic

Jiri JAROS

 Faculty of Information Technology, BUT

Bozetechova 1/2, 612 66 Brno, Czech Republic

and

Petr HANACEK

Faculty of Information Technology, BUT

Bozetechova 1/2, 612 66 Brno, Czech Republic

ABSTRACT

This paper examines optimization possibilities of Self-

Initialization Quadratic Sieve (SIQS), which is enhanced version

of Quadratic Sieve factorization method. SIQS is considered the

second fastest factorization method at all and the fastest one for

numbers shorter than 100 decimal digits, respectively. Although,

SIQS is the fastest method up to 100 decimal digits, it cannot be

effectively utilized to work in polynomial time. Therefore, it is

desirable to look for options how to speed up the method as

much as possible. Two feasible ways of achieving it are code

optimization and parallelism. Both of them are utilized in this

paper. The goal of this paper is to show how it is possible to take

advantage of parallelism in SIQS as well as reach a large speed-

up thanks to detailed source code analysis with optimization.

Our implementation process consists of two phases. In the first

phase, the complete serial algorithm is implemented in the

simplest way which does not consider any requirements for

execution speed. The solution from the first phase serves as the

reference implementation for further experiments. An

improvement of factorization speed is performed in the second

phase of the SIQS implementation, where we use the method of

iterative modifications in order to examine contribution of each

proposed step. The final optimized version of the SIQS

implementation has achieved over 200x speed-up.

Keywords: Factorization, SIQS, Parallelism, OpenMP,

Profiling, RSA cryptanalysis.

1. INTRODUCTION

A factorization is a process which aims at finding the factors of

a given composed number in reversible fashion. The

factorization is NP-hard computational problem which means

that it cannot be efficiently resolved in polynomial time. One of

the example areas, where factorization is being utilized, is the

RSA cipher cryptanalysis [16]. The RSA presumes that for

sufficiently long keys (2048 bits and longer), the attacker is

unable to compute this computational problem and decipher an

encrypted message.

Many factorization methods have been presented, while SIQS is

one of them. It is described for example by Contini in [5]. SIQS

is the most optimized version of QS which is the fastest method

for factorization of composite numbers up to 100 decimal digits

(332 bits) and the second fastest in general [14], [15]. The

drawback of SIQS is its difficult comprehensibility. On the other

hand, it is much more comprehensible in comparison to General

Number Field Sieve [2]. The factorization speed of SIQS

depends on many aspects. As we will show later, it is possible to

split SIQS into several submodules. Each submodule has its own

complexity and issues which have to be considered and resolved

separately in order to make implementation efficient. In this

paper, we discuss common issues and present our approaches to

deal with them. Our approaches are primarily based on a code

profiling analysis and memory utilization analysis which are

accompanied by a parallelism.

The paper is organized as follows. Section 2 describes SIQS in

detail and splits it into logical submodules. Section 3 proposes

our approach and describes the methodology and the process of

SIQS implementation. The performance issues and optimization

process for achieving faster factorization are covered in Section

4. Section 5 discusses SIQS demands on a memory subsystem

as well as a way of optimizing them. Section 6 presents the

influence of parallelism on the factorization speed. The

comparison of our optimized SIQS implementation with another

one is covered in Section 7. The conclusion summarizing the

achieved results is presented in Section 8.

2. THE SIQS FACTORIZATION

The Quadratic Sieve (QS) is one of the most used methods for

factorization of large composite numbers. QS is described by

Pomerance in [14], [15], and it origins from the Fermat

factorization method, which is based on the fact that each odd

number can be expressed as a subtraction of two squares:

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 3 - YEAR 2016 51

𝑛 = 𝑢2 − 𝑣2 = (𝑢 − 𝑣)(𝑢 + 𝑣) (1)

Fermat factorization method sets 𝑢 = ⌈√𝑛⌉, and if 𝑢2 − 𝑛 ≠ 𝑣2,

then a factor is not found, 𝑢 is incremented by 1 and the process

is repeated again. Fermat factorization is very time consuming,

because this method is efficient only if the composite number is

composed of a product of two close numbers.

Kraitchik proposed improvements of the Fermat factorization

method in [15]. He found out that we do not need to look only

for numbers where the equation 𝑛 = 𝑢2 − 𝑣2 is true, but it is

enough to find number, where 𝑢2 − 𝑣2 is a multiple of

composite number 𝑛. It can be also written as:

𝑢2 ≡ 𝑣2 (𝑚𝑜𝑑 𝑛) (2)

We can realize that using this method can lead to gaining trivial

factors as a result (i.e. 𝑛 and 1) which does not pose any value

for factorization. If inequality 𝑢 ≢ ±𝑣 (𝑚𝑜𝑑 𝑛) is true, then the

result is non-trivial and each factor can be computed as

𝐺𝐶𝐷(𝑢 − 𝑣, 𝑛) or 𝐺𝐶𝐷(𝑢 + 𝑣, 𝑛), where 𝐺𝐶𝐷 means greatest

common divisor. Kraitchik suggested that it is efficient to find

numbers 𝑢𝑖 for 𝑖 ∈ {1, … , 𝑘}, which are subject to:

 𝑢2 = 𝑢1
2 × … × 𝑢𝑘

2

 ≡ (𝑢1
2 𝑚𝑜𝑑 𝑛) × … × (𝑢𝑘

2 𝑚𝑜𝑑 𝑛) = 𝑣2 (3)

The fact that we can write every number 𝑚 as a product of all its

prime factors:

𝑚 = ∏ 𝑝𝑖
𝑒𝑖 , (4)

where 𝑝𝑖 are primes and 𝑒𝑖 are their exponents, helps us to solve

the Eq. (3). Considering the exponents of the prime factors of

number 𝑚, we can make a vector:

𝑒(𝑚) = (𝑒1, 𝑒2, …) (5)

which is also called a relation. We are looking for a square,

however the vector of exponents provides us with higher amount

of information than we need. Thus, the vector of exponents is

usually reduced to modulo 2. The goal of this method is to find

vectors that produce a square. If the sum of two or more vectors

results in the null vector, then a square is found. The precise

number of vectors needed to find the null vector is described by

Brillhart and Morrison in [12]. As we are always limited by

available memory, it is appropriate to limit the length of the

exponents in a vector.

As the next step, we have to determine how large factor base

should be used before performing a factorization by the QS. The

factor base is a set of the first 𝐹 primes. The 𝐹-th prime of the

factor base is denoted as 𝐵. Every number that has only prime

factors smaller or equal to 𝐵 is called 𝐵-smooth number. Only

𝐵-smooth numbers are used to find the null vector. In order to

find the null vector, we have to gather at least 𝐹 + 1 vectors. If

a linear dependency exists among vectors, then at least one

instance of the null vector occurs in a set of vectors. Notice that

squares gained by this method may not lead to a non-trivial

result, and therefore it is always necessary to check whether

𝑢 ≢ ±𝑣 (𝑚𝑜𝑑 𝑛) is true.

The SIQS method is an improvement of QS which uses

polynomial for generating numbers:

𝑄𝑎,𝑏(𝑥) = 𝑎(𝑎𝑥2 + 2𝑏𝑥 + 𝑐), (6)

instead of:

𝑄(𝑥) = 𝑥2 − 𝑛 (7)

as QS does. The method of computing the coefficients 𝑎, 𝑏 and

𝑐 is described in [5]. QS uses only one polynomial to find

𝐵-smooth numbers, however, SIQS can use many polynomials

to find 𝐵-smooth numbers thanks to the coefficients represented

by the polynomials. Therefore, the SIQS uses variable 𝑥 only at

a specified interval. The polynomial is changed after depleting

the whole interval, and thus searching for 𝐵-smooth numbers is

more efficient.

The SIQS algorithm can be divided into several submodules and

every submodule can be implemented in many different ways.

As we mentioned earlier, the factorization is NP-hard

computational problem, and therefore it is desirable to

implement it as efficiently as possible. This paper divides the

SIQS algorithm into the following parts:

A. SIQS parameters configuration,

B. polynomial generation,

C. sieving and

D. resolution of linear dependency,

which will be closer described in following rows.

A. SIQS Parameters Configuration

The SIQS parameters configuration part has significant impact

on the factorization speed because this part affects the whole

process of the factorization. The major parameters that we

configure in this phase are the size of the factor base and the size

of the sieving interval. Each parameter has its own influence on

the performance of SIQS. If the parameters are chosen

improperly, then the factorization fails or is not efficient. It is

necessary to make dedicated configuration of parameters for

every input composed number in order to make the method more

efficient.

B. Polynomial Generation
The implementation of polynomial generation influences the

speed and a quality of generated polynomials. The high quality

polynomials are desirable for speeding up the factorization,

because they cause higher likelihood of finding the relation and

also lower the likelihood of duplicate relations' occurrence. The

process of polynomials generation and quality discussion about

them can be found in [3]. We experimentally found out, that the

logarithm of coefficient 𝑎 of the given polynomial should not

differ by more than 0.01 from its optimal value. According to

[5], the optimal value of the coefficient 𝑎 is computed by solving

the equation:

𝑎𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =
√2𝑛

𝑀
 (8)

It should be noted that coefficient 𝑎 is created as a product of 𝑠

primes from factor base, and thus causes 𝑎 being very close to

its optimal value (not equal to it).

C. Sieving

The sieving phase is the most time consuming phase of SIQS

and its objective is to gather the necessary amount of unique

relations. Sieving can be divided into three parts:

52 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 3 - YEAR 2016 ISSN: 1690-4524

A. computation of polynomial roots,

B. candidate selection and

C. candidate verification

Computation of polynomial roots has to be done for every prime

that we have in our factor base. If the sum of primes' logarithms

for a given 𝑥 of the current polynomial exceeds the threshold,

then 𝑥 is marked as a candidate. The threshold is computed by

solving the equation [5]:

𝑙𝑜𝑔(2𝑥√𝑁) (9)

The candidates are verified after the candidate selection. If a

candidate is successfully verified, then a relation is created. The

candidate verification is performed by division using all primes

in the factor base. If the result of a division is equal to 1, then the

candidate is successful. The candidate verification part does not

take a lot of time, as there are only few candidates necessary to

be verified.

D. Resolution of Linear Dependency

The last phase of the SIQS represents resolution of linear

dependency. This phase performs transformation of relations to

a matrix which is exploited for finding of linear dependent rows.

Usually, several linear dependencies are found. Each linear

dependency is then checked whether it leads to a factor of the

given composed number.

3. IMPLEMENTATION DETAILS

The SIQS method has been implemented in the C++ language

on x86-64 architecture. C++ has been chosen because its

standard libraries provide many data types that are often used in

the implementation as well as there are many C++ based

profiling tools available. The next reason, why we have chosen

C++, is OpenMP [4] support which is employed for our

parallelism. Also, MPIR library (version 2.6.0) has been

employed because it is capable of holding very large numbers

and provides various operations with them. The Single Large

Prime Variation (SLPV) has been implemented in order to speed

up the SIQS algorithm [7], [8].

Our implementation consists of two phases. In the first phase,

the complete and functional algorithm is implemented in the

simplest way which does not consider the requirements for

execution speed. Then, the soundness of the implementation is

verified on the smaller numbers that have up to 40 decimal

digits. This version serves as the reference SIQS implementation

for further experiments.

The speed optimization is the second phase of our SIQS

implementation, where the method of iterative optimization has

been utilized. The SIQS algorithm is composed of several steps

which are logically connected. Each step has its own time

complexity ranging from the linear complexity to the cubic one.

With increasing length of the composite numbers, each iteration

of optimization reveals specific critical parts of the algorithm.

Every optimization phase is examined and the influence on the

execution time as well as the memory consumption is measured.

Also, the influence of the performance on the initial settings is

1 https://sourceforge.net/projects/msieve/

evaluated. The latest version of our implementation has been

compared to the MSieve1 which is an open source

implementation of SIQS.

A. Multiple Interpretations of SIQS Algorithm

Our implementation of SIQS follows theoretical and

mathematical principles described in [5]. There are many ways

of implementing the SIQS method which is the reason why

different SIQS implementations exist. Therefore, each

implementation of the SIQS algorithm may differ in its

factorization speed compared to the other ones. In the following

sections we closely describe the main principles which make our

implementation unique.

B. NEXKSB and Binary Search Tree

To ensure that our polynomial generation submodule is able to

generate polynomials of high quality, the part for generation of

coefficient 𝑎 has been implemented according to [3]. The

NEXKSB algorithm has been implemented for lexicographical

prime selection [13] which enables us to ensure that the

coefficient 𝑎 always differs at least in one prime. Using the

NEXKSB algorithm, we select the first 𝑠 − 2 primes for

generating of the coefficient 𝑎. Our reference implementation

utilizes NEXKSB with selection of 𝑠 − 3 primes.

Binary Search Tree (BST) is implemented in order to provide us

the remaining primes [6]. BST aims at ensuring that the

logarithm of the coefficient 𝑎 is as close as possible to its optimal

value. Each node of BST contains a pair of primes from the

selected subset of the factor base together with a logarithm of

their product. The floating point data type is used as a key in the

BST implementation. First, the optimal value of the coefficient

𝑎 is computed. Then, 𝑠 − 2 primes are selected by the NEXKSB

algorithm followed by the logarithm computation of the product

of these primes. The key for searching in BST is the difference

between the optimal value of the coefficient 𝑎 and the previous

logarithm value. The algorithm enables us to traverse in BST

until the closest key is found. The difference between the input

key and the closest one represents the difference between the

generated coefficient 𝑎 and its optimal value. As we mentioned

in Section 2.B, the difference should not be higher than 0.01

which is achieved by appropriate selection of primes in a subset

of the factor base.

C. Gaussian Elimination Method

When the required amount of the relations is gathered, we need

to find the relations which produce the null vector. Thus, we

create the matrix of relations. Then, the Gaussian Elimination

(GE) method is utilized in order to find the null vector among

rows in the matrix of relations [10]. Sieving process usually

gathers more than enough amount of relations. Thanks to this,

more than one null vector may exist among the gathered

relations. The GE method finds all null vectors that exist in the

matrix. Referring to Section 2, it may happen that an instance of

the null vector will result into trivial factor – which is not

desired. As we have more than one null vector available, it is

very unlikely that all of them will lead to trivial factors2.

D. The Utilization of Parallelism

This section describes how the parallelism is implemented in our

SIQS algorithm. As was previously mentioned, the SIQS

algorithm can be divided into logically separated parts. The first

2 If it happens, then we need to repeat the whole process of

factorization.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 3 - YEAR 2016 53

of them is parameters configuration of the SIQS which performs

adjustments of many parameters before the sieving process can

start. There is no possibility of any efficient parallelism, as the

parameters are being adjusted as a complex unit.

When the parameters are adjusted, we can generate the

polynomials and start sieving. We are able to generate many

polynomials which are independent to each other, and thus they

can also independently contribute to the factorization itself. This

fact enables us to exploit many program threads, whereas each

of them generates one polynomial. Each program thread can

perform the sieving process independently to the other threads,

as it has its own polynomial generated. When polynomials are

depleted, gathered relations are stored in the shared array of the

relations. If there are not enough relations gathered yet, the

thread can continue in generating new polynomial and repeats

the process of sieving with new polynomial.

Notice, that in practice, it is not possible to sieve fully

independently because of two reasons. The first reason is that a

situation, where two threads generate the same polynomial

leading to the acquirement of the same relations, may occur. To

avoid this situation, we have to control the access to the

NEXKSB by using a critical section provided by OpenMP

directive #pragma omp critical. The second reason is the

fact that two threads may find a relation at the same time.

Therefore, the storage of gathered relations has to be controlled

by other critical section. Except of these two situations, each

thread runs independently to the others.

With growing length of a factorized number, these situations

occur more rarely which also contribute to parallelism

efficiency. Only the sieving process and polynomial generation

are parallelized in the first phase of our implementation. The

pseudo-code of the parallel algorithm is shown in Algorithm 1.

Algorithm 1: Proposed parallelism of the SIQS

 Input: Composed number

Output: Factor

1: ConfigureSIQS();

2: begin #pragma omp parallel

3: while (num_of_relations < desired_num) do

4: GeneratePolynom();

5: Sieve();

6: end while

7: end

8: SolveMatrix();

9: ComputeResult();

4. EXPERIMENTS AND RESULTS

The speed measurements were performed and examined after the

implementation and validation of our reference version. The first

measurement was executed on 30 numbers with 40 decimal

digits and 30 numbers with 50 decimal digits. Later, we chose

one number for each length (60, 70, 80 and 90 decimal digits) as

the representative demonstrating the behavior of our

implementation. Each number in our testing dataset was a semi-

prime, which means that it was a product of two prime numbers.

The reference version of our implementation was executed both

in serial and parallel mode. Development and measurements

3 https://software.intel.com/en-us/intel-vtune-amplifier-xe

were performed on a machine equipped with Intel i7 4700MQ

having 4 physical cores. The Hyper-Threading and the

TurboBoost technologies were enabled during our experiments.

The goal of the performed measurements was to evaluate the

speed of the SIQS algorithm and its behavior depending on

increasing size of a factorized number. The results are depicted

in Table 1. The column Task represents the size of a factorized

number expressed in decimal digits.

TABLE 1

Performance of reference version

Task Serial Mode Parallel Mode Speed-up

40 dec 72.68s 22.71s 3.20

50 dec 984.07s 307.96s 3.20

60 dec 9144.23s 3217.55s 2.84

As the performance of the reference version was not sufficient

enough, the code profiling was executed in order to find and

examine the most time consuming parts of the code. The Intel

VTune Amplifier XE 20133 was employed for profiling

purposes.

A. Profiling and Optimization

We identified the critical parts of the code by using the profiling

tool. The profiling was performed in iterations, where each

iteration revealed the most critical part of the algorithm. After

each iteration, the solution for the actual issue was proposed and

implemented. Thanks to this approach, we achieved a significant

speed-up. The overall influence of the proposed modifications is

shown in Table 2.

TABLE 2

Impact of optimization – serial mode

Task
Reference

Version

Optimized

Version
Speed-up

40 dec 72.68s 2.12s 34.28

50 dec 984.07s 12.49s 78.79

60 dec 9144.23s 102.19s 89.48

The essential modifications were applied to the sieving process

and the resolution of linear dependency part. Also, optimized

memory management brought significant contribution to the

speed-up of the algorithm. All data objects were allocated at the

time they were required, and de-allocated when they had no

longer been needed.

The way of storing the relations was changed as well. Before the

modifications, the relations were stored as an array of Boolean

data type, where each item held information about one prime.

This approach allowed a programmer to easily work with the

relations and perform required operations with the relations,

however operations with Boolean data type were very time

consuming. Therefore, we proposed the modification which

substituted the Boolean data type to the integer one. The

relations were then stored as an array of integers, where each of

them held information about multiple primes. Thus, the

operations performed on the relations were applied on multiple

primes at the same time.

At the beginning of the sieving process, the roots of the

polynomial are being computed for each prime in the factor base.

The roots determine values of variable 𝑥 in which the

polynomial is divisible by the given prime. It means that we are

54 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 3 - YEAR 2016 ISSN: 1690-4524

able to identify all the factors of the given value considering the

polynomial with specified 𝑥. Factors of each 𝑥 value are stored

during the sieving process considering specified polynomial.

This immediately allowed us to check whether the candidate is

a 𝐵-smooth number by dividing it by the factors of the candidate.

Moreover, the profiling revealed that the storing of factors was

inefficient, and therefore it was better to ignore previous

proposal and just use the Trial Division method [7] for validation

of the candidate.

B. Expanding the Parallelism

The next goal of our optimization phase was to parallelize the

sieving process and resolution of linear dependency in order to

achieve the maximum utilization of the CPU. We analyzed the

possibilities and performed appropriate modifications. We

proposed removal of unacceptable relations after sieving as one

of the possibilities for further optimization. As unacceptable

relations are threat relations which are singletons, duplicates and

null vectors. Singleton is a relation that contains a prime which

is not present in any other relation. Therefore, the singleton will

never be part of a set of relations forming the null vector.

Duplicate relations have more than one occurrence in the array

of gathered relations, and thus naturally form null vectors

leading to the trivial factor. Also, the situation leading to trivial

factor is similar in the null vector but in this case it is necessary

to check whether one of them does not lead to a non-trivial result.

If so, the resolution of linear dependency can be skipped and the

result can be immediately displayed. The removal of

unacceptable relations always requires to go through the whole

array of gathered relations in order to check whether any

unacceptable relation is present.

During this process, the iterations are independent of each other

which means this part can also be parallelized. We utilized the

OpenMP directive #pragma omp parallel for in this

case.

Regarding the resolution of linear dependency accomplished by

GE method, we realized that its iterations are independent of

each other too, therefore this part can be also parallelized using

the same directive as in previous case.

The results achieved by the mentioned optimization and the code

parallelism are depicted in Table 3 and Table 4. It can be seen

that the modifications caused large speed-up, e.g. number with

60 decimal digits (198 bits) was factorized 100 times faster

compared to the reference version. This also shows that although

SIQS is considered as the second fastest factorization method in

general, the speed of two individual implementations may differ

in significant scale.

TABLE 3

Performance after optimization – parallel mode

Task
Reference

Version

Optimized

Version
Speed-up

40 dec 22.71s 1.32s 17.20

50 dec 307.96s 3.87s 79.58

60 dec 3217.55s 32.23s 99.83

TABLE 4

Performance of optimized version

Task Serial Mode Parallel Mode Speed-up

40 dec 2.12s 1.32s 1.61

50 dec 12.49s 3.87s 3.22

60 dec 102.19s 32.23s 3.17

5. OPTIMIZATION OF MEMORY ACCESS

During the profiling process, we reached a state where further

modifications led to factorization speed-up of numbers up to 60

decimal digits, but on the other hand, factorization of numbers

with more than 70 decimal digits (235 bits) became slower than

before. Therefore, we performed code profiling of factorization

of numbers with 60 and 70 decimal digits. The results of the

profiling are depicted in Figure 1 and Figure 2. It can be seen

that distribution of time consumption significantly differs in both

cases.

Fig. 1. Code profiling of the factorization of number with 60

decimal digits

Fig. 2. Code profiling of the factorization of number with 70

decimal digits

Profiling of memory demands of factorization was performed

using number with 70 decimal digits. The requested memory

bandwidth is depicted in Figure 3 by orange (light) color. It

shows that memory requirements were such a high that the

memory subsystem was not capable of transferring the requested

amount of data which further led to CPU stall. Average memory

latency equaled to 76 cycles and Cycles Per Instruction (CPI)

equaled to 4.707 which is far away from the optimal state. It was

even faster to perform some computations again instead of

storing them in memory and fetching them later. The section of

the code which had the highest requirements on memory

bandwidth was a part of the sieving process – see Algorithm 2.

For each prime, we update the array of the roots by adding the

logarithm of the current prime in the index where the prime is a

root of the polynomial.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 3 - YEAR 2016 55

Algorithm 2: The part of code with the highest requirements

on memory bandwidth

 1: for (i = 0; i < number of primes; i++) do

 2: for (root = roots[i].root1;

 3: root < positive endpoint of interval;

 4: root += roots[i].prime) do

 5: xValues[root] += logPrime[i];

 6: end for

 7: for (root = roots[i].root2;

 8: root < positive endpoint of interval;

 9: root += roots[i].prime) do

10: xValues[root] += logPrime[i];

11: end for

12: for (root = roots[i].root1_neg;

13: root < negative endpoint of interval;

14: root += roots[i].prime) do

15: xNegValues[root] += logPrime[i];

16: end for

17: for (root = roots[i].root2_neg;

18: root < negative endpoint of interval;

19: root += roots[i].prime) do

20: xNegValues[root] += logPrime[i];

21: end for

22: end for

Then, we need to check the array whether the threshold of

overall sum of logarithms is not exceeded in the examined index.

If the threshold is exceeded, then the current index is marked as

the candidate. Every prime has two roots4 on the positive side of

the given interval and two roots on the negative one. Therefore,

we have to store the information about these cases in two arrays.

For example, we store circa 5000 primes for factorization of

number with 70 decimal digits. Also, we have to store the

information about the sums of logarithms for the whole interval.

When number with 70 decimal digits is being factorized, the

interval is set to [−196608; 196608] in that case. Furthermore,

as the logarithms of primes are frequently used during the

factorization, their values are computed in the phase of the SIQS

configuration and stored in the arrays for further usage. These

arrays have to be available for read and write operations during

the sieving. The size of the arrays increases with every bigger

number we try to factorize, and thus it puts higher and higher

demands on memory subsystem.

The critical part of the code was modified in the following way.

We divided the interval into blocks and the sums of logarithms

were updated for each prime within the current block. When the

block was updated, the algorithm proceeded to the next block.

This approach significantly reduced demands on the memory

subsystem because only a part of the interval was processed in a

specific time. This increased the likelihood of storing required

data in the cache memory of the CPU which provided data faster.

The new requirements on the memory bandwidth of the

factorization of number with 70 decimal digits are depicted in

Figure 3 by green (dark) color. We can see that our memory

access modification decreased requirements on the memory

bandwidth by approximately 50 percent.

4 Exception is the prime 2 which has only one root.

Fig. 3. Memory demands when factoring number with 70

decimal digits

Also, we measured the influence of our memory access

modification on the factorization speed. The results are shown

in Table 5. It should be noted that beside the mentioned

modification we also slightly changed the approach to

polynomial generation. In the actual version of our

implementation, the coefficient 𝑎 was created by using

NEXKSB algorithm for selecting the first 𝑠 − 2 primes. The

last two primes were chosen using BST. This modification

significantly reduced factorization time for smaller numbers

than 50 decimal digits but has negligible impact on speed-up of

large numbers.

TABLE 5

Influence of memory modification – parallel mode

Task Before After Speed-up

40 dec 1.32s 0.25s 5.28

50 dec 3.87s 2.95s 1.31

60 dec 32.23s 14.77s 2.18

70 dec 583.67s 143.67s 4.06

Thanks to our memory modification, the factorization time of

numbers with 70 decimal digits was 4𝑥 shorter than in the case

where modification was not utilized. The average memory

latency had been reduced from 76 to 14 cycles and the CPI had

been reduced from 4.707 to 1.023. Table 6 depicts achieved

speed-up of the current SIQS version in comparison with the

reference one. We achieved more than 200 times speed-up in the

case of numbers with 60 decimal digits. We also performed

factorization of larger numbers than 70 decimal digits. Number

with 80 decimal digits (266 bits) was successfully factorized in

50 minutes and 30 seconds as well as number with 90 decimal

digits (299 bits) which was successfully factorized in 6 hours and

32 minutes.

TABLE 6

Performance after memory optimization – parallel mode

Task
Reference

Version

Optimized

Version
Speed-up

40 dec 22.71s 0.25s 90.84

50 dec 307.96s 2.95s 104.39

60 dec 3217.55s 14.77s 217.84

56 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 3 - YEAR 2016 ISSN: 1690-4524

6. PARALLELISM EFFICIENCY

The current section performs measurements of parallelism

efficiency which evaluates the speed-up of parallelism

considering the final optimized version of the SIQS

implementation. The results obtained by experiments on Intel i7

are shown in Table 7. It can be seen that the performance had

been improved from this point of view as well. The factorization

is at least 3𝑥 faster for each size of measured number which is

the outcome of the parallelism only.

TABLE 7

Parallelism efficiency – Intel i7 4700MQ

Task Serial Mode Parallel Mode Speed-up

40 dec 0.82s 0.25s 3.28

50 dec 9.76s 2.95s 3.31

60 dec 51.83s 14.77s 3.51

70 dec 464.98s 143.67s 3.24

In order to show how CPU can affect the factorization speed, our

implementation was later tested on more powerful CPU, Intel

Xeon E5 1650v2 having 6 physical cores. Hyper-Threading and

TurboBoost were enabled on the Intel Xeon during the tests as

well as it was enabled in the case of Intel i7. The factorization

speed of our implementation executed on the Intel Xeon is

shown in Table 8.

TABLE 8

Parallelism efficiency – Intel Xeon E5 1650 v2

Task Serial Mode Parallel Mode Speed-up

40 dec 0.83s 0.20s 4.15

50 dec 9.29s 1.58s 5.88

60 dec 52.07s 7.83s 6.65

70 dec 459.40s 71.16s 6.46

It can be seen that the performance of our implementation in

parallel mode was significantly faster on Intel Xeon than on Intel

i7, which was primarily caused by the fact that Intel Xeon

provided more logical threads than Intel i7 (12 vs 8).

Furthermore, the Intel Xeon had higher ratio of available cache

memory per logical thread. Therefore, it was more likely that

required data were stored in the cache, and thus available much

faster than in the case of Intel i7 having smaller cache per logical

thread. On the other hand, the factorization speed of Intel Xeon

was very similar to the Intel i7 in serial mode. We can see that

the high frequency base of Intel Xeon did not provide significant

difference of speed in serial mode comparing to Intel i7. The

previous results showed that chosen CPU can have significant

influence on the factorization speed. Also, the high base

frequency does not guarantee that the factorization will be fast

because its speed depends on many other factors.

A. TurboBoost & Factorization Speed

We measured the factorization speed of our implementation in

serial mode with the TurboBoost technology enabled on Intel i7.

Thus, the factorization in serial mode run on higher frequency

compared to the parallel mode. Precisely, the factorization ran

on 3.4GHz in serial mode and 2.4GHz in parallel mode,

respectively. As the next step, we disabled TurboBoost and

watched raw contribution of the parallelism employed in the

factorization implementation. The results are depicted in

Table 9. Comparing the current results with those from Table 7,

we can conclude that there is only little difference in parallel

mode which does not harvest from TurboBoost, however, the

impact is much more significant in the case of serial mode.

Therefore, disabling TurboBoost caused parallelism being more

efficient and achieved factorization speed-up of more than 4𝑥.

TABLE 9

Parallelism efficiency – Intel i7 4700MQ

(disabled TurboBoost)

Task Serial Mode Parallel Mode Speed-up

40 dec 1.11s 0.32s 3.47

50 dec 13.51s 3.00s 4.50

60 dec 72.01s 16.05s 4.49

70 dec 641.98s 143.67s 4.47

Fig. 4. Profiling – Scalability

It should be noted that TurboBoost was controlled by the actual

power consumption, therefore TurboBoost was activated only if

the power consumption was low during the start of the

factorization in parallel mode. However, TurboBoost was

deactivated after a short time due to high utilization of all

available logical threads causing high power consumption.

Nevertheless, it causes only a little difference in the factorization

time of parallel mode.

We also evaluated the scalability which is depicted in Figure 4.

We can see that the speed-up significantly increased with each

added logical thread up to four which correspond to the physical

threads of the CPU in this case. When more than four logical

threads were utilized, Hyper-Threading was enabled, and

therefore further speed-up was not increased in a such significant

scale as in the case of utilizing only physical threads.

7. COMPARISON WITH MSIEVE

We compared our latest version of SISQ with public open source

implementation of SIQS called MSieve. Both implementations

were compared in serial mode. The reason of such comparison

is to show differences in the raw performance and to omit

diversity between OpenMP which is utilized in our work and

MPI which is utilized by MSieve. The results of the comparison

are shown in Table 10. Notice that our implementation is

referred as SIQS.

TABLE 10

Comparison of our implementation with MSieve – Serial mode

Task SIQS MSieve

40 dec 0.82s 0.15s

50 dec 9.76s 0.56s

60 dec 51.83s 3.55s

70 dec 459.40s 39.03s

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 3 - YEAR 2016 57

There can be seen that our implementation was not as fast as

MSieve but our goal was not to make the fastest implementation

of SIQS ever but rather to analyze implementation and

performance issues as well as explain the ways of resolving

them, and thus improve efficiency of the raw SIQS algorithm.

8. CONCLUSION

The paper presents the process of iterative performance

optimization of the SIQS factorization method. In the first phase,

the complete and functional plain SIQS algorithm is

implemented which serves as the reference implementation for

our further experiments. In the second phase, a speed

optimization of the reference implementation is being performed

by iterative application of various optimization techniques,

while new critical parts of the code are being identified and

optimized in each iteration. 200𝑥 speed-up has been achieved in

comparison to the reference version. We also performed

efficiency evaluation of a parallelism on the latest optimized

version of SIQS running on the two CPUs with enabled

TurboBoost. 3𝑥 speed-up has been achieved on the CPU with 4

physical cores while the speed-up of more than 6𝑥 has been

achieved on the CPU with 6 physical cores. The speed-up has

been even better when TurboBoost has been disabled.

In the future work we plan to implement modification based on

[1] which may reduce the sieving time. We also plan to replace

the SLPV by Double Large Prime Variation method which

makes the sieving process more efficient [11]. Next, we plan to

employ OpenMPI library which allows the utilization of cluster

of computers [9].

9. ACKNOWLEDGEMENT

This article was created within the project Reliability and

Security in IT (FIT-S-14-2486) and supported by The Ministry

of Education, Youth and Sports from the National Programme

of Sustainability (NPU II); project IT4Innovations excellence in

science – LQ1602.

10. REFERENCES

[1] AOKI, Kazumaro; UEDA, Hiroki. Sieving using

bucket sort. In: Advances in Cryptology-

ASIACRYPT 2004. Springer Berlin Heidelberg,

2004. p. 92-102.

[2] BERNSTEIN, Daniel J.; LENSTRA, Arjen K. A

general number field sieve implementation. In: The

development of number field sieve. Springer Berlin

Heidelberg, 1993. p. 103-126.

[3] CARRIER, Brian; WAGSTAFF JR, Samuel S.

Implementing the hypercube quadratic sieve with two

large primes. In: International Conference on

Number Theory for Secure Communications. 2003.

p. 51-64.

[4] CHAPMAN, Barbara; JOST, Gabriele; VAN DER

PAS, Ruud. Using OpenMP: portable shared

memory parallel programming. MIT press, 2008.

[5] CONTINI, Scott Patrick. Factoring integers with the

self-initializing quadratic sieve. 1997.

[6] CORMEN, Thomas H. Introduction to algorithms.

3rd ed. Cambridge, Mass.: MIT Press, 2009. ISBN

0262533057.

[7] CRANDALL, Richard; POMERANCE, Carl B. Prime

numbers: a computational perspective. Springer

Science & Business Media, 2006.

[8] GERVER, Joseph L. Factoring large numbers with a

quadratic sieve. Mathematics of Computation, 1983,

41.163: 287-294.

[9] GROPP, William; LUSK, Ewing; SKJELLUM,

Anthony. Using MPI: portable parallel

programming with the message-passing interface.

MIT press, 1999.

[10] KOÇ, Çetin K.; ARACHCHIGE, Sarath N. A Fast

Algorithm for Gaussian Elimination over GF (2) and

its Implementation on the GAPP. Journal of Parallel

and Distributed Computing, 1991, 13.1: 118-122.

[11] LENSTRA, Arjen K.; MANASSE, Mark S. Factoring

with two large primes. Mathematics of Computation,

1994, 63.208: 785-798.

[12] MORRISON, Michael A.; BRILLHART, John. A

method of factoring and the factorization of 𝐹7.

Mathematics of computation, 1975, 29.129: 183-205.

[13] NIJENHUIS, Albert; WILF, Herbert S.

Combinatorial algorithms: for computers and

calculators. Elsevier, 2014.

[14] POMERANCE, Carl. The quadratic sieve factoring

algorithm. In: Advances in cryptology. Springer

Berlin Heidelberg, 1985. p. 169-182.

[15] POMERANCE, Carl. A tale of two sieves. Biscuits of

Number Theory, 2008, 85.

[16] RIVEST, Ronald L.; SHAMIR, Adi; ADLEMAN, Len.

A method for obtaining digital signatures and public-

key cryptosystems. Communications of the ACM,

1978, 21.2: 120-126.

58 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 3 - YEAR 2016 ISSN: 1690-4524

	SA559BN16

