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ABSTRACT 

 
Analytic Hierarchy Process (AHP) is used in the selection of 
categories of non-parametric stochastic models for hydrological 
data generation and its formulation is based on pairwise 
comparisons of models.  These models or techniques are 
obtained from a recent study initiated by the Water Research 
Commission of South Africa (WRC) and were compared 
predominantly based on their capability to extrapolate data 

beyond the range of historic hydrological data. The different 
categories of models involved in the selection process were: 
wavelet (A), reordering (B), K-nearest neighbor (C), kernel 
density (D) and bootstrap (E). In the AHP formulation, criteria 
for the selection of techniques are: “ability for data to preserve 
historic characteristics”, “ability to generate new hydrological 
data”, “scope of applicability”, “presence of negative data 
generated” and “user friendliness”. The pairwise comparisons 

performed through AHP showed that the overall order of 
selection (ranking) of models was D, C, A, B and C. The 
weights of these techniques were found to be 27.21%, 24.3 %, 
22.15 %, 13.89 % and 11.80 % respectively. Hence, bootstrap 
category received the highest preference while nearest neighbor 
received the lowest preference when all selection criteria are 
taken into consideration.   
 
Keywords: Analytic hierarchical process, non-parametric 

stochastic, hydrological data.  
 
 

1. INTRODUCTION 
 

Hydrological data such as rainfall, streamflow are main drivers 
for planning, management and development of water systems. It 
is often a concern that these data have gaps or are not of 

sufficient length or are inexistent for hydrological studies. This 
situation prevails more in developing countries than in 
developed countries. The uncertain nature/behavior of rainfall 
and streamflow [1] has been handled from stochastic 
perspective, e.g. [2], [3], [4], [5]. The use of stochastic models 
or techniques to generate artificially data records is common in 
hydrological studies for water resources development, 
management and operation. For instance stochastic stationary 

models such as periodic autoregressive and moving average can 
be used for modeling weekly, monthly and seasonal 
streamflows [2]. One of the characteristics of stochastic 
techniques is the preservation of statistical characteristics for 
both historic and generated data series. A modified K-nearest 
neighbor (K-NN) was developed for stochastic streamflow 
simulation [4]. A recent study initiated by the Water Research 
Commission of South Africa (WRC), [5] summarizes five main 

categories of non-parametric stochastic hydrological data 

generation: wavelet, reordering, nearest neighbor, kernel density 

and bootstrap. For that, five essential criteria: “ability for data to 
preserve historic characteristics”, “ability to generate new 
hydrological data”, “scope of applicability”, “presence of 
negative data generated” and  “user friendliness” were used in 
comparing these categories and in deciding on the most suitable 
technique for the purpose of rainfall data generation. The 
selection in the WRC study was focused predominantly on the 
second criterion as opposed to other criteria. In addition, the 

selection lacked sufficient transparency when several criteria 
should be taken into consideration in deciding which category 
should be prioritized. The order of prioritizing the different 
techniques, based on a scientific methodology is of great appeal. 
Hence, this study focuses on ranking/prioritizing the categories 
of non-parametric stochastic hydrological data models using 
AHP methodology, through weight allocation.  This study does 
not deal with hydrological data generation, which was already 

carried out [5]. However, the current study targets on a 
transparent multi-criteria decision making (MCDM) 
methodology for ranking non-parametric techniques used for 
hydrological data generation. For more detail on advantages of 
non-parametric models over the parametric models, the reader 
should be referred to [5].  Applications of AHP to hydrological 
data infilling technique has been reported recently, e.g. [7], [8]. 
However the literature on ranking non-parametric stochastic 
models for hydrological data generation does not exist. For 

multi-criteria decision, AHP has been proven to be a powerful 
tool with an acceptable level of inconsistency/subjectivity in the 
judgment process. Subjectivity can be detected by carrying out 
consistency check during pairwise comparisons. In this study, 
AHP is formulated and implemented based on a study 
mentioned earlier [5], where non-parametric stochastic models 
were used for hydrological data generation. In what follows 
“model”, “generator”, and “technique” can be used 

interchangeably; likewise for “hydrological data generation” 
and “data generation”.  
 
 

2. AHP AND HYDROLOGICAL DATA 

GENERATION MODELS 
 
Formulated in the 1980’s, AHP is a tool for multi-criteria 
decision making (MCDM) [6]. AHP has been used intensively 
in several fields e.g. [11], [12]. Generally, AHP methodology 
can be summarized as follows [6]: 

 The problem is modeled as a hierarchy: goal, alternatives 
and criteria for assessing the alternatives are contained in 

the hierarchy. Criteria can be split into sub-criteria.  

 Priorities are established among the elements of the 
hierarchy: the pairwise comparisons of the criteria are 

conducted. During these comparisons, the importance of 
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criteria is determined using the scale shown in Table 1. 
Intensities of importance are allocated based on the 

judgments or experiences of individuals have on a 
particular topic.  

 The overall priorities or preferences are determined for the 

hierarchy: a comparison matrix summarizes all information 
obtained from pairwise comparisons. The final decision is 
based on the normalized principal priority vector (Eigen 

vector) obtained from the comparison matrix (built matrix). 
This matrix is also called judgment matrix. 

 Consistency check is performed: consistency of decisions 
made in previous steps is determined by computing a 
consistency ratio. This ratio should be less than 10%. 

 
In AHP, the goal is reached through a series of pairwise 
comparisons from a 1 to 9 likert scale. Details of AHP 
methodology can be traced for instance in [6]. 

 

Table 1. Likert scale for pairwise comparisons 

Intensity of importance (scale) Description of the level of importance  

1 Equal importance/intensity of two elements 

3 Moderate importance of one element over the 
other  

5 Strong importance of one element over the 
other 

7 Very strong importance of one element over 

the other 

9 Extreme importance of one element over the 
other 

2,4, 6, 8 are intensities to express intermediates values  

 
For the judgment to be consistent (valid) during AHP 
implementation, the computed consistency ratio (CR) should 
not be more than 10 % (in a percentage form), or less than 1 (in 
a unit form). Otherwise the judgment is invalid. The consistency 
ratio CR is the ratio between the constant index CI and the 
random index RI [6].  
 

The constancy ratio (CR) computed from the judgment matrix 
by using Eq. (1):     
 

RI

CI
CR

                  (1) 

Where: 

1n

n
CI MAX

      (2) 

The values of RI depend on the dimension (n) of the 

comparison matrix and are displayed in Table 2. MAX is the 

maximum Eigen value of the comparison matrix.  
 

Table 2. Random index (R I) expressed as a function size (n) of the comparison matrix  

N 1 2 3  4 5 6 7 8 9 10 

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 

 
The application of AHP has been extended to the field of 

hydrology and water resources and AHP has recently been used 
for streamflow/rainfall infilling data problems [7], [8] [9], [10]. 
However, there is no literature where AHP is applied to the 
selection of non-parametric stochastic models for hydrological 
data (e.g. rainfall and streamflow) generation. The current study 
is an attempt for this specific selection. Since AHP enables to 
handle complex problems into a hierarchy, AHP can be 
approached at different levels for the current study as follows:  

 Level 1: the main goal in the hierarchy is defined as 
the selection of a suitable category for non-parametric 
stochastic technique/model in the process of 

hydrological data generation for a site in a given 
catchment. 

 Level 2: the criteria set by the modeler (decision-

maker or water expert) are defined in the selection of 

non-parametric stochastic hydrological models. The 

criteria may be disaggregated into several sub-criteria.   

 Level 3: the non-parametric stochastic models are 
candidates in the selection process for hydrological 

data generation. Models represent alternatives in the 
hierarchy structure. The modeler or decision-maker 
will then make a choice among these alternatives.  

 
 

3. DATA AVAILABILITY 
 
Data depicted in Table 3 has been used in the current study and 

was adapted from a previous study [5]. In this previous study, 
the comparative analysis was just conducted through an 
observation of the different entries of Table 1, according to the 
author’s experience [5]. Table 3 displays the different categories 
of non-parametric stochastic hydrological models for the 
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purpose of rainfall and streamflow data generation. The 5 
categories of models considered are: wavelet (A), reordering 

(B), nearest neighbor (C), kernel density (D) and bootstrap (E). 
These models will be used as alternatives in the process of data 
generation (through AHP). The set of criteria for AHP, i.e. 

“ability for data to preserve historic characteristics”, “ability to 
generate new hydrological data”, “scope of applicability”, 

“presence of negative data generated”  and “user friendliness” 
will be used. These criteria will be written as C1, C2, C3, C4 
and C5 respectively as shown in Table 3. 

 

Table 3. Comparison of non-parametric stochastic hydrological models as adapted from [5] 
 

Criteria Stochastic generation category 

Wavelet (A) Reordering (B) Nearest neighbor 
(C) 

Kernel density (D) Bootstrap (E) 

Ability for data to 
preserve historic 
characteristics 

(C1) 

Non-preservation of 
skewness coefficient 

for simple Haar 
wavelet 

Good for within 
year statistics. 
However no 

replication of long-

term variability and 
persistence 

Good for within 
year statistics and 

inter-annual 
dependence 

replication. Current 
forms of models not 

designed for 
replication of inter-
decadal variability 
and persistence. 

Good for within 
year statistics and 

inter-annual 
dependence 

replication. Long 
term dependence not 

modeled. 

Good for within 
year statistics for 

simple methods of 
fragmentation. 

Minimum flows 
may be 

overestimated. 
Preservation of 
inter-annual and 

longer term statistics 
by selecting long 
building blocks. 

Ability to generate 
new hydrological 

data” 
(C2) 

Full ability to carry 
out data generation 

None Limited 
extrapolation ability 

Full ability to carry 
out data generation 

Limited for most 
bootstrap. However, 
a bootstrap has been 
developed recently 
and has shown the 

ability. 

Scope of 

applicability 
(C3) 

Only Haar wavelet 

that requires 
historical data to be 

a normal 
distribution. No 

limitation for  
generalized wavelet 

May not be effective 

when daily data 
have many zero for 

instance. 

Wide scope. No 

limitation. 

Wide scope. No 

limitation. 

Wide scope. No 

limitation. 

Presence of negative 

data generated 
(C4) 

Possible None None Possible. An 

approach to deal 
with this possibility 
has been devised. 

None 

User friendliness 
(C5) 

Wavelet easy to use 
while generalized 

wavelets may not be 
easy to understand 

and use. 

Easy. Selection of 
moving window for 

re-ordering is 
subjective. 

Easy but 
computations could 

be intensive. 

Complexity and 
computationally 

expensive. Selection 
of kernel is 
subjective. 

Easy to use. 
Subjective selection 
of minimum block 

length. 

 

4. AHP FORMULATION AND 

IMPLEMENTATION FOR DATA 

GENERATION 
 
From Table 2, AHP is formulated as follows: 

 Level 1. The goal consists in the selection of best non-

parametric stochastic hydrological data generator(s). 
In this case, data considered are streamflow or 
rainfall. The modeler, the decision maker, or the water 

expert will make such a selection. Level 1 is the 
highest level of the AHP structure. 

 Level 2. There are 5 criteria as mentioned earlier, i.e. 

ability for data to preserve historic characteristics 
(C1), ability to generate new hydrological data (C2), 
scope of applicability (C3), presence of negative data 
generated (C4) and user friendliness (C5). This level 

is the middle level in the decision-making structure 
based on AHP.  

 Level 3: There are 5 categories of non-parametric 

stochastic hydrological data generators or alternatives 
among which the decision maker or water 
expert/model user/developer should select when 
considering the criteria defined at level 2. As 
mentioned earlier, the categories of models are 
wavelet (A), reordering (B), nearest neighbor (C), 

kernel density (D) and bootstrap (E). Level 3 is the 
lower level of the hierarchy. 

 
The implementation of AHP for the purpose of hydrological data 
generation will be done by carrying out pairwise comparisons at 
level 2 and level 3 in away to achieve the goal defined at level 1. 
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Pairwise comparisons among criteria 
 

The set of criteria used in the selection of non-parametric 
stochastic data generators enabled to establish the judgment 
matrix for AHP.  Based on Table 3, and carrying out pairwise 
comparisons among criteria, a relatively higher intensity 
(preference) was allocated to the “ability to generate new 
hydrological data” than the rest of criteria. Such an allocation of 
intensity was derived from [5], by the author of the current 
publication. In a similar manner, “ability to generate new 

hydrological data” was subjectively perceived to be strongly 
preferred over “presence of negative data generated”. For 
instance, C2 was moderately preferred over C5 and a value of 3 
was assigned to this specific pairwise comparison. It means that 
the decision-maker or water expert prefers the “ability of 
generating new hydrological data” 3 times more than “user-
friendless” of the non-parametric stochastic model. Conversely 
a value of 1/3 = 0.33 is allocated when C5 is preferred over C2. 
Likewise, C2 was considered to be strongly important than C3; 

meaning that decision-maker prefers “the ability of generating 
new hydrological data” 5 times more than the “scope of 
applicability” of the non-parametric stochastic model. 
Conversely a value of 1/5 = 0.25 is allocated when C5 is 
preferred over C2. In this manner, all pairwise comparisons 
were carried out and the different intensities (preferences) are 
summarized finally in Table 4. This table gives the judgment 
matrix, when the last line is omitted. Each entry in the last row 

is sum of entries in its column. One of the diagonals of the 
matrix has values of 1 since each criterion is compared to itself. 
The pairwise comparisons satisfied the consistency check. The 
computed value of CR for the judgment matrix was 5.3 %. 
Hence the judgment was found to be consistent (valid) when 
carrying out pairwise comparisons among criteria. In this case, 
subjectivity in making decisions during pairwise comparisons 
was approximately 5 %. Almost 95 % can be accounted for by 

objectivity during pairwise comparisons of criteria.  
 

Table 4 Pairwise comparisons of criteria C1, C2, C3, C4 and 

C5 

 

 
C1 C2 C3 C4 C5 

C1 1 0.25 4 3 2 

C2 4 1 5 4 3 

C3 0.25 0.2 1 2 0.33 

C4 0.33 0.25 0.5 1 0.5 

C5 0.5 0.33 3 2 1 

 
6.08 2.03 13.5 12 6.83 

 

 

Pairwise comparisons of non-parametric stochastic 

hydrological data generators 
 
The pairwise comparisons of non-parametric hydrological data 
models are carried out at level 3 of the AHP hierarchy. The 
wavelet (A) model is very strongly preferred over the reordering 
(B) model for the purpose of stochastic data generation, when 
criterion C1 is considered. It means that a value of 7 is used 

when A is preferred over to B. Conversely, a value of 0.14 is 
used when B is compared to A. The wavelet (A) model is 
strongly preferred over the nearest neighbor (C) model; 
meaning that a value of 5 is used when A is preferred over C. 

Conversely, a value of 0.2 is given when C is compared to A. 
The same procedure is carried out for all pairwise comparisons 

among non-parametric stochastic models and all results 
summarized in Table 5a. Table 5a summarizes the pairwise 
comparisons among non-parametric stochastic hydrological data 
generators, with respect to the first criterion C1.  
When the different pairwise comparisons are carried out among 
models with respect to criterion C2, the reordering (B) model is 
more preferred over the wavelet (A) model. In this case value of 
2 is used. Conversely, a value of 0.5 is used when A is 

compared to B. After all pairwise comparsions are carried out 
with respect to C2, the results can be summarized in Table 5b. 
Similarly, Tables 5c, 5d and 5e summarize the rest of pairwise 
comparisons with respect to criteria C3, C4 and C5 respectively. 
 

Table 5a Pairwise comparison of non-parametric stochastic 

hydrological data generation models with respect to C1 
 

 
A B C D E 

A 1 7 5 1 3 

B 0.14 1 0.33 0.14 0.2 

C 0.2 3 1 0.2 0.33 

D 1 7 5 1 3 

E 0.33 5 3 0.33 1 

 

2.67 23 14.33 2.67 7.53 

 

Table 5b Pairwise comparison of non-parametric stochastic 

hydrologic data generation models with respect to C2 
 

 
A B C D E 

A 1 0.5 0.33 0.25 0.14 

B 2 1 0.5 0.33 0.2 

C 3 2 1 0.5 0.25 

D 4 3 2 1 0.33 

E 7 5 4 3 1 

 
17 11.5 7.83 5.08 1.92 

 

Table 5c Pairwise comparison of non-parametric stochastic 

hydrologic data generation models with respect to C3 
 

 
A B C D E 

A 1 3 5 5 0.5 

B 0.333 1 3 3 0.142 

C 0.2 0.333 1 0.333 0.142 

D 0.2 0.333 3 1 0.142 

E 3 0.333 7 7 1 

 
4.733 4.999 19 16.333 1.926 
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Table 5d Pairwise comparison of non-parametric stochastic 

hydrologic data generation models with respect to C4 

 

 
A B C D E 

A 1 0.2 0.2 0.33 0.2 

B 5 1 1 3 1 

C 5 1 1 3 1 

D 3 0.33 0.33 1 0.33 

E 5 1 1 3 1 

 
19 3.53 3.53 10.33 3.53 

 

 

Table 5e Pairwise comparison of non-parametric stochastic 

hydrologic data generation models with respect to C5 
 

 
A B C D E 

A 1 0.25 0.33 1 0.33 

B 4 1 3 4 3 

C 3 0.33 1 3 1 

D 1 0.25 0.33 1 0.33 

E 3 0.33 1 3 1 

 
12 2.16 5.66 12 5.66 

 

 

5. RESULTS AND DISCUSSION 
 

Criteria weights 

 
Table 6 displays, in its last column, the criteria weights 
calculated from Table 4. Each weight is the average of entries in 
its respective row. Entries for each column in Table 6 are 
obtained by dividing respective entries (in Table 4) by the total 
in the last row (in Table 4).  The results shown in Table 6 
revealed that criteria C2 and C5 have the highest preference 
(45.9 %) and the lowest preference (7.4 %) respectively. It can 

be said that criterion C2 is preferred 6 times more than criterion 
C5. Hence, the water expert or the modeler will have more 
preference on the “ability to generate new hydrological data” 
than on the “scope of applicability”. From the decision-maker’s  

point of view, the ability for a non-parametric stochastic model 
to generate data is preferred twice more than the preservation of 
statistical characteristics. Similar conclusions can be derived 
from all pairwise comparisons. Such weights were not derived 
previously [5]. It should be noted that the difference in weight 

between criteria C3 and C4 is very small. This means that the 
decision-maker, the modeler or the water expert will assign 
more less the same weight to both “scope of applicability” and 
“presence of negative data generated”, in the selection of non-
parametric stochastic hydrological data generators. The 
different preferences are approached from the goal perspective 
of the hierarchy. As explained earlier, from AHP formulation, 
there is always a certain level of subjectivity in the results 

obtained from pairwise comparisons of criteria. Nonetheless the 
consistency ratio calculated was less than 10 %. This implies an 
acceptable judgment consistency in AHP formulation (i.e. 
during pairwise comparisons).  

 

Table 6. Criteria weights 

 

C1 C2 C3 C4 C5 
Criteria 
weight 

C1 0.164 0.123 0.296 0.250 0.293 0.225 

C2 0.658 0.493 0.370 0.333 0.439 0.459 

C3 0.041 0.099 0.074 0.167 0.048 0.086 

C4 0.054 0.123 0.037 0.083 0.073 0.074 

C5 0.082 0.163 0.222 0.167 0.146 0.156 

 
1 1 1 1 1 1 

 

 

Relative weights of non-parametric stochastic hydrological 

data generators 

 
The computations of weights of alternatives (or data generation 
models) with respect to the different criteria were carried out 
and depicted in Table 7a, 7b, 7c, 7d and 7e. Tables 7b, 7c, 7d, 
and 7e as presented in Appendix I. The weights of alternatives 
were computed in a similar way as criteria weights. In any of 
these tables, each element in the last column corresponds to 
weights of alternatives respectively. Hence, the weights of non-

parametric stochastic models with respect to criterion C1 (in 

Table 7a) are obtained by dividing the entries (preferences on 
criteria) in Table 5a, by the sum of entries of each column in 
Table 5a and finally by averaging values in each row. In a 
similar way, the weights of non-parametric stochastic models 
with respect to the rest of criteria (C2, C3, C4, and C5) are 
summarized in Tables 7b, 7c, 7d, and 7e as shown in Appendix 
I. The last raw in each of these tables has a unit value, which is 
the sum of entries for each column. 
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Table 7a. Weights of non-parametric stochastic hydrological data generators with respect to C1 

 
A B C C D Weight 

A 0.059 0.043 0.042 0.049 0.073 0.053 

B 0.118 0.087 0.064 0.065 0.104 0.088 

C 0.176 0.174 0.128 0.098 0.130 0.141 

D 0.235 0.261 0.255 0.197 0.172 0.224 

E 0.412 0.435 0.511 0.591 0.521 0.494 

 

1 1 1 1 1 1 

 
From Table 7a, bootstrap category displays the highest 
preference (49.4 %) for pairwise comparison among non-
parametric stochastic hydrological data generation models, with 
respect to criterion C1, followed by kernel density, nearest 
neighbor, reordering and wavelet categories. Hence the modeler 
or decision maker will have more preference to use bootstrap 

category of non-stochastic parametric models than other 
models. Table 7b does not display the same trend. For instance 
when non-parametric stochastic data generation models are 
compared with respect to criterion C2, kernel density and 
wavelet categories scored the highest preference (36. 0%). In 
Table 7c, when criterion C3 is considered for pairwise 
comparison among hydrological data generators, the bootstrap 
and the  nearest neighbor categories displayed the highest 

preference (40.3 %) and the lowest preference (5.1 %) 
respectively. In Table 7d, the highest preference is noticed for 
reordering, nearest neighbor and bootstrap categories (28.1 %) 
when pairwise comparisons between non-parametric stochastic 
hydrological data generation models are carried out with respect 
to criterion C4. Finally when criterion C5 is considered, the 
highest preference (43.8 %) is on reordering category (see Table 
7e). The weights of different non-parametric stochastic data 
generators vary from one criterion to the other. It can be 

observed that the bootstrap category has the highest preference 
for C1, C3 and C4. Hence, during the selection process for data 
generation purpose, the decision maker, modeler or water expert 
may prefer to use bootstrap category more than other non-
parametric stochastic hydrological data generation models.     
 
Table 8 of Appendix II displays the overall preferences 
(weights) in the selection of non-parametric stochastic models 

when all the criteria are taken into consideration. The selection 
process in AHP is achieved with respect to the goal of the 
problem at hand. The results showed that bootstrap category has 
the high level of preference (i.e. 27.2 %), followed by kernel 
density (24.3 %), wavelet (22.1 %), reordering (13.9 %), and 
nearest neighbor (10.6 %) categories. This order of preference is 
the ranking of the non-parametric stochastic hydrological data 
generators when all criteria are considered. The validity of this 

ranking is restricted to the 5 criteria defined at level 2 of the 
hierarchy. The increase in the number of criteria may influence 
the results. Similarly to [5], the overall preference was shown to 
be for bootstrap category; however [5] did not show the ranking 
in the selection process nor a sound methodology was used. 
Unlike the previous study [5], the current study demonstrates 
that a transparent multi-criteria decision making (MCDM) 
technique can be used in the selection of non- parametric 

stochastic hydrological data generators.   

 

 

 

 

 

6. CONCLUSION 
 
AHP has been proven to be a versatile tool since it can be used 
to a variety of problems. In particular, it has been used for the 
first time in the selection of non-parametric stochastic 
hydrological data generation models. The overall model 

selection process was made consistently and transparently using 
pairwise comparisons. The overall highest preference was 
shown to be on bootstrap category. However, the preferences 
for kernel density and wavelet categories did not substantially 
differ from the bootstrap category. The decision-maker, model 
user or water expert could make sound choices among several 
techniques for the purpose of hydrological data generation. 
Further work could include the application of AHP to more 

categories of stochastic models and other criteria. Specific non-
parametric stochastic models of these categories should be 
tested for AHP process.  
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8. APPENDICES 

 

Appendix I. Determination of weights of non-parametric stochastic hydrological data generators 

 

Table 7b. Weights of non-parametric stochastic hydrological data generators with respect to C2 
 

  A B C C D Average 

A 0.375 0.304 0.349 0.375 0.398 0.360 

B 0.052 0.043 0.023 0.052 0.027 0.040 

C 0.075 0.130 0.070 0.075 0.044 0.079 

D 0.375 0.304 0.349 0.375 0.398 0.360 

E 0.124 0.217 0.209 0.124 0.133 0.161 

  1 1 1 1 1 1 

 

Table 7c. Weights of non-parametric stochastic hydrological data generators with respect to C3 

  A B C C D Average  

A 0.211 0.600 0.263 0.306 0.260 0.328 

B 0.070 0.200 0.158 0.184 0.074 0.137 

C 0.042 0.067 0.053 0.020 0.074 0.051 

D 0.042 0.067 0.158 0.061 0.074 0.080 

E 0.634 0.067 0.368 0.429 0.519 0.403 

  1 1 1 1 1 1 

 
 

Table 7d. Weights of non-parametric stochastic hydrological data generators with respect to C4 

  A B C C D Average 

A 0.053 0.057 0.057 0.032 0.057 0.051 

B 0.263 0.283 0.283 0.290 0.283 0.281 

C 0.263 0.283 0.283 0.290 0.283 0.281 

D 0.158 0.093 0.093 0.097 0.093 0.107 

E 0.263 0.283 0.283 0.290 0.283 0.281 

  1 1 1 1 1 1 
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Table 7e. Weights of non-parametric stochastic hydrological data generators with respect to C5 

  A B C C D Average 

A 0.083 0.116 0.058 0.083 0.058 0.080 

B 0.333 0.463 0.530 0.333 0.530 0.438 

C 0.250 0.153 0.177 0.250 0.177 0.201 

D 0.083 0.116 0.058 0.083 0.058 0.080 

E 0.250 0.153 0.177 0.250 0.177 0.201 

  1 1 1 1 1 1 

 
 

Appendix II. Determination of overall weights non-parametric stochastic hydrological data generators 
 

Table 8. Computation of overall weights of models  

X Ci A B C D E A B C D E 

0.225 C1 0.053 0.088 0.141 0.224 0.494 0.012 0.020 0.032 0.050 0.111 

0.459 C2 0.360 0.040 0.079 0.360 0.161 0.165 0.018 0.036 0.165 0.074 

0.086 C3 0.328 0.137 0.051 0.080 0.403 0.028 0.012 0.004 0.007 0.035 

0.074 C4 0.051 0.281 0.028 0.107 0.281 0.004 0.021 0.002 0.008 0.021 

0.156 C5 0.080 0.438 0.201 0.080 0.201 0.012 0.068 0.031 0.012 0.031 

Overall weights == 0.221 0.139 0.106 0.243 0.272 

 

X: column representing weight criteria. The overall weight for 
A is obtained by multiplying each entry in X by its 
corresponding entry in column A and by summing up the new 

entries obtained from multiplication. Ci’s are the different 
criteria. 
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