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ABSTRACT 

 
Electrocardiogram (ECG) signals are widely used to examine 
heart rhythms and general health conditions. However, the 
majority of commercial ECG kits are generic and their normal 
ranges are set based on the averages obtained from a large 
population of people with normal heart conditions. This 
averaging ignores the extreme inherent variability of normal 
heart signals. As such, many false alarms are generated if the 
thresholds are selected too strict and true alarms are missed if the 
thresholds are set too loose. Furthermore, false alarms may arise 
due to the high physical activity of the test person. In this paper, 
we developed a prototype for patient-specific heart monitoring 
kit, which learns the properties of a patient’s normal ECG signal 
over time and reports significant deviations from this normal 
behavior, in addition to presenting significant violations from the 
global norms. Further, false alarms due to high physical activity 
levels are eliminated through processing the utilized 
accelerometer signal. This personalized remote heart monitoring 
kit with the proposed signal processing and self-tuning 
capabilities and wireless connectivity provides more detailed 
information and insightful interpretations of ECG signals 
compared to generic devices, therefore can be used for remote 
heart monitoring of high-risk people. 
 
Keywords: Personalized Diagnosis, Wearable Devices, ECG 
Signal Analysis, Predictive Modeling, Remote Heart Monitoring. 
 
 

1.  INTRODUCTION 
 
Healthcare service in today’s society has been significantly 
improved by using different technological advances such as fully 
automated diagnosis tools, data-driven predictive modeling and 
remote monitoring systems. In particular, cardiovascular disease, 
one of the top ranked killers in the world over the past decades, 
has been heavily investigated from different perspectives by the 
biomedical research community [1-3]. 

A majority of this hight mortality rate is due to late diagnosis and 
delayed theraputic interventions [4]. Therefore, a constant  heart 
condition monitoring and timely prediction of potential heart 
abnormalities can have a significant impact on saving lives, 
especially for high-risk patients. 

In order to diagnose heart abnormalities, Electrocardiogram 
(ECG) is widely used in healthcare industry, since it can be 
implemented using low-cost and affordable circuitry with a 
relatively high accuracy. Electrocardiograms involve the 
measurement of electrical activities of different parts of a hearts 
[3, 5, 6].  

Many practical implementations of ECG-based heart monitoring 
kits in terms of wearable devices (e.g. fitbit [7]), mobile apps 
(e.g. Alivecor’s heart monitor app [8]) as well as more 
sophisticated commercial cardiac monitoring equipment are 

developed to assess heart conditions based on ECG signals. 
However, a majority of these devices suffer from the following 
drawbacks. Firstly, these devices lack advanced signal 
processing and information extraction capabilities; hence, they 
require results interpretation by an expert. Secondly, the 
predefined normal ranges for signal parameters (e.g. heart rate) 
are set based on a typical ECG signal for a normal heart. 
However, there exists extreme inherent variations among normal 
heart signals collected from people, influenced by many factors 
such as age, gender, race, genetic patterns, as well as 
environmental conditions (e.g. temperature, elevation from sea 
level) [9,10]. Therefore, a generic equipment with a pre-defined 
set of thresholds is not well suited for precise monitoring of 
different patients’ heart functionality. For tightly selected 
thresholds, the device generates many false alarms. On the other 
hand, the device may miss significant true alarms for loosely 
selected thresholds. Thirdly, physical activity of a person may 
impose misleading changes on the ECG signal morphology [11], 
which should not be confused with the actual hearth 
abnormalities. This fact is overlooked in the current off the shelf 
kits.  

In this project, we developed a prototype of a personalized 
remote heart monitoring kit that probes a patient’s heart 
functionality as well as his physical activity and transmits the 
collected information to a remote processing unit through 
wireless communication for further analysis and interpretation. 

The design of this system allows a more flexible and continuous 
cardiac monitoring. The developed learning algorithm builds a 
patient-specific model to analyze and interpret the ECG signal by 
detecting deviations from the patient’s normal ECG trends. The 
results of this analysis in terms of minor and major alarms are 
displayed on the kit’s display module in order to assist the patient 
to take proper actions accordingly.  

Further, the device is equipped with an accelerometer in addition 
to ECG measurement probes to incorporate the patient’s physical 
activity into the learning algorithm and avoid false alarm 
generation due to the patient’s physical activities. The results 
provided in section 4, shows that the developed kit outperforms 
generic methods based on a global classifier by providing more 
detailed information about heart functionality and predicting 
potential upcoming heart abnormalities before their occurrence. 
This device can be used to remotely monitor heart behavior and 
general health conditions of high-risk people (such as seniors and 
patients with heart attack history) and assist patients to take 
necessary therapeutic actions such as taking rest, calling their 
doctors and taking blood thinning medications.  

The following of this paper is organized as follows. An overview 
of the entire system is presented in Section 2 with elaborating on 
the details of the designed wearable ECG monitoring module. 
The proposed signal processing and prediction processing is 
presented in Section 3. The results are presented in Section 4, 
followed by concluding remarks in Section 5. 
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2.  SYSTEM MODEL 

The proposed patient-specific remote heart monitoring kit 
comprises two modules: a Wearable Sensing Module (WSM) and 
a computer-based Personalized Processing Unit (PPU), as shown 
in Fig. 1a. The two modules communicate using Wi-Fi 
technology with our propitiatory half-duplex overlay 
communication protocol. The WSM module collects analog ECG 
signal and 3-dimensional accelerometer signal and transmits 
them to PPU for further analysis. PPU processes the received 
signals and classifies the received signals into normal and 
abnormal classes using a global classifier trained using a public 
ECG dataset. The normal signal segments are used by an online 
predictive learning algorithm for constant tuning of the patient-
specific model parameters. Simultaneously, significant 
deviations from the normal trend are recognized to trigger a 
minor alarm. The results of processing are sent back to WSM via 
a feedback channel to be displayed in terms of user-friendly text 
messages. Fig. 1b shows the block-diagram of the designed 
prototype. The following sections elaborate on the details of the 
kit and the developed software. 
 
Wireless Sensing Module 
WSM is designed based on Ardunio Uno microcontroller and 
includes a single-lead ECG sensing module with three electrodes, 

an accelerometer and a display module.  The ECG electrodes are 
attached to the left arm, the right arm, and the lower abdominal 
cavity of the patient. The kit is attached to the arm to maximize 
sensitivity to physical activities. The analog signals from the two 
sensors are sampled evenly with sampling rate of 215 
samples/sec. WSM receives the feedback messages and displays 
respective user-friendly text messages on a build-in LCD. Minor 
and major alarms are shown by two yellow and red LEDs. The 
displayed messages include the result of signal processing, the 
patient’s physical activity level, the functionality of the sensors, 
and the communication channel status indicators. 
 
Communication Module 
The sensing module constantly collects ECG and 3-dimentional 
accelerometer signals and bundles them into transmit packets. 
Each packet includes a start flag for flow control, a checksum 
code for error detection, and the measurement samples, as 
depicted in Fig. 2. The PPU analyzes the received hyperpacket 
including 1498 information packets and two control packets and 
sends back the result of the analysis in a feedback packet, which 
includes start and end flags, user ID, a set of message codes as 
shown in Fig. 2.  
 

3.  SIGNAL PROCESSING AND PREDICTIVE 
MODELING  

 
The proposed Software is developed in MATLAB Environment 
with Graphic User Interface (GUI) to facilitate easy data entry 
(e.g. personal and clinical information), signal processing and 
result display. In addition to the received signal, a set of 
representative features as well as the result interpretations are 
presented. The core part of the software is the proposed learning-
based prediction algorithm, which includes the following stages:  

1) Data preprocessing and de-noising 
2) Segmentation 
3) Feature extraction  
4) Global classifier 
5) Personalized local deviation analysis 

 
De-noising and Baseline removal 
Here, we use the popular method of Wavelet decomposition for 
denoising purpose. We use the 8-level Daubechies wavelet 
transform (db8), which has been proven to be efficient [12]. 
Since we use the public MIT-BIH arrhythmia database with 
sampling frequency of 360Hz [13] to train the global classifier, 
we use the relation described in Eq. (1) in order to identify the 
levels of wavelet transform. The high –frequency details are 
considered noisy and subject to discard according to the 
recommendations of the Association for the Advancement of 
Medical Instrumentation (AAMI) [14]. 
 

𝐿𝐿 = �1 + log2
𝐹𝐹𝐹𝐹

360�                                                     (1) 
 
Here, ⌊𝑥𝑥⌋  is the floor operator and represents the maximum 
integer number lower than 𝑥𝑥. To de-noise the ECG signal with 
sampling rate of 𝐹𝐹𝑠𝑠 = 215 samples/sec , the high frequency 
details at the first layer is discarded. The baseline wander is 
another common artifact in ECG signal. In this study, a five 
ordered fitted polynomial is subtracted from the ECG signal to 
eliminate the wandering trend. Finally, the resulting signal is 
resampled to 360Hz to match the training dataset.  

  

b) 

a) 

Figure 1:  System model: 
a) the designed KIT prototype; b) conceptual block-diagram 
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Segmentation 
We first identify the cardiac cycles using wavelet transform. A 
typical cardiac circle includes five fiducial peaks, namely P, Q, 
R, S and T. The QRS complex, which composed of Q, R and S 
peaks, is the most representative wave of one cycle. The 
detection of other peaks often depends on the location of QRS 
complexes. Both normal beats and abnormal beats exhibit QRS 
complexes in the frequency range of 5 to 22Hz [1]. With a 
sampling frequency of 360Hz, the detail coefficients of level 4 
and level 5 covers the information of QRS complexes. The 
algorithm described in [13] and [15] uses Maximal Overlap 
Discrete Wavelet Transform (MODWT) to detect R peaks. We 
use db4 as basis function instead of sym4, since it exhibits more 
similarity with a typical QRS complex [1, 12]. The rest of fiducial 
peaks are then detected within a certain segment around R peaks; 
resulting in the P, QRS onset, Q, S, QRS offset and T waves 
within each cardiac circle [1].  

 
Figure 3: The segmentation process; a) Fiducial peaks of ECG 

signal; b) R peaks are used in the segmentation method. 

If 𝑝𝑝𝑖𝑖 is the location of R peak for the ith cycle, the range of this 
cycle is defined as �𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑖𝑖− 𝑝𝑝𝑖𝑖−1

3
, 𝑝𝑝𝑖𝑖 + 2(𝑝𝑝𝑖𝑖+1− 𝑝𝑝𝑖𝑖)

3
�, noting that R 

peak approximately splits a cycle of length 𝜏𝜏 into two parts of 
length  𝜏𝜏/3  and 2𝜏𝜏/3  [9]. Further, we combine 𝑚𝑚  consecutive 
cycles to obtain one analysis segment, in order to eliminate 
transient artifacts and obtain local averages of signal parameters. 
In the subsequent learning algorithm, each segment considered 
as a data-point to be classified. The next segment is obtained by 
sliding the segment 𝑘𝑘 cycles forward, where 1 ≤ 𝑘𝑘 ≤  𝑚𝑚. Fig. 3 
shows the segmentation concept for 𝑘𝑘 = 1  and 𝑚𝑚 = 3 . 
Accelerometer signals are also segmented accordingly. 
 

Feature Extraction 
In order to develop an accurate learning algorithm and avoid the 
well-known overfitting issue by using all time-points, here we 
extract a set of informative features that capture the main 
properties of the signals as follows. 

For the ECG signal, the morphological details can be used to 
distinguish between the normal and abnormal cardiac cycles. In 
Fig. 4, the ventricular cardiac cycle can be easily recognized as it 
has a larger maximum negative peak and longer R-R duration 
compared to the adjacent normal cardiac cycle.  

As depicted in Table 1, we extract three categories of features 
including temporal features, morphological features and 
frequency domain features to make a comprehensive list of 
features that are reported in the literatures [1, 3, 5, 12]. For each 
category, we include two sets of features. Set 1 includes 8 
features that are calculated per cycle for all 𝑚𝑚 cycles and then we 
include their mean and coefficient of variations as representative 
features of the morphological properties of the signal. Set 2 
contains 6 features, which includes general properties of the 
signal and are calculated once per segment. Therefore, we have a 
total of 2 × 8 + 6 = 22 features per segment. The 22 
dimensional feature space is mapped into 8 dimensional space by 
Principal Component Analysis (PCA). Finally, these 8 features 
are normalized to yield zero mean unit variance features.  

 

Figure 2: The information and feedback packets. 

a) 

b) 

Figure 4: Demonstration of abnormal cardiac cycle; a) a 
sequence of normal and abnormal cardiac cycles; b) an abnormal 

cycle with ventricular cardiac cycle, which shows a large 
negative peak in the signal morphology. 
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Table 1: Features extracted from ECG signal. 

Feature Type SET 1 SET 2 

Temporal 
Features 

1) QRS duration,  
2) QT duration,  
3) PR duration 

1) segment mean 
RR, 

2) segment 
mean(𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎) 

Morphological 
Features 

3) max positive 
peak to second 
peak ratio 

3) signal average 
energy,  

4) max positive 
peak,  

5) max negative 
peak,  

6) peak to energy 
ratio 

Freq- Domain 
Features 

5-8) signal power 
level at 7.5Hz, 
10Hz, 12.5Hz, 
15Hz 

 

 
For the accelerometer signal, we extract representative features 
for each segment to build a binary classifier that distinguishes 
between the active and test modes as presented in Table. 2 
following suggestions provided in [16]. For the sake of 
simplicity, we first combine the three axes of data using the 
following equation: 

𝐴𝐴𝐴𝐴(𝑖𝑖) =  �𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)2 + 𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)2 + 𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)2                (2) 

If the reading of accelerometer is zero across all axes, then an 
accelerometer signal loss alarm is displayed.  

Proposed Personalized Predictive Modeling 
 In this section, we elaborate on the proposed personalized 
predictive modeling, which includes a global classifier and a 
local deviation analysis module under a hierarchical structure as 
depicted in Fig. 5. In order to verify the global classifier of the 
proposed algorithm, we apply it to well-annotated MIT-BIH 
database, which includes two subsets DS1 and DS2, each of 
which contains ECG signals for 22 patients [14, 17]. Here, we 
use DS1 as training dataset and DS2 as test dataset. Each ECG 
signal includes cardiac cycles, which are annotated by experts 
and mapped into four classes including Normal, 
Supraventricular, Ventricular and Fusion [5]. The number of 
classes in the two database subsets DS1 and DS2 is presented in 
Table 3. 

We first label the ECG segments. A segment is labeled as 
Normal, if all 𝑚𝑚 = 3 member cycles are labeled as N, otherwise 
it is labeled as the only abnormal class (V, S or F) within the 
segment. If a segment includes two or more different abnormal 
classes, the segment is discarded.  

Table 2: Features extracted from accelerometer signal. 

Table 3: The utilized public dataset overview 

Dataset # of N 
segments 

# of V 
segments 

# of S 
segments 

# of F 
segments 

Total 

DS1 12633 2053 550 121 15357 
DS2 11721 2356 862 256 15195 
Total 24354 4409 1412 377 30552 

 
The following are the details of the global classifier and local 
deviation analysis module.  
 
Global Classifier 
We first build a global classifier using all segments of the signals 
for all data-points in database DS1. Note that the data after 
feature extraction and preprocessing is not guaranteed to be 
independently drawn and identically distributed (iid), a set of 
candidate classification algorithm are tested using data from 
DS1. Finally, we chose k-Nearest Neighbors method for this 
stage and Weighted k-Nearest Neighbor for the following stage 
with 𝑘𝑘 = 10 to build the classifier, since they demonstrates the 
best performance as shown in Table 4. However, the method is 
general and not sensitive to the choice of classifiers.  

During the test phase, we process the received signal segments 
and classify them to one of the four major classes N, V, S, or F. 
The segment at time t is denoted by 𝑥𝑥𝑡𝑡 and the predicted label by 
the global classifier is denoted by 𝑔𝑔𝑡𝑡 . A segment which is 
classified as abnormal (𝑔𝑔𝑡𝑡 ∈ {𝑉𝑉𝑎𝑎, 𝑆𝑆𝑎𝑎,𝐹𝐹𝑎𝑎}) triggers a red alarm in 
the system, while the normal samples 𝑔𝑔𝑡𝑡 = 𝑁𝑁𝑎𝑎  are used to 
develop an online local model for patient-specific signal 
properties as presented in Fig. 5. 

Table 4: Accuracy of different classification methods for the 
global classifier. 

Classifier Name Accuracy (%) 
Complex Tree 88.9 
Medium Tree 88.8 
Simple Tree 87.2 
Fine KNN 88.4 
Medium KNN 90.8 
Coarse KNN 90.5 
Cubic KNN 90.6 
Weighted KNN 90.9 
Subspace KNN 89.5 
Boosted Trees 89.5 

 

The Personalized Deviation Analysis 
Here, we propose a novel deviation analysis method through a 
two stages process including a deviation detection stage followed 
by a re-classification stage to obtain final class labels denoted by 
𝑝𝑝𝑡𝑡 . The first stage is to verify whether a normally classified 
sample by a global classifier is a firm normal (𝑝𝑝𝑡𝑡 = 𝑁𝑁𝑝𝑝 ) or 
leaning towards one of the major alarm classes {𝑉𝑉,𝐹𝐹, 𝑆𝑆}. In the 
later case, a yellow alarm is triggered based on re-classifying the 
sample into one of the three abnormality classes 𝑝𝑝𝑡𝑡 ∈
{𝑉𝑉𝑝𝑝, 𝑆𝑆𝑝𝑝,𝐹𝐹𝑝𝑝} .Therefore, the set of the outcomes of the whole 
system is {𝑁𝑁,𝑉𝑉𝑎𝑎,𝑆𝑆𝑎𝑎,𝐹𝐹𝑎𝑎,𝑉𝑉𝑝𝑝, 𝑆𝑆𝑝𝑝,𝐹𝐹𝑝𝑝} , where subscripts 𝑔𝑔  and 𝑝𝑝 
represent global and personal alarms, respectively. 

Metrics Name Formula 
Differences |max {𝐴𝐴𝐴𝐴(𝑖𝑖)}| − |min {Ac(𝑖𝑖)}| 

Stand Deviation 
1
𝑁𝑁� �𝐴𝐴𝐴𝐴(𝑖𝑖) −

1
𝑁𝑁� 𝐴𝐴𝐴𝐴(𝑗𝑗)

𝑁𝑁

𝑗𝑗=1
�

𝑁𝑁

𝑖𝑖=1
 2 

Minimum min {Ac(𝑖𝑖)} 
Range max{𝐴𝐴𝐴𝐴(𝑖𝑖)} −  min {Ac(𝑗𝑗)} 

Energy ∑ |𝐴𝐴𝐴𝐴(𝑖𝑖)|2𝑁𝑁
𝑖𝑖=1

𝑁𝑁  
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Figure 5: Block-diagram of the proposed predictive model. 

In order to perform the local analysis, we first partition the 
abnormal samples in the training dataset DS1 (with true 
labels{𝑉𝑉, 𝑆𝑆,𝐹𝐹}) into three disjoint subsets denoted by 𝛺𝛺𝑉𝑉 ,𝛺𝛺𝑆𝑆,𝛺𝛺𝐹𝐹. 
Then, for a new sample 𝑥𝑥𝑡𝑡, we calculate the following distance 
metrics: 

𝑅𝑅𝑚𝑚𝑎𝑎𝑚𝑚 = max
𝑚𝑚𝑖𝑖∈𝛺𝛺𝑁𝑁

(𝑡𝑡),𝑚𝑚𝑗𝑗∈𝛺𝛺𝑁𝑁
(𝑡𝑡)
���𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�

22
�, 

(2) 

𝐷𝐷𝑁𝑁(𝑥𝑥𝑡𝑡) = median
𝑚𝑚𝑛𝑛∈𝛺𝛺𝑁𝑁

(𝑡𝑡)
��(𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑛𝑛)22 �, (3) 

𝐷𝐷𝑉𝑉(𝑥𝑥𝑡𝑡) = median
𝑚𝑚𝑣𝑣∈𝛺𝛺𝑉𝑉

��(𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑎𝑎)22 �, (3) 

𝐷𝐷𝑆𝑆(𝑥𝑥𝑡𝑡) = median
𝑚𝑚𝑠𝑠∈𝛺𝛺𝑠𝑠

��(𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑠𝑠)22 �, (4) 

𝐷𝐷𝐹𝐹(𝑥𝑥𝑡𝑡) = median
𝑚𝑚𝑓𝑓∈𝛺𝛺𝐹𝐹

���𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑓𝑓�
22
�, 

(5) 

𝐷𝐷𝑚𝑚𝑎𝑎𝑚𝑚(𝑥𝑥𝑡𝑡) = max
𝑚𝑚𝑛𝑛∈𝛺𝛺𝑁𝑁

(𝑡𝑡)
��(𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑛𝑛)22 �, (6) 

 
In the equations above, 𝐷𝐷𝑁𝑁(𝑥𝑥𝑡𝑡), 𝐷𝐷𝑉𝑉(𝑥𝑥𝑡𝑡), 𝐷𝐷𝑆𝑆(𝑥𝑥𝑡𝑡), 𝐷𝐷𝐹𝐹(𝑥𝑥𝑡𝑡) are the 
median of the distances of the sample 𝑥𝑥𝑡𝑡 from the members of 
the sets 𝛺𝛺𝑁𝑁

(𝑡𝑡), 𝛺𝛺𝑉𝑉 , 𝛺𝛺𝑆𝑆  and 𝛺𝛺𝐹𝐹 , respectively. 𝑅𝑅𝑚𝑚𝑎𝑎𝑚𝑚  represents the 
largest pairwise distance for the aggregated normal samples. The 
sets of abnormal samples 𝛺𝛺𝑉𝑉, 𝛺𝛺𝑆𝑆 and 𝛺𝛺𝐹𝐹 are static and developed 
using the training dataset DS1, whereas 𝛺𝛺𝑁𝑁

(𝑡𝑡)  is a dynamic set 
including aggregated normal samples until time 𝑡𝑡  through 
collecting samples that are labelled Normal and do not trigger a 
yellow alarm, as elaborated below in Algorithm 1. Therefore, 
𝛺𝛺𝑁𝑁

(𝑡𝑡) reflects the personal normal history. 

In order to improve the accuracy of the local deviation analysis 
and avoid biasing to the very few first samples, we initialize the 
set 𝛺𝛺𝑁𝑁

(0) with 𝑛𝑛0 = 300 normal samples collected from training 
dataset DS1, which exhibit minimum distance with the first test 
sample 𝑥𝑥0 (𝑛𝑛0 nearest neighbors of  𝑥𝑥0 in set DS1).  𝑛𝑛0 is chosen 
based on the average number of normal samples for each patient 
in dataset DS1. A sample 𝑥𝑥𝑡𝑡 is deemed normal (𝑝𝑝𝑡𝑡 = 𝑁𝑁) if we 
have:  

                            𝐷𝐷𝑚𝑚𝑎𝑎𝑚𝑚(𝑥𝑥𝑡𝑡) < 𝛼𝛼𝑅𝑅𝑚𝑚𝑎𝑎𝑚𝑚       (7) 

and 

                

Figure 6: Conceptual interpretation of personal deviation 
analysis module. 

 

𝐷𝐷𝑁𝑁(𝑥𝑥𝑡𝑡) < min (𝐷𝐷𝑉𝑉(𝑥𝑥𝑡𝑡),𝐷𝐷𝑆𝑆(𝑥𝑥𝑡𝑡),𝐷𝐷𝐹𝐹(𝑥𝑥𝑡𝑡)     (8) 

where 𝛼𝛼  is a regularizing parameter, chosen by maximizing 
accuracy over training dataset. 

Eq. (7) monitors the relationship between the new sample and the 
personal normal cluster (𝛺𝛺𝑁𝑁

(𝑡𝑡)) by comparing it with the clusters 
‘diameter’ (𝑅𝑅𝑚𝑚𝑎𝑎𝑚𝑚), while Eq. (8) guarantees that the new sample 
is more likely to be a member of personal normal cluster (𝛺𝛺𝑁𝑁

(𝑡𝑡)) 
than other abnormal clusters ( 𝛺𝛺𝑉𝑉, 𝛺𝛺𝑆𝑆 and 𝛺𝛺𝐹𝐹). The illustration of 
this idea in two-dimensional space is shown in Fig. 6. 

If Eqs. (7) and (8) do not hold at the same time, the sample is 
mapped to a minor abnormality of type 𝑝𝑝𝑡𝑡 = 𝜃𝜃𝑦𝑦 . We use a k-
Nearest Neighbor classifier with 𝑘𝑘 = 10 and a square inversion 
kernel trained using datasets 𝛺𝛺𝑉𝑉 ,𝛺𝛺𝑆𝑆,𝛺𝛺𝐹𝐹 [16]. The classification 
steps can be summarized as:  

 𝑘𝑘 = 10,  𝐾𝐾(𝑑𝑑) =  1
𝑑𝑑2

, (9) 

𝑑𝑑𝜃𝜃(𝑥𝑥𝑡𝑡) =   ∑ 𝐾𝐾 ���𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑗𝑗�
22
� ,𝑚𝑚𝑗𝑗 ∈𝛺𝛺𝜃𝜃   

                  for 𝜃𝜃 ∈  {Ω𝑉𝑉 ,  𝛺𝛺𝑆𝑆,𝛺𝛺𝐹𝐹}  

 

(10) 

 𝜃𝜃𝑦𝑦 = argmin
𝜃𝜃∈{𝑉𝑉,𝑆𝑆,𝐹𝐹}

𝑑𝑑𝜃𝜃(𝑥𝑥𝑡𝑡), (11) 

For subsequent normal samples (𝑥𝑥𝑡𝑡, 𝑡𝑡 ≥ 1), if the new sample 𝑥𝑥𝑡𝑡 
is classified as normal ( 𝑝𝑝𝑡𝑡 = 𝑁𝑁 ), then it joins the set of 
aggregated normal samples 𝛺𝛺𝑁𝑁

(𝑡𝑡) and one member of  𝛺𝛺𝑁𝑁
(𝑡𝑡) with a 

maximum pairwise Mahalanobis distance to the other members 
of this set ( 𝑥𝑥𝑒𝑒

(𝑡𝑡) = argmax
𝑚𝑚∈𝛺𝛺𝑁𝑁

(𝑡𝑡)
 ∑ (𝑥𝑥 − 𝑦𝑦)2

𝑦𝑦∈𝛺𝛺𝑁𝑁
(𝑡𝑡) ) is excluded. 

Therefore, the set 𝛺𝛺𝑁𝑁
(𝑡𝑡)  accumulates the confirmed normal 

samples for the patient over time and the less-representative 
initially chosen samples leave the set gradually in order to 
reinforce the personal history over time. This set can be used as 
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a reference to decide the subsequent samples. After running the 
algorithm for a couple of minutes, this set includes only the most 
recent normal samples and hence is an indicative of the personal 
normal history of the current patient. The summary of this 
algorithm is shown in Algorithm Personal Classifier. 

 
 

4.  RESULTS 
 
In this section, the performance of the proposed method in terms 
of Classification Accuracy (AC), Specificity (SP) and Sensitivity 
(SE) is investigated. We first, obtain the classification accuracy 
by comparing the true labels 𝐴𝐴𝑡𝑡  (expert’s annotation) with the 
outcome of the proposed two-step algorithm 𝑝𝑝𝑡𝑡.  At this step, we 
combine all abnormalities into one set defined as 𝛺𝛺𝑃𝑃 = 𝛺𝛺𝑉𝑉 ∪
𝛺𝛺𝑆𝑆 ∪ 𝛺𝛺𝐹𝐹. Then, we calculate the true positive, true negative, false 
positive and false negative rates of class N for all test samples. In 
order to avoid bias to training dataset DS1, we use the 22 unseen 
samples in DS2 for test purpose. We also, calculate the median, 
interquartile range (IQR), mean and standard deviation values for 
all performance metrics (AC, SE, SP) in order to examine the 
robustness of the proposed method and performance variations 
among 22 test samples. We use robust statistics (median and 
IQR) to assess the performance of the proposed algorithm. Table 
5 summarizes the overall results and Fig. 7a). shows the 
histogram of accuracy for class N, where interquartile range 
(IQR) is used to measure the stability of performance.  

Table 5: Classification accuracy and sensitivity of the proposed 
method for Class N 

Class N median 
(%) 

IQR (%) mean(%) std(%) 

AC 97.6 13.2 88.3 19.4 
SE 98.3 9.9 86.2 26.5 

 

 

Figure 7: Accuracy histogram among all patients for classes: a) 
N, b) V, c) S and d) F. 

a) 

b) 

d) 

c) 

Algorithm 1: Personal Classifier 
Input: Samples Labelled Normal by Global Classifier (𝑔𝑔𝑡𝑡 =
𝑁𝑁𝑎𝑎) 
Output: Labels by Personal Classifier (𝑝𝑝𝑡𝑡 ∈ {𝑁𝑁𝑝𝑝,𝑉𝑉𝑝𝑝, 𝑆𝑆𝑝𝑝,𝐹𝐹𝑝𝑝}) 
Initialization: 
Partition 𝛺𝛺(𝐷𝐷𝑆𝑆1) into 𝛺𝛺𝑁𝑁 , 𝛺𝛺𝑆𝑆 , 𝛺𝛺𝑉𝑉 , 𝛺𝛺𝑃𝑃 ; 
Set 𝛺𝛺𝑁𝑁

(0) = Ø; 
𝑛𝑛0 = 300 
for 𝑖𝑖 = 1:𝑛𝑛0 do 
       𝛺𝛺𝑁𝑁

(0)=𝛺𝛺𝑁𝑁
(0) ∪  argmin

𝑚𝑚∈Ω𝑁𝑁
 (𝑥𝑥0 − 𝑥𝑥)2; 

end for 
for 𝑡𝑡 = 1 ∶ ∞ do 
      Calculate 𝑅𝑅𝑚𝑚𝑎𝑎𝑚𝑚 , 𝐷𝐷𝑁𝑁(𝑥𝑥𝑡𝑡) , 𝐷𝐷𝑉𝑉(𝑥𝑥𝑡𝑡) , 𝐷𝐷𝑆𝑆(𝑥𝑥𝑡𝑡) , 
𝐷𝐷𝐹𝐹(𝑥𝑥𝑡𝑡),𝐷𝐷𝑚𝑚𝑎𝑎𝑚𝑚(𝑥𝑥𝑡𝑡); 
       Set 𝛺𝛺𝑁𝑁

(𝑡𝑡)=𝛺𝛺𝑁𝑁
(𝑡𝑡−1); 

       if (𝐷𝐷𝑚𝑚𝑎𝑎𝑚𝑚(𝑥𝑥𝑡𝑡) < 𝛼𝛼𝑅𝑅𝑚𝑚𝑎𝑎𝑚𝑚) and 
          𝐷𝐷𝑁𝑁(𝑥𝑥𝑡𝑡) < min (𝐷𝐷𝑉𝑉(𝑥𝑥𝑡𝑡),𝐷𝐷𝑆𝑆(𝑥𝑥𝑡𝑡),𝐷𝐷𝐹𝐹(𝑥𝑥𝑡𝑡) then 
            𝑝𝑝𝑡𝑡 = 𝑁𝑁; 
            𝑥𝑥𝑒𝑒

(𝑡𝑡) = argmax
𝑚𝑚∈𝛺𝛺𝑁𝑁

(𝑡𝑡)
 ∑ (𝑥𝑥 − 𝑦𝑦)2

𝑦𝑦∈𝛺𝛺𝑁𝑁
(𝑡𝑡) ; 

            𝛺𝛺𝑁𝑁
(𝑡𝑡) = 𝛺𝛺𝑁𝑁

(𝑡𝑡) \ 𝑥𝑥𝑒𝑒
(𝑡𝑡)  ; 

            𝛺𝛺𝑁𝑁
(𝑡𝑡) = 𝛺𝛺𝑁𝑁

(𝑡𝑡)  ∪ 𝑥𝑥𝑡𝑡   ; 
      else 
             𝜃𝜃𝑦𝑦 = argmin

𝜃𝜃∈{𝑉𝑉,𝑆𝑆,𝐹𝐹}
𝑑𝑑𝜃𝜃(𝑥𝑥𝑡𝑡); 

             𝑝𝑝𝑡𝑡 = 𝜃𝜃𝑦𝑦; 
      end if 
end for 
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The results are promising and suggest that the probability of 
missing a true alarm is negligible using the proposed two-step 
method with minor alarm recognition capability. The cost paid is 
more complexity and reporting minor alarms. There is a tradeoff 
between the rate of minor alarms and the sensitivity of the 
method, that can be regularized by tuning regularizing parameter 
𝛼𝛼 in Eq. (7). Here, we used 𝛼𝛼 = 1.  

 In order to analyze the specificity of the method, we consider all 
classes individually and count the number of calling false alarm 
types per each class. The results are summarized in Table 6, 
which demonstrate an excellent specificity per class. Likewise, 
Figs. 6b), 6c) and 6d) present the histogram for accuracy across 
samples for classes V, S and F, respectively. In the results 
presented in Table 5 and Table 6, both minor (yellow) and major 
(red) alarms are included.  

 

Table 6: Performance measurement for V, S, and F. 

 

From the result presented in Table 6, it is easy to notice that the 
performance for V and F classes are better, while the 
performance for class F is more stable compared to class V. This 
result also is consistent with the fact that class F is a Fusion class 
considered as an intermediate state between classes N and V [14]. 

A unique property of the proposed method is the utility of the 
minor (yellow) alarms in predicting upcoming major (red) 
alarms. In order to investigate this property, for each patient, we 
count the number of subsequent red alarm types that come after 
a yellow alarm. To evaluate the global predictive capacity of the 
method across the test data, we firstly assess the segments 
collected from all samples in the test dataset. The general results 
are presented in Table 7. As shown, there are in total 439 type V 
samples, 97 type S samples and 24 type F samples in DS2 
according to the ground truth. For instance, the Table 6 suggests 
that we detect 20 yellow alarms of type S that are followed by a 
red alarm of type F. Also, the probability of observing major 
alarms are simply calculated as  

Pr(alarm of type 𝜃𝜃) = 𝑛𝑛𝜃𝜃
𝑛𝑛𝑆𝑆+𝑛𝑛𝑉𝑉+𝑛𝑛𝐹𝐹

,    (𝜃𝜃 ∈ {𝑆𝑆,𝑉𝑉,𝐹𝐹})             (12) 

where 𝑛𝑛𝜃𝜃 is the number of red alarms of type 𝜃𝜃. The results are 
interesting and in general show that 

Pr[red alarm θ|after a yellow alarm θ] > Pr[red alarm θ] 
                                                                                            (13) 

For instance, comparing the subsequent major alarms after a 
yellow alarm 𝑉𝑉𝑝𝑝 reveals that there is 84% chance of having an 
upcoming red alarm of type V. However, the probability of 
having an alarm of type V, without considering the preceding  
yellow alarms of type V is only 78%. The same trends holds for 
alarm types S as well.  

Additionally, noticing the records in DS2 usually have either type 
V or type S dominant over other type of alarms. It’s also 
necessary to consider the predictive capacity of individual record. 
For example, in Table 8, record number 219 has type V dominant 
over other abnormal sample types. The conclusion drawn from 
Table 7 is also valid for this patient. For the patients whose 
dominant alarm type is S, an example from record number 100 is 
shown in Table 9. All yellow alarms of type S are followed by a 
red alarm of type S. The predictive accuracy is 100% for this 
record. 
 
At the same time, it is worthwhile to compare the performance of 
proposed method for different alarm types and the consistency of 
the performance as well. For the 22 records in DS2, there are 19 
records which have at least one major alarm. Among these 
records, 10 records showing the same trend for alarm type S and 
7 records showing a good predictive capacity for type V. 
However, the prediction of alarm type F is not as promising as it 
is for other alarm types, reflecting the fact that alarm type F is a 
fusion type of class V and class N [17]. In general, the algorithm 
show a better performance over alarm type S than type V. 
 
This demonstrates an important utility of the yellow alarms, since 
it means that by detecting yellow alarms, we can predict the 
upcoming red alarms with a higher certainty. A high-risk patient 
may take into account these yellow alarms and take cautionary 
actions (e.g. avoiding physical activity). 
 
 
 
 

Table 7: Predictive power of yellow alarms: a yellow alarm 
increases the chance of observing a red alarm of the same type. 

Yellow 
alarm tag 

Number of next 
abnormalities 

Probability of next 
abnormality (%) 

𝑉𝑉𝑝𝑝 𝑆𝑆𝑝𝑝 𝐹𝐹𝑝𝑝 Total 𝑉𝑉𝑝𝑝 𝑆𝑆𝑝𝑝 𝐹𝐹𝑝𝑝 Total 

True V 179 256 4 439 84 75 100 78 

True S 30 67 0 97 14 20 0 17 

True F 4 20 0 24 2 6 0 4 
 

Table 8: Predictive power of yellow alarms, result for record 
number 219. 

Yellow 
alarm tag 

Number of next 
abnormalities 

Probability of next 
abnormality (%) 

𝑉𝑉𝑝𝑝 𝑆𝑆𝑝𝑝 𝐹𝐹𝑝𝑝 Total 𝑉𝑉𝑝𝑝 𝑆𝑆𝑝𝑝 𝐹𝐹𝑝𝑝 Total 

True V 21 7 0 28 91 70 0 85 

True S 2 3 0 5 9 30 0 15 

True F 0 0 0 0 0 0 0 0 
 

Class V median 
(%) 

IQR (%) mean(%) std (%) 

AC 82.8 26.1 73.9 25.0 
SP 99.8 9.9 89.6 20.2 

Class S median 
(%) 

IQR (%) mean(%) std (%) 

AC 68.6 22.2 65.9 20.2 
SP 99.5 2.0 93.6 21.2 

Class F Median 
(%) 

IQR (%) mean(%) std (%) 

AC 99.6 0.4 99.2 1.8 
SP 100 0.01 99.2 0.3 
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Table 9: Predictive power of yellow alarms, result for record 
number 100. 

Yellow 
alarm tag 

Number of next 
abnormalities 

Probability of next 
abnormality (%) 

𝑉𝑉𝑝𝑝 𝑆𝑆𝑝𝑝 𝐹𝐹𝑝𝑝 Total 𝑉𝑉𝑝𝑝 𝑆𝑆𝑝𝑝 𝐹𝐹𝑝𝑝 Total 

True V 0 0 0 0 0 0 0 0 

True S 0 20 0 20 0 100 0 100 

True F 0 0 0 0 0 0 0 0 
 

 
5.  CONCLUSIONS 

 
A prototype of a remote heart monitoring system with wireless 
connectivity is implemented. A novel two-step predictive 
modeling is designed by adding an additional analysis layer to 
the common approach of using global classifiers. With the 
proposed method, a normal trend of ECG signal for each patient 
is learned from the received samples over time. This trend is 
subsequently used to trigger minor (yellow) alarms in cased of 
deviating from the patient-specific normal history. The results 
suggest that these yellow alarms are informative in the sense that 
they provide insight about the upcoming major (red) alarms. 
Since the reaction time in cardiac disease is very important and 
can significantly reduce catastrophic consequences, the proposed 
device can be used to notify the users about potential upcoming 
major alarms in order to take necessary preventive actions.  
This kit also can be used to assist the physicians and healthcare 
staff to interpret the patient’s ECG signal more accurately. 
Finally, by incorporating the accelerometer signal into the 
predictive modeling, we avoid calling fake alarms due to the 
patient’s physical activities. 
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