
Scheduling real-time indivisible loads with special resource allocation requirements 
on cluster computing 

 
Abeer Hamdy 

Electronics Research Institute 
Cairo, Egypt 

abeer@eri.sci.eg 
 
 

 
ABSTRACT 

 
The paper presents a heuristic algorithm to schedule real time 
indivisible loads represented as directed sequential task graph 
on a cluster computing. One of the cluster nodes has some 
special resources (denoted by special node) that may be needed 
by one of the indivisible loads' tasks (denoted by special task). 
Most previous scheduling algorithms assign the indivisible load 
as a single unit to one of the cluster nodes. Using this 
scheduling strategy may get the special node overloaded and the 
system may not be able to accommodate arriving loads although 
other nodes are unloaded. The proposed scheduler explores the 
task graph of the indivisible load and assigns the special task to 
the special node if there is enough workload to accommodate it. 
The other tasks are assigned to the other processing nodes 
subject to several predefined criteria which are satisfying the 
real time requirements, minimizing both of the communication 
cost and context switching overheads. 
 
keywords: scheduling, allocation algorithm, cluster computing, 
multi processors, processing power reservations. 

 
 

1. INTRODUCTION 
 

A computer cluster is a group of loosely coupled computers 
connected through fast local area network and work together 
closely so that in many respects it can be viewed as a single 
computer. They have become a common alternative to large 
scale Symmetric Multiprocessors (SMP) because they are cost 
effective and scalable 
Currently, high performance computing systems in general are 
used in several high performance applications that exhibit real-
time characteristics like control systems, autonomous robots, 
banking systems. Scheduling a large number of real-time 
applications on a set of processors is a challenging problem.  
Real time applications are composed of one or more tasks that 
are dependent in most cases and are required to perform their 
functions under strict timing constraints. A task missing its 
deadline may cause other tasks to miss their deadlines resulting 
in a system failure. Consequently, the scheduler has to 
determine an assignment and execution order of these tasks on 
the set of processors in a way that allow the accommodation of 
as many applications as possible while satisfying their real time 
requirements.  
Moreover an efficient utilization of the nodes’ processing 
powers is also necessary to exploit the true potential of the 
cluster resources and efficiently utilize the processing nodes 
which leads to the accommodation of as many tasks as possible. 
 
Giving these issues, this paper proposes a heuristic scheduling 
algorithm that uses adequate knowledge of the state of the 
cluster nodes and the scheduled tasks to schedule new arrived 
indivisible loads. Each indivisible load is represented by a 
directed sequential task graph. One of the tasks of the load has 
to be scheduled over certain node in the cluster that has special 

resources. These special resources may be hardware like extra 
memory or software like certain databases. The node with 
special resources is denoted by special node and the task that 
needs these special resources is denoted by special task. If the 
indivisible load is scheduled as a single unit over the special 
node, the special node will be overloaded and may not be able 
to accommodate more loads. Consequently, new arrived loads 
may be rejected although there are available workload over 
others cluster’s nodes. Moreover, allocating a task workload 
over a processor can be guaranteed more than allocating an 
indivisible load with more workload requirements. So, the 
proposed scheduling algorithm explores the task graph of the 
indivisible load and assigns the special task to the special node 
if there is enough workload to accommodate it. The other tasks 
are assigned to the special node or the other processing nodes 
according to the workload requirements to satisfy their deadline 
along with other predefined criteria which are efficient usage of 
the processing nodes and minimizing both of the 
communication and context switching overheads.  
 
The paper is organized as follows: Section 2 survey related 
research work. Section 3, explains the scheduling problem. 
Section 4 discusses the proposed scheduling algorithm. Section 
5 presents an illustration example. The conclusion and future 
work are given in Section 6. 

 
 

2. RELATED WORK 
 

Scheduling a set of jobs for parallel execution on a set of 
processors is important and challenging task. This problem is 
known to be NP-complete even in its simplest forms [20].  
Finding an optimum solution is infeasible unless some 
restrictions are imposed on the models representing the 
submitted loads and the parallel system. So, heuristic algorithms 
are suggested to find sub-optimal solutions. A large number of 
these algorithms, each of which works under different 
circumstances, have been proposed in literature [2-22]. Satish et 
al.[13] presented two scheduling algorithms based on a 
statistical optimization approach for scheduling a task 
dependence graph with variable task execution times onto a 
heterogeneous multiprocessor system. Jin et al. [20] presented a 
MILP mathematical programming formulation for static 
scheduling of dependent tasks onto homogeneous 
multiprocessor system of an arbitrary architecture with 
communication delays. El-Rewini [6] presented several 
scheduling algorithms to schedule different types of task graphs 
over multiprocessors environments. Oudshoornand et al. [10] 
presented an adaptive system to allocate tasks to the processing 
nodes based on the past usage statistics of each user.  Ammar et 
al. [16] introduced an algorithm to schedule sequential task 
graph applications on a cluster. Some approaches allow the 
execution of the same task on multiple nodes if the output data 
is needed by multiple downstream tasks [22]. These approaches 
are trading additional computational power for lower 
communication overhead. Daviodovic et al. [21] proposed a 
large set of benchmark graphs for the Multiprocessor 

34 SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 8 - NUMBER 5 - YEAR 2010 ISSN: 1690-4524



Scheduling Problem with Communication Delays. The 
proposed benchmark problems have known optimal solutions 
and cover a broad spectrum of characteristics: multiprocessor 
architecture, number of processors, number of tasks, and density 
of inter-task communications links. They used these benchmark 
problem instances to analyze the performance of several 
constructive heuristics solutions.  
Some of the artificial intelligence techniques like Genetic 
algorithms have drawn the attention of many researchers in 
parallel computing as they are known to be effective in solving 
such NP-hard problems. Jaewon [15] uses GA in scheduling 
real time tasks in multiprocessor environment. Their objectives 
are to minimize the number of processors required. Wu et al. [2] 
proposed a novel GA that uses an adaptive fitness function that 
gradually increases the difficulty of fitness values until a 
satisfactory solution is found.  Moore [12] applies parallel GA 
to the scheduling problem and compares its accuracy with 
mathematically predicted expected value. More GA approaches 
can be  found in [3,14,17,19]. 
However, most of these algorithms do not efficiently utilize 
processors’ processing power. Moreover, they treat indivisible 
load as a single unit and do not exploit its structural features.  

 
 

3. THE SCHEDULING PROBLEM 
 

The scheduling problem consists of two models which are the 
cluster model, the indivisible load model. The next subsections 
discuss these two models in details. 
  
3.1 The cluster model 
 
In this paper the cluster system consists of a master node 

denoted by 0P  and N processing nodes denoted by 

NPP ,...,1 . All the nodes have the same computational speeds 

and are fully connected by homogeneous communication links. 
One of the processing nodes has special resources; it is denoted 
in this paper by “special processor”. The master node doesn’t 
participate into computation; it is responsible for admission 
only. It takes the decision of rejecting the load or accepting it 
and assigning its jobs to the different processing nodes.  
 
 
3.2 The indivisible load model 
 
In the cluster environment, a set of K real time indivisible loads 
{A1, A2, …, Ak}, compete for the cluster resources. Each 
submitted load is represented by a directed sequential task graph 
of n vertices. Each vertex  “v” represents a real-time job (task), 
where v∈  Aj = {Tj,1, Tj,2, …, Tj,n}. One of these tasks has to 
be allocated over the special processor;  it is denoted by “special 
Task”. Each task  Tj,i of a load Aj is characterized by three 
parameters (Sj,i, PPj,i, Dj,i) where : Sj,i: The task’s start time, 
PPj,i: its required processing power which indicates its 
estimated execution time, and Dj,i: the task’s deadline. A 
weight is associated with each edge of the graph. This weight 
represents the amount of communication delay required for the 
result of a task Tj,i to reach its successor Tj,i+1 if both of them 
are allocated to different processors. The communication delay 
is assumed to be zero for the tasks allocated on the same 
processor.  
It is assumed that loads randomly arrive and are submitted to 
the cluster once they arrive. Moreover, it is assumed that the 
attributes of the load’s tasks are known a priori. The reason for 
such an assumption is to schedule all tasks of the load at once. 
 

4. THE PROPOSED SCHEDULER 
 

The objective of the scheduler in any distributed system is to 
provide the best allocation and execution order of the tasks on 
the system’s processors according to pre-set objectives. The 
proposed scheduler consists of two main components, 
processing power reservation algorithm and the processor 
allocation algorithm.  

The processor allocation algorithm is a heuristic search 
algorithm responsible for distributing the arrived tasks over the 
processing nodes depending on various criteria like decreasing 
the communication cost or balance the load over the cluster, etc. 
So an objective function is suggested to guide the search for the 
best allocation. The allocation algorithm is loaded over the 
master node only. On the other hand, each node in the cluster 
contains its own processing power reservation algorithm that 
manages the execution of the tasks assigned to the node. It 
should maximize the utilization of the available processing 
power of each processor to allow the allocation of as many tasks 
as possible, under the constraints that each task mustn’t violate 
its required deadline.  The next subsections discuss these two 
algorithms and the objective function in details. 

 
4.1. Processing power reservation algorithm 
 
The processing power reservation algorithm in this paper is a 
modified version to rialto operating system that was developed 
by Microsoft research [9]. Rialto system can schedule both real 
time and non-real time independent tasks. In Rialto system, the 
processing power reservations are made by the tasks to ensure 
minimum execution rate that satisfies time constraints. The 
request for reservation is of the form reserve x % processing 
power out of y % available processing power for a certain time 
(task’s deadline). The available processing power of a processor 

ranges from 0 to 100%. According to this approach a task jT  is 

accepted if the processor can provide available processing 

power over jT ’s deadline not less than the required. The 

processor maintains a data structure called a reservation table, 
such that all processing power reservations can be honored 
continuously. Each entry in the table contains the attributes of a 

task which are  ( jPP , jS , jF ), where, jF is the task’s 

finish time, jjj SDF −= . Table (1) shows a snap shot of 

the reservation table of a processor between t  = 115 and t  = 
211.  
 
  

jT  jS  jF  jPP  

1T  115 135 0.2 

2T  124 156 0.1 

3T  143 172 0.3 

4T  167 211 0.4 

 
  
 
 

In the modified approach which is used in this paper, a task  jT  

is accepted if the processor can provide available workload 

Table1: Example for Reservation table  

SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 8 - NUMBER 5 - YEAR 2010 35ISSN: 1690-4524



during jT ’s deadline not less than the required, where the 

required workload jWL for jT  can be calculated by Eq.(1) : 

 

jjj DPPWL ∗=                               ………(1) 

 
A variable processing power is assigned to the allocated task 

jT  to satisfy its deadline instead of rejecting it if its required 

processing power jPP  cannot be guaranteed. Consequently, 

the processor may accept more tasks and produces a higher 
throughput. The details of this approach is presented in [1].  
 
 
4.2. The objective function 
 
Scheduling real-time indivisible load represented as sequential 
task graph requires allocating the tasks to the different 
processors of the cluster subject to the following objectives:  

 1. The task run on a certain processor has to achieve its deadline 
and to efficiently utilize the processor processing power in a 
way that allow  the accommodation of other tasks to 
simultaneously share the same processor.  

 2. Reduce the communication cost by grouping as many tasks 
as possible in one bundle and allocate this bundle to a 
processor.  

 3. Reduce the context switching by trying to allocate the tasks 
to un-heavily loaded processors. 

These objectives may cause conflicting requirements when 
trying to produce optimal schedules. Therefore scheduling 
problem is known to be NP-complete in its general form. The 
suggested multi objectives function consists of three weighted 
added terms denoted fragmentation term, context switching 
term and grouping term. Minimizing this function leads to a 
pareto optimal allocation of the indivisible load’s tasks on the 
processing nodes that satisfies the previous requirements. 
 

nni

nn

nninn

C
G

FGi 12,

2,1

12,2,1

1
, −−

++= γβαψ     ….. (2) 

 
Where: 

Gi nn 2,1
,ψ : Is the objective function when allocating a group 

of tasks starting from 1nT  to 2nT on processor iP . 

γβα ,,  : are constants we set the value of each of them to 1 

nni
F

12, −
: Fragmentation term 

nni
C

12, −
: Context switching term 

nn
G

2,1
   : Grouping term 

 
The fragmentation term represents the best utilization of the 
processor. The task (or group of tasks) is allocated on the 
processor with minimum available workload which is enough to 
accommodate the task/group and satisfy the real time 
requirements.  
 

∑
=

−
=

−

n

nk

TT
F

d
WlWl
k

kreqkiav

nni

2

1

12,

))()((
,  

 

 
The context switching term is measured approximately by the 
number of  active tasks within the course of deadline of the 
task/group. It is normalized by dividing its value by the number 
of active indivisible loads within the task/group’s deadline. 
 

loadseindivisiblactiveofnu

n

nk
deadLinewithintasksactiveofnuavg

C
T k

nni

.

..
2

1

12,

∑
=

=
−

 

 
The grouping term is simply represented by the group size. As 
the group size increases the communication cost reduces, 
assuming equal communication delay between the tasks. 
 

112,
21

+−= nnnnG  

 
The three terms are normalized such that the maximum value of 
each of the three terms equal to the maximum number of tasks 
in any indivisible load. 
 
 
4.3. The allocation algorithm 
 
The proposed heuristic allocation algorithm proceeds as 
follows: 

1. Calculate the required work load spWL  for the special task 

spT   using Eq. (1) 

 
2. The allocation algorithm provokes the processing power 

reservation algorithm of the special node spP  to get the 

available workload ispWL , on this node during the course of 

spT ’s deadline.  

 

3. If  ispWL , < spWL  the special task cannot be allocated on 

the special processor and consequently the whole load is 
rejected  
  else the allocation algorithm proceeds to check the acceptance 
of the load.  
 

4. Calculate the required work load jWL  for each task jT   

(excluding spT  ) of the indivisible load using Eq. (1) 

 
5. The allocation algorithm provokes the processing power 
reservation algorithm of all the nodes such that each node 
provides its reservation table to the allocation algorithm. 
Consequently, the available workload over each processor 

during the course of the deadline of each task jT  can be 

determined. 
 
6. The algorithm checks the acceptance of each task 

(excluding spT ) of the load on each processor to determine for 

each task the candidate set of processors that can accept this 

task jζ . A processor Pi  is considered candidate for task jT  

if it has available workload enough to execute that task within 
its required deadline.   

36 SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 8 - NUMBER 5 - YEAR 2010 ISSN: 1690-4524



    i.e. Pi jζ∈     if     iavWL , ≥  jWL  

 
Since the tasks are represented by a sequential task graph, 
allocating a task on a processor will not affect the acceptance of 
other tasks as they reserve different time slots. If each task of 
the indivisible load has a nonempty available processor set 

(i.e. φζ ≠j ), then the indivisible load is accepted. Otherwise 

it is rejected. If the indivisible load is accepted, the allocation 
algorithm starts looking for the best allocation of the tasks over 
the processing nodes that minimizes the objective function. 
 
7. The heuristic algorithm starts with the first task in the 

indivisible load iA  and considers groups of sizes (l=1, 

2,…, in ) where in  is the number of sequential tasks of the load 

iA . For each group ( 1,1G , 2,1G , …,
in

G ,1 ) the algorithm 

finds the set of candidate processors to which the group can be 

assigned G L,1

ζ . This set is the intersection of the available 

processor sets of the tasks constituting the group. Note that:   
a) If one of the sets is empty this means that we can’t 

group these tasks into one bundle and assign this bundle to a 
single processor. 

i.e. if  φζ =G L,1

  this grouping is not feasible. 

 
  b) For any group includes the special task its set of 
candidate processors includes only the special processor. 
 

8.  For each group LG ,1 the algorithm computes the value of the 

objective function Gi L,1
,ψ when assigning this group to each 

candidate processor Pi  G L,1

ζ∈  using Eq.(2). The algorithm 

considers the processor which results in minimum objective 
function to be the only candidate for this group. Among all 

possible groups ( 1,1G , 2,1G , …,
in

G ,1 )  the algorithm picks up 

the group with the minimum value of the objective function on 
its candidate processor. This group and its processor constitute 
part of the required scheduling scheme. For example if the 

algorithm picked up 3,1G and its candidate processor is 5P  , 

this means that the algorithm will assign },,{ 321 TTT to 5P .  

 
9. The allocation algorithm repeats steps 7&8 considering 

groups that start at task 4T with sizes (l=1, 2, …, in -4+1). 

Next, the algorithm proceeds until all the tasks of the indivisible 
loads are allocated on the cluster processors.  
 
The computational complexity of this allocation algorithm is 

)*( 2
inKNO ∗ , where, in the number of tasks of the 

indivisible load, N is  the number of processing nodes, and K is 
the number of indivisible loads. 
 
Algorithm 1: summarizes the steps of the allocation algorithm 
 
 
 
 
 

 
 
Algorithm 1:  indivisible load allocation algorithm 
 
Input: a set of randomly arrived indivisible loads, one of the 
tasks of each load is a special task 
 
Output: Scheduling scheme, acceptance rate 
 
 acceptance_counter = 0 
 
 While (the loads arrival queue is not empty)  
  begin 

           Pick up a load  iA  

          // Check the acceptance of the special task spT  on the 

special node  spP  

           If spavWL , < spWL ,  spT  is rejected & iA  is rejected  

          Else { 

             // check the acceptance of iA            

              For each task jT  , where  j = {1,2,…. in } 

 Check the acceptance of  jT  on all processors and  

  determine its available processor set jζ  

                     if φζ ≠j  ∀  j=  {1,2,… in } then   

                                                                     iA is  accepted 

                     }  

               If ( iA  is accepted) 

Increment acceptance_counter 
S = 1 

              While (S < in ) { 

Form all possible groups of tasks that start with task  

ST  and ends with task LT , where L= {S, S+1,…. 

in }  

               Find the candidate processors G LS ,

ζ for each lSG ,  

lSSG LS

ζζζζ ∩∩∩= + .....1
,

 

Compute Gi LS ,
,ψ for each group LSG ,  on each 

candidate processor Pi  G LS ,

ζ∈  

    
Pick up the group with the minimum objective 

function kSG , ,  S≤k ≤L 

Add this group and its assigned processor to the 
scheduling scheme 
 

S=S+ size of  kSG ,  

} 
        Allocate the groups on the assigned processors   
End 

 
 
 
 

SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 8 - NUMBER 5 - YEAR 2010 37ISSN: 1690-4524



5. ILLUSTRATION EXAMPLE 
 

This example shows how our algorithm is used to schedule an 
indivisible load consists of a set of 5 sequential jobs. Assume 

that the indivisible load attributes is given by Table 2 and 4T  is 
the special task. Assume that the cluster have eight processors 

0P … 7P ; where, 0P is the master and is not included in the 

scheduling. Assume 5P  is the special processor. The values of 

the available workloads on the processors over the course of 
tasks’ deadlines are assumed for illustration purpose only and 
are given in Table 3.  
 
 

  S F D PP WL 

T1 100 150 50 0.7 35 
T2 150 270 120 0.5 60 
T3 270 350 80 0.3 24 
T4 350 410 60 0.4 24 
T5 410 500 90 0.6 54 

 
Table 2: Attributes of the tasks of the indivisible load 

 
 

Ava. 
WL 

T1 T2 T3 T4 T5 

P1 40 55 35 30 24 
P2 25 15 22 44 28 
P3 60 73 46 17 33 
P4 55 40 53 29 57 
P5 70 120 33 27 60 
P6 23 100 12 19 65 
P7 45 37 10 18 32 

 
Table 3: Available workload on the Processors of the cluster 

over the course of deadline of each task 
 
 

  T1 T2 T3 T4 T5 

P1 ●  ●    
P2       
P3 ● ● ●    
P4 ●  ●  ● 
P5 ● ● ● ● ● 
P6  ●   ● 
P7 ●         

 
Table 4: Available processor set for each task 

 
 
In Table 4, we determined the available processor set for each 
task by comparing its required workload (Table 2) to the 
available workload on each processor (Table 3) during the 
course of its deadline. Table 5, lists all groups that start at task 
T1 and determines the candidate processor list of each group 
using the intersection of the available processor sets (Table 4) 
of the tasks constituting this group, taking into consideration 

that any group includes the special task 4T  has to be scheduled 

over the special processor 5P . In Table 6, we computed the 

values of the objective function for all possible groups on their 
candidate processor. As can be seen in the table, the minimum 
value of the objective function is achieved when we assign G1,3   

( 1T , 2T , 3T  ) to P3. 

 
 

  G1,1 G1,2 G1,3 G1,4 G1,5 

P1 ●      

P2       

P3 ● ● ●    

P4 ●      

P5 ● ● ● ●  ● 

P6       

P7 ●         

 
Table 5: Candidate processors for each group starts at T1 

 

 

 

Obj. 
fn  

G1,1 G1,2 G1,3 G1,4 G1,5 

P1 41.67      
P2       

P3 120 152.11 30.31    
P4 70.86      
P5 85.93 128.97 46.23 67.78  80.2 
P6       
P7 41.67         

 
Table 6: Values of objective functions when assigning  the  

groups to their  candidate processors 
 

 
Scheduler proceeds to allocate the tasks starting from the task 
number T4. We don’t need to determine the candidate 
processors for the groups starting from T4 because any group 
has to be assigned to p5 so we compute the objective function 
of the possible groups starting from T4 that can be assigned to 
p5 as shown in table 7. The results shown in the table suggests 
that, G4,5 should be assigned to P5.  
 
 

 
 Obj. fn G4,4 G4,5 

P1    
P2    

P3    
P4   
P5 65.45 28.25 
P6    
P7     

 
Table 7: Values of objective functions when assigning the 

groups start at the special task T4 on the special processor 5P  

 
 

38 SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 8 - NUMBER 5 - YEAR 2010 ISSN: 1690-4524



The scheduling solution (in Tables 6 and 7) decides that (T1, T2, 
T3) should be assigned to P3 and the special task T4 and task T5  
should be assigned to the special processor P5 as shown in 
figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 

 
6. CONCLUSIONS 

 
The paper has introduced a heuristic algorithm to   schedule real 
time indivisible loads represented as sequential task graphs on a 
cluster computing.  One of the processing nodes has special 
resources that may be needed by one of the jobs of each load. 
The objectives of our scheduler are to achieve loads deadlines, 
decrease overheads by decreasing both of the communication 
cost and context switching, and increase the system's 
throughput. Simulation experiments have been conducted to test 
the performance of the proposed algorithm compared to single 
unit scheduling strategy and it is found that the proposed 
strategy is superior to the single unit scheduling strategy in 
terms of the acceptance rate. These results are not included here 
due to paper limitations.  
Currently, another set of simulation experiments are being 
conducted considering some variations in both of the cluster and 
load models. Assuming that more than one node in the cluster 
have different special resources, which may be needed by more 
than one task in the load. Moreover, a cluster with 
heterogeneous processing power nodes and unlimited 
connectivity will be considered. 
 

 
REFERENCES 

 
[1] A. hamdy, A. Hussien and R. Amar, “An efficient workload 
allocation to improve scheduling real-time tasks”, ”, IEEE 
Symposium on Computers and Communications ISCC 06,   
Pula-Cagliari, Sardinia, Italy June 2006. 
[2] A. Wu, H. Yu, S.  Jin, K. Lin, G. Schiavone , “An 
incremental genetic algorithm approach to multiprocessor 
scheduling”, IEEE Trans Parallel Distrib Syst 15(9):824–834, 
2004. 
[3] A. Auyeung , I Gondra , H Dai , “Evolutionary computing 
and optimization: Multi-heuristic list scheduling genetic 
algorithm for task scheduling”, Proceedings of the ACM 
symposium on applied computing, pp 721–724, 2003. 
[4] D. Liong, J. Deogun, S. Goddard, “Feedback scheduling of 
real-time divisible loads in clusters”, special issue on the 14th 
IEEE real-time and embedded technology and indivisible loads 
symposium (RTAS’08), july  2008. 
[5] D. Yu, T. G. Robertazzi, “Divisible load scheduling for grid 
computing”, in PDCS’2003, 15th Int’l Conf. Parallel and 
Distributed Computing and Systems, 2003. 
[6] H. El-Rewini and M. Abd-El-Barr, Advanced Computer 
Architecture and Parallel Processing, John Wiley and Sons, 
2005. 
[7] H. Topcuoglu, S. Hariri, and M.Y. Wu, “Performance 
effective and low complexity task scheduling for heterogeneous 

computing”, IEEE transactions on parallel and distributed 
systems, vol. 13, pp.260-74, 2002. 
 [8] K. Li and Y. Pan, “Probabilistic analysis of scheduling 
precedence constrained parallel tasks on multi computers with 
contiguous processor allocation”, IEEE transactions on 
computers, vol.49, pp.1021-30, 2000. 
[9] M. B. Jones, J. Regehr, and S. Saroiu, “Two Case Studies in 
Predictable application Scheduling Using Rialto/NT”, In 
Proceedings of the 7th Real-Time Technology and Indivisible 
loads Symposium (RTAS 2001), Taipei, Taiwan, May 30-June 
1, 2001. 
[10] M. J. Oudshoornand, H. Lin, “Evolving toward an optimal 
scheduling solution through adaptive” Journal of parallel and 
distributed computing, vol.62, issue,7, pp.1203-1222, july 2002. 
[11] M. Albert,  Real-Time Systems : Scheduling, Analysis, and 
Verification. Wiley-Interscience, August 2002.  
[12] M. Moore, “An accurate parallel genetic algorithm to 
schedule tasks on a cluster”, Parallel Computing 30:567–583, 
2004. 
[13] N. R. Satish , K. Ravindran, K. Keutzer , “Scheduling task 
dependence graphs with variable task execution times onto 
heterogeneous multiprocessors”, Proceedings of the 7th ACM 
international conference on Embedded software table of 
contents Atlanta, GA, USA , 2008. 
[14] O. Ceyda , M. Ercan,  “A genetic algorithm for multilayer 
multiprocessor task scheduling”, In: TENCON 2004, IEEE 
region 10 conference, vol 2, pp 68–170, 2004. 
[15] Oh. Jaewon and Wu. Chisu, “Genetic algorithm based real 
time task scheduling with multiple goals”, Journal of systems 
and software, vol. 71, issue 3, pp. 245-258, 2004. 
[16] R. Ammar, A. Alhamdan, and A. El-Dessouky, “Real-
Time scheduling of tandem tasks preceding graphs on grid 
computing”,  In IEEE ISSPIT, Cairo, Egypt, 2001. 
[17] S. Cheng , Y. Huang , “Scheduling multi-processor tasks 
with resource and timing constraints using genetic algorithm”,  
In 2003 IEEE international symposium on computational 
intelligence in robotics and automation, vol 2, pp 624–
629,2003. 
[18] S.K. Baruah and J. Goossens, “Rate-monotonic scheduling 
on uniform multiprocessors”, IEEE transactions on computers, 
vol.52, pp.966-70, 2003. 
[19] S. T. Cheng and S.-I Hwang, “Optimal real-time 
scheduling with minimal rejections and minimal finishing 
time”, Real-Time systems, vol. 20, pp. 229-53, 2001. 
 [20] S.  Jin, G.  Schiavone, D. Turgut, “A performance study of 
multiprocessor task scheduling algorithms”, The Journal of 
Supercomputing , Volume 43 ,  Issue 1 ,January 2008. 
[21]T. Davidović , T. G. Crainic, “Benchmark-problem 
instances for static scheduling of task graphs with 
communication delays on homogeneous multiprocessor 
systems”, Computers and Operations Research, v.33 n.8, 
p.2155-2177, August 2006.  
[22]W. Yao , J. You , B. Li ,  “Main sequences genetic 
scheduling for multiprocessor systems using task duplication”, 
Microprocess Microsyst 28:85–94, 2004. 
 

P3 P5 

T1 T2 T3 T4 T5 

Figure 1: Feasible solution 

SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 8 - NUMBER 5 - YEAR 2010 39ISSN: 1690-4524

http://portal.acm.org/author_page.cfm?id=81100374556&coll=GUIDE&dl=GUIDE&trk=0&CFID=21289225&CFTOKEN=48014849
http://portal.acm.org/author_page.cfm?id=81100369272&coll=GUIDE&dl=GUIDE&trk=0&CFID=21289225&CFTOKEN=48014849
http://portal.acm.org/author_page.cfm?id=81100164705&coll=GUIDE&dl=GUIDE&trk=0&CFID=21289225&CFTOKEN=48014849
http://portal.acm.org/toc.cfm?id=1450058&type=proceeding&coll=GUIDE&dl=GUIDE&CFID=21289225&CFTOKEN=48014849
http://portal.acm.org/toc.cfm?id=1450058&type=proceeding&coll=GUIDE&dl=GUIDE&CFID=21289225&CFTOKEN=48014849
http://portal.acm.org/citation.cfm?id=1139284&dl=GUIDE&coll=GUIDE&CFID=21289225&CFTOKEN=48014849
http://portal.acm.org/citation.cfm?id=1139284&dl=GUIDE&coll=GUIDE&CFID=21289225&CFTOKEN=48014849
http://portal.acm.org/citation.cfm?id=1139284&dl=GUIDE&coll=GUIDE&CFID=21289225&CFTOKEN=48014849
http://portal.acm.org/citation.cfm?id=1139284&dl=GUIDE&coll=GUIDE&CFID=21289225&CFTOKEN=48014849
http://portal.acm.org/citation.cfm?id=1139284&dl=GUIDE&coll=GUIDE&CFID=21289225&CFTOKEN=48014849

	XI429GG

