

SIGMATA: Storage Integrity Guaranteeing Mechanism

against Tampering Attempts for Video Event Data Recorders

Hyuckmin Kwon, Seulbae Kim, Heejo Lee

Department of Computer Science and Engineering, Korea University

Seoul, Republic of Korea

ABSTRACT

The usage and market size of video event data recorders

(VEDRs), also known as car black boxes, are rapidly increasing.

Since VEDRs can provide more visual information about car

accident situations than any other device that is currently used for

accident investigations (e.g., closed-circuit television), the

integrity of the VEDR contents is important to any meaningful

investigation. Researchers have focused on the file system

integrity or photographic approaches to integrity verification.

However, unlike other general data, the video data in VEDRs

exhibit a unique I/O behavior in that the videos are stored

chronologically. In addition, the owners of VEDRs can

manipulate unfavorable scenes after accidents to conceal their

recorded behavior. Since prior arts do not consider the time

relationship between the frames and fail to discover frame-wise

forgery, a more detailed integrity assurance is required. In this

paper, we focus on the development of a frame-wise forgery

detection mechanism that resolves the limitations of previous

mechanisms. We introduce SIGMATA, a novel storage integrity

guaranteeing mechanism against tampering attempts for VEDRs.

We describe its operation, demonstrate its effectiveness for

detecting possible frame-wise forgery, and compare it with

existing mechanisms. The result shows that the existing

mechanisms fail to detect any frame-wise forgery, while our

mechanism thoroughly detects every frame-wise forgery. We

also evaluate its computational overhead using real VEDR videos.

The results show that SIGMATA indeed discovers frame-wise

forgery attacks effectively and efficiently, with the encoding

overhead less than 1.5 milliseconds per frame.

Keywords: VEDR, Car Black Box, Storage Integrity,

Chronological I/O, and Forgery Detection.

1. INTRODUCTION

Currently, the sales and market scale of video event data

recorders (VEDRs) are steadily increasing [1]. VEDRs, also

known as car black boxes, are devices that are installed in a

vehicle to record the view through the windshield of the vehicle

while it is being driven (some models continue to record while

the vehicle is parked). They also save the recorded video stream

to storage as a file. Since a VEDR records the view in front of the

vehicle, the video data constitute the most important evidence in

the investigation of an accident. Therefore, a method of detecting

any tampering with the stored data in the VEDR is essential to

the integrity of any investigation.

Since VEDRs incorporate storage for the video files, their

integrity has to be treated specially. Most frequently, adversaries

try to interfere with the video frames. One may insert, delete,

replace, or reorder one or more frames in the original video file

in order to fabricate evidence of crimes. Thus, we introduce a

concept of “frame-wise integrity” in this paper, which indicates

the preservation of the existence, time information, and

chronological relationship of all the recorded frames. Studies

have been conducted on file system integrity or integrity

assurance in general, but studies in which the frame-wise

integrity is considered do not exist. Thus, a study that attempts to

address frame-wise forgery detection and covers the intra- and

inter-file chronological relationship is required.

Our mechanism, SIGMATA, that is, “Storage Integrity

Guaranteeing Mechanism against Tampering Attempts,” is a

robust video forgery detection mechanism that ensures frame-

wise integrity against forgery attempts. To detect any frame-wise

tampering flawlessly, an information about the chronological

order of original frames needs to be securely maintained. Thus,

SIGMATA processes each frame and stores the resulting

sequence of integrity assurance values (IAVs), which are

subsequently used for verifying integrity. During the process,

each frame’s byte-sequence is augmented by the size of previous

frame, and hashed after appending different salts. The salts are

generated by applying another hash function to the elements of

one-way hash chain, which renders our mechanism resistant to

successive exposure of salts. If an adversary tampers with one or

multiple frames, SIGMATA produces a different sequence of

IAVs. It can detect forgery by comparing the current sequences

with the stored IAV sequence. If a salt is discovered, the exposure

and resulting damage does not propagate to other frames. A

detailed explanation of the system architecture and principles is

provided in Section 4.

We evaluated the effectiveness of SIGMATA based on possible

frame-wise forgery attack scenarios, which consisted of insertion,

deletion, replacement, and reordering attacks. Moreover, we

validated that it is nearly impossible for an adversary to bypass

our mechanism even if s/he has full knowledge of the internal

principle and operation. In addition, through feature comparison

with existing mechanisms that handle file system integrity, we

validated that only our mechanism can reveal the frame-wise

forgery, thus being the best fit for integrity in the VEDR

environment. Furthermore, through performance evaluation

using real videos from VEDR, we validated the efficiency of

SIGMATA with which the encoding time for videos were

incremented by average 1.26% per frame.

The contributions of this paper include:

 A concept of frame-wise integrity that is specific to the

VEDR file system is proposed for the first time.

 The design of a thorough integrity assurance mechanism for

VEDR storage against frame-wise tampering of video files

is described.

 The efficacy of the mechanism is validated by comparing it

with that of earlier mechanisms that handle only file-level

integrity assurance in various attack-suppression scenarios.

42 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 2 - YEAR 2016 ISSN: 1690-4524

The remainder of this paper is organized as follows. In Section 2,

related works that have examined data integrity thus far are

presented. In Section 3, we define the problems that lie in prior

studies, which we address in this study. In Section 4, we propose

and explain in detail the mechanism, SIGMATA. In Section 5,

we evaluate the efficacy of SIGMATA by using security analysis

and its efficiency by using running examples. In Section 6, the

issues of the mechanism are discussed. In Section 7, the

conclusion is presented.

2. RELATED WORK

In this section, we address prior arts that address data integrity.

File System-based Approach

Tripwire [2] is a file system integrity checker designed to help

UNIX system administrators and users to monitor a designated

set of files and directories to discover any changes. It builds up a

database, the entries of which contain the filename, inode

attributes, and signature information of selected files. When it is

called to check integrity, it generates a new database of selected

files and compares this with the baseline database to determine

changes in the files, which are then reported. This approach

provides a good guideline for file system integrity checking. I3FS

[3] is an in-kernel integrity checker and integrity detection file

system. It detects unauthorized modifications of files by using

cryptographic checksums. L. Catuognol et al. suggested a

versioning file system [4]. Although the mechanisms presented

in [2-4] are widely used for inspecting integrity, they can

determine only whether the file has been changed or not, and

neglect the detection of inter-frame forgery, such as frame

insertion and replacement, which are specific to VEDR. Cao et

al. suggested a method for hashing the files in the storage and

sending the hashed data to a remote server to check the integrity

through hash value comparison [5]. This approach is not

applicable for common VEDRs that do not hold network modules.

Lee et al. proposed a scheme which exploits residual data in

unused slack space of a storage [6].

Photographic Approach

Researchers have investigated many different photographic

approaches for detecting a forgery in a single video file.

Shanableh suggested an approach that uses machine learning for

application in a method for detecting frame deletion [7].

Kancherla et al. presented a forgery detection method for video

that uses Markov models [8]. To improve the performance, they

applied the Markov models for residual motion, as obtained from

the base frame of the video. Dong et al. proposed a mechanism

for detecting frame-based video tampering by using a motion-

compensated edge artifact (MCEA), derived from double-MPEG

compression [9]. Hyun et al. proposed a mechanism to detect

arbitrary cropping and partial manipulation by an attacker by

using the extracted sensor pattern noise (SPN), which is unique

to each surveillance camera [10]. F. Arab et al. suggested a

watermarking technique specific to the AVI formatted videos

[11]. These approaches can all detect tampering with a video

stream within a file, but are not capable of assessing integrity

regarding the inter-file relationship.

3. ASSUMPTION AND PROBLEM DEFINITION

In this section, we define the assumptions and the problems

addressed in this paper.

Assumption

Unlike general computing devices and environments, a VEDR

has a restricted operating environment and allows user access to

the physical device. Thus, we need to define the following

assumptions in order to design an integrity assurance mechanism

for the VEDR environment.

 Chronological File I/O. The video files of a VEDR are

created and stored in chronological sequence. When the

available storage is exhausted, the least recently recorded

files are deleted first.

 Isolated Device. We assume the VEDRs do not support any

networking features. This means that a remote server that

the users cannot reach to verify integrity cannot be utilized.

 Open Access. The entire body of the VEDR is in the hands

of the users who are simultaneously the adversaries. This

means that we grant the adversaries full access to our

underlying technique.

Problem: Detecting Frame-wise Forgery in a VEDR file

Frame-wise forgery refers to the action of modifying the byte-

sequence of video frames or reordering their temporal sequence.

There are four types of such forgery: insertion, deletion,

replacement, and reordering of frames. The goal of our research

is to resolve the problem above, as it critically affects the

investigation of video evidence.

4. PROPOSED MECHANISM

In this section, we describe the architecture and operation of

SIGMATA, that is, “Storage Integrity Guaranteeing Mechanism

against Tampering Attempts”, in detail. To detect frame-wise

forgery without network connection, we need a part which is in

charge of storing the chronological order of frames during the

recording of video, which can constitute up to 24 hours a day.

The part is called IAV Generator, and is implemented in the

recorder. However, the integrity examination occurs sporadically

when it is required, e.g., for the investigation of a car accident.

Thus, the other part, Integrity Checker, exists independently with

the VEDR, and takes advantage of the formerly generated values

for such an occasion.

Figure 1. Overall architecture of SIGMATA

Architecture

Figure 1 illustrates the overall architecture of SIGMATA. The

assurance value generation part corresponds to the IAV

Generator, which transforms the recorded video stream into a

sequence of IAVs and saves it in the storage. The integrity

verification part corresponds to the Integrity Checker, which

performs the actual integrity examination by comparing

regenerated IAVs with stored IAVs.

IAV Generator

The IAV Generator produces IAVs from the recorded video

stream, and saves the values to storage. It performs the generation

while the VEDR is recording the video. The IAV Generator is

further broken down into three steps: frame preprocessing, salted

hashing, and storage of the computed integrity assurance values.

Figure 2(a) describes the IAV Generator and Figure 2(b) shows

it pseudocode.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 2 - YEAR 2016 43

Figure 2(a). Structure of IAV Generator

Figure 2(b). Pseudocode of IAV Generator

In the initial step, frame preprocessing, the IAV Generator

receives a video frame (𝑓𝑟𝑖) from the VEDR and adds the size of

the previous frame (𝑓𝑟𝑖−1). We call the resulting value an

“augmented frame,” such that the 𝑖-th augmented frame is (𝑓𝑟𝑖 +
sizeof(𝑓𝑟𝑖−1)).

In the salted hashing step, the IAV Generator first creates a salt,

which is appended to the augmented frame, using multiple-key

distribution inspired by TESLA [12]. TESLA, a broadcast

authentication protocol, generates a chain of keys by repeatedly

applying a one-way hash function and reveals the values in the

opposite order. Likewise, the Generator generates a one-way

hash chain of length n (𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑛) by repeatedly applying

hash function ℎ1(𝑥) to the elements so that the nth element of the

chain is a hash of the (n - 1)th element, i.e., 𝑐𝑛 = ℎ1(𝑐𝑛−1). The

first element of the chain is securely stored in a storage that an

attacker cannot access, e.g., Trusted Platform Module (TPM)

[13]. The length n is set to be a sufficient length.

To utilize the chain elements as salts, we apply another hash

function ℎ2(𝑥) to each element. When hashing the frames, the

corresponding salt is generated immediately, so that the first

frame (𝑓𝑟1) is encrypted by salt ℎ2(𝑐𝑛), the next frame (𝑓𝑟2) by

salt ℎ2(𝑐𝑛−1), and so forth. This “double-sided lock” prevents

the adversary from obtaining the rest of the hash chain even when

s/he acquires one salt by chance. To elaborate on this, although

the chain-generating hash function ℎ1(𝑥) is exposed to the

adversary who identified one of the elements (let us say, 𝑐𝑖) in

the hash chain, s/he is not able to generate the prior element (𝑐𝑖−1)

because of the irreversibility of the hash function. Moreover,

even if an attacker obtains a salt ℎ2(𝑐𝑖) , of which there is little

likelihood, s/he cannot easily determine also the salt for the

previous frame ℎ2(𝑐𝑖+1) or the subsequent frame ℎ2(𝑐𝑖−1), since

doubly hashed values are not correlated.

As a result of the hashing, each video frame is transformed into

an IAV. Finally, in the final phase, the storing step, the

consecutive IAVs of the frames are saved in the video storage.

Figure 3. Pseudocode of Integrity Checker

Integrity Checker

The Integrity Checker performs a comparison of IAV sequences

to verify the integrity of the frames on the occasion of an

investigation.

When it is called, the Integrity Checker regenerates a sequence

of IAVs by processing the video data submitted for investigation

through the IAV Generator. Then, it examines the integrity by

comparing the new sequence with the baseline sequence that was

originally generated and stored. If one of the frames is fabricated,

the corresponding IAV value is also changed so that the IAV

Checker is able to discover the forgery. Figure 3 is the

pseudocode of the IAV Checker.

5. EVALUATION

In this section, we provide several attack-suppression scenarios

of frame-wise fabrication to show the effectiveness of our

mechanism, and a security analysis, which addresses the

possibility that an adversary can bypass our mechanism when

s/he is fully conscious of it. We also present a feature comparison

of our mechanism with general mechanisms for file system

integrity or secure file systems. Moreover, we evaluate its

performance by comparing processing time with or without

SIGMATA in the Raspberry Pi 2 environment.

Frame-wise Forgery Detection

Figure 4. Intact state

44 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 2 - YEAR 2016 ISSN: 1690-4524

Let us assume that the original video consists of six frames, 𝑓𝑟1

to 𝑓𝑟6. The IAV Generator creates a baseline IAV sequence, i.e.,

𝑆𝑒𝑡 𝐵 = {𝐼𝐴𝑉1, 𝐼𝐴𝑉2, 𝐼𝐴𝑉3, 𝐼𝐴𝑉4, 𝐼𝐴𝑉5, 𝐼𝐴𝑉6}. If the video is in

an intact state, as illustrated in Figure 4, the Integrity Checker

obtains the same sequence of IAVs and reports no forgery.

The following subsections describe the rationale behind the

detection of each frame-wise attack.

Insertion Attack: As shown in Figure 5(a), a frame

(𝑓𝑟𝑥) is inserted between the second and the third frame. The

resulting IAV sequence is 𝑆𝑒𝑡 𝐼 = {𝐼𝐴𝑉1 , 𝐼𝐴𝑉2 , 𝐼𝐴𝑉𝑥 , 𝐼𝐴𝑉′3 ,

𝐼𝐴𝑉4, 𝐼𝐴𝑉5, 𝐼𝐴𝑉6}. By comparing 𝑆𝑒𝑡 𝐼 with 𝑆𝑒𝑡 𝐵, the Checker

finds that 𝐼𝐴𝑉𝑥, a previously unseen value, is inserted and 𝐼𝐴𝑉3

is missing in 𝑆𝑒𝑡 𝐼. Although 𝑓𝑟3 is not modified, we can observe

that 𝐼𝐴𝑉3 is changed to 𝐼𝐴𝑉′3, since the size of 𝑓𝑟𝑥 is added to

𝑓𝑟3 before hashing. Then, it concludes that an insertion attack has

been perpetrated in between 𝑓𝑟2 and 𝑓𝑟3.

Deletion Attack: As shown in Figure 5(b), 𝑓𝑟3 is

deleted from the video. The resulting IAV sequence is 𝑆𝑒𝑡 𝐷 =

{𝐼𝐴𝑉1 , 𝐼𝐴𝑉2 , 𝐼𝐴𝑉′4 , 𝐼𝐴𝑉5 , 𝐼𝐴𝑉6 }. By comparing 𝑆𝑒𝑡 𝐷 with

𝑆𝑒𝑡 𝐵, the Checker finds that 𝐼𝐴𝑉3 is missing in 𝑆𝑒𝑡 𝐷. Although

𝑓𝑟4 is not modified, we can observe that 𝐼𝐴𝑉4 is changed to

𝐼𝐴𝑉′4, since the size of 𝑓𝑟2 is added to 𝑓𝑟4 before hashing. Then,

the Checker concludes that a deletion attack has been perpetrated

in between 𝑓𝑟2 and 𝑓𝑟4, and that the deleted frame is 𝑓𝑟3.

Replacement Attack: As shown in Figure 5(c), 𝑓𝑟3 is

replaced with 𝑓𝑟𝑥 . The resulting IAV sequence is 𝑆𝑒𝑡 𝑅𝑃 =

{𝐼𝐴𝑉1, 𝐼𝐴𝑉2, 𝐼𝐴𝑉𝑥 , 𝐼𝐴𝑉′4, 𝐼𝐴𝑉5, 𝐼𝐴𝑉6}. By comparing 𝑆𝑒𝑡 𝑅𝑃

with 𝑆𝑒𝑡 𝐵, the Checker finds that 𝐼𝐴𝑉3 and 𝐼𝐴𝑉4 are missing,

and that the values match from 𝐼𝐴𝑉5 to the end. Then, it

concludes that a replacement attack has been perpetrated in

between 𝑓𝑟2 and 𝑓𝑟4 . If 𝑓𝑟4 is also modified, 𝐼𝐴𝑉5 should be

changed, too.

Reordering Attack: As shown in Figure 5(d), the

order of frames is changed. 𝑓𝑟4 precedes 𝑓𝑟3 , and then, 𝑓𝑟5

follows. The resulting IAV sequence is 𝑆𝑒𝑡 𝑅𝑂 = {𝐼𝐴𝑉1, 𝐼𝐴𝑉2,

𝐼𝐴𝑉′4 , 𝐼𝐴𝑉′3 , 𝐼𝐴𝑉′5 , 𝐼𝐴𝑉6}. The Checker finds that there is a

forgery in between 𝑓𝑟3 and 𝑓𝑟4. The discovery of a reordering

attack requires a supplementary inspection to distinguish it from

a replacement attack. The Checker uses the fact that 𝐼𝐴𝑉′5 is

generated from hashing one of the frames in the forged section

and adding the size of another frame in the same section, if it is a

replacement attack. In the former example, it checks whether the

hash of (𝑓𝑟3 + sizeof(𝑓𝑟4)) is equal to 𝐼𝐴𝑉′5. If so, the attack is

identified as a reordering attack that swapped 𝑓𝑟3 and 𝑓𝑟4. If not,

the attack is a replacement attack that replaced 𝑓𝑟3 and 𝑓𝑟4 with

other arbitrary frames, respectively.

Security Analysis

Here, we analyze the security of our mechanism, assuming the

adversary has a thorough knowledge of the mechanism. Integrity

assurance mechanism, the core of which consists of salted

hashing, can be threatened by hash collision since an adversary

can neutralize the Checker by deliberately taking advantage of a

hash collision to generate the same IAV as the baseline. We

logically assess the validity and likelihood of such attack.

Figure 5(a). Insertion Attack

Figure 5(b). Deletion attack

Figure 5(c). Replacement attack

Figure 5(d). Reordering attack

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 2 - YEAR 2016 45

Table 1. Feature Comparison with Other Mechanisms

 Generation of Fake IAV: Let us assume the adversary

attempts to attack the frame hashing step of the IAV Generator.

If s/he determines the byte-stream that causes a hash collision

with the original frame, s/he can generate an identical IAV as the

baseline. In this case, s/he must satisfy the following three

constraints. First, s/he must find a value that causes a hash

collision. In addition, the forged frame must be of the same size

as the original frame in order not to corrupt the next IAV.

Furthermore, the frame that the value represents must be visually

valid. However, the intersection of the value set that leads to a

hash collision, the value set the length of which is the same as the

original frame, and the set that produces a visually complete

video frame has not thus far been reported. Thus, we claim that

such an attack is impractical.

Feature Comparison

Table 1 shows a comparison of the features.

Frame-wise Tampering: SIGMATA detects every

frame-wise tampering attack: insertion, deletion, replacement

and reordering. Other mechanisms, i.e., NCryptFS, ICAR, and

Cao et al.’s, address only file integrity, and thus, fail to discover

specific frame forgery. They also cannot reveal the time and

order information of the frames.

 Data Recovery and Storage Reusability: SIGMATA,

NCryptFS, and Cao et al.’s mechanisms do not provide a data

recovery feature. ICAR is able to recover the corrupted data,

because a copy of the original data is made at a read-only device.

Consequentially, ICAR’s storage is not reusable.

 Network Connection: SIGMATA, NCryptFS, and

ICAR can operate without network connection. However, Cao et

al.’s mechanism requires network connection.

 Implementation Layer: The implementation of

SIGMATA is simpler than that of the other mechanisms, since it

does not require kernel-level modification.

Performance

To evaluate the performance of SIGMATA, we compared the

encoding time of a raw video stream without SIGMATA with

that with SIGMATA. We used three raw video streams recorded

by a VEDR (with the H.264 Codec) at a resolution of 1280 720

pixels and 30 fps. The videos were 60 seconds, 120 seconds, and

180 seconds long, respectively. MD5, RIPEMD-128 and SHA-1

hash functions were used for ℎ1, ℎ2, ℎ3, respectively.

Assuming a VEDR as a low-end computing machine, we

conducted the experiment in Raspberry Pi 2, which has a 900

MHz quad-core ARM Cortex-A7 CPU, 1 GB RAM, and a Micro

SD slot, powered by a 5 V micro USB port.

A video file, which recorded the view ahead of a vehicle when it

was being driven along a highway, was taken from a VEDR’s

storage and sliced into three pieces that differ in length. Each

piece is named Video 1, Video 2, and Video 3. Figure 6 shows a

frame of Video 1, which portrays the driving environment.

Figure 6. A frame of recorded video taken from a VEDR

First, we decoded the videos to get the raw video stream in YUV

format. Thereafter, we encoded each raw video twice, once by

the unmodified FFmpeg [16], and once by the modified FFmpeg

in which SIGMATA was implemented. We used 30 fps, 4:2:0

subsampling, and ultrafast preset of FFmpeg for encoding.

Table 2. Time Comparison for Videos of Various Lengths

Video Video 1 Video 2 Video 3

No.

of frames
1,800 3,600 5,400

Frames

per second
30 30 30

Length (sec) 60 120 180

SIGMATA

applied
No Yes No Yes No Yes

Encoding

time (sec)
149.30 150.33 293.39 297.84 428.58 436.69

Avg.

encoding

time / frame

0.0829 0.0835 0.0815 0.0827 0.0794 0.0807

Feature NCryptFS [14] Cao et al. [5]
ICAR,

Jerzy et al. [15]
SIGMATA

Detection of frame-wise insertion No No No Yes

Detection of frame-wise deletion No No No Yes

Detection of frame-wise replacement No No No Yes

Detection of frame-wise reordering No No No Yes

Data recovery No No Yes No

Storage reusability Yes Yes No Yes

Network connection No Yes No No

Implementation layer Kernel
Application

(server-client)
Kernel

Application

(Codec)

46 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 2 - YEAR 2016 ISSN: 1690-4524

Figure 7. Comparison of the average encoding time per

frame

As seen in Table 2, encoding takes less than 0.0015 more seconds

per frame using SIGMATA. The critical factors that cause this

difference are the salt generation, together with three hash

functions applied to each frame. Considering that SIGMATA

introduces an average computational overhead of 1.26% for each

frame, which is relatively insignificant, SIGMATA is applicable

in a real-time scenario.

7. DISCUSSION

In this section, we discuss a few issues of SIGMATA.

Forgery of the first frame

As shown in Figure 2(a), the first frame of the video stream is

directly hashed without adding the size of the previous frame,

since such a frame does not exist. This may amplify the

likelihood of forgery since the size constraint is not necessarily

considered during fabrication. However, considering that the first

frame occupies only a small portion, 0.033 sec, of the entire video

stream spanning 24 hours, this weakness is negligible.

The use of a user-inaccessible storage

In our mechanism, we assume the existence of a secure storage,

such as TPM, which is not accessible by the users. We claim that

general VEDRs are ready to utilize such hardware, since the

ARMv6 architecture, which has supported TrustZone since 2001,

is one of the most widespread architectures for embedded

processors. For the devices that have no such hardware, there are

commercial TPM chips designed for embedded devices such as

Atmel AT97SC3203S. T. Winkler et al. make use of the Atmel

TPM for their embedded smart cameras [17]. According to T.

Winkler, TPM chips are sold at reasonable prices and readily

available.

8. CONCLUSION

In this paper, we proposed a novel concept of frame-wise forgery

in VEDR storage and a mechanism to assure its integrity. The

mechanism resolves several problems, including the detection of

insertion, deletion, replacement, and reordering of frames. We

verified the utility of our mechanism by investigating attack

scenarios and conducting a security analysis of the possibility of

bypassing SIGMATA. The results show that SIGMATA is

robust against frame-wise forgery attacks and that there is only a

slight chance that adversaries can circumvent SIGMATA.

Furthermore, we evaluated its performance under Raspberry Pi 2

environment, by running SIGMATA on the videos recorded by

VEDRs. The results show that SIGMATA yields near-zero

overhead, which means it is applicable to the real-time scenario.

ACKNOWLEDGEMENT

This research was supported by the Public Welfare & Safety

Research Program through the National Research Foundation of

Korea(NRF) funded by the Ministry of Science, ICT & Future

planning (2012M3A2A1051118).

 REFERENCES

[1] Grand View Research, “North America car DVR market

analysis by product (single channel, dual channel) and

segment forecasts to 2016”,

http://www.grandviewresearch.com/industry-analysis/car-

dvr-market, 2014.

[2] G.H. Kim, and E.H. Spafford, “The design and

implementation of tripwire: A file system integrity checker”,

Proceedings of the 2nd ACM Conference on Computer and

Communications Security, 1994.

[3] S. Patil, A. Kashyap, G. Sivathanu, and E. Zadok, “I3FS: An

in-kernel integrity checker and intrusion detection file

system”, LISA, Vol. 4, 2004, pp. 67-78.

[4] L. Catuognol, H. Lohr, M. Winandy, and A. Sadeghi, “A

trusted versioning file system for passive mobile storage

devices”, Journal of Network and Computer Applications,

2014, pp. 65-75.

[5] D. Cao, and B. Yang, “Design and implementation for

MD5-based data integrity checking system”, The 2nd IEEE

International Conference on Information Management and

Engineering (ICIME), 2010.

[6] S. Lee, J. Song, W. Lee, and H. Lee. "Integrity verification

scheme of video contents in surveillance cameras for digital

forensic investigations." IEICE TRANSACTIONS on

Information and Systems 98.1 (2015): 95-97

[7] T. Shanableh, “Detection of frame deletion for digital video

forensics”, Digital Investigation, Vol. 4, No. 10, 2013, pp.

350-360.

[8] K. Kancherla, and S. Mukkamala. “Novel blind video

forgery detection using Markov models on motion residue”,

Intelligent Information and Database Systems, 2012, pp.

308-315.

[9] Q. Dong, G Yang, and N. Zhu. “A MCEA based passive

forensics scheme for detecting frame-based video tampering”

Digital Investigation, Vol. 2, No. 9, 2012, pp. 151-159.

[10] D.K. Hyun, M.J. Lee, S.J. Ryu, H.Y. Lee, and H.K. Lee,

“Forgery detection for surveillance video”, The Era of

Interactive Media, 2013, pp. 25-36.

[11] F. Arab, S. Abdullah, S. Hashim, A. Manaf, and M. Zamani,

“A robust video watermarking technique for the tamper

detection of surveillance systems”, Multimedia Tools and

Applications, 2015, pp. 1-31.

[12] A. Perrig, R. Canetti, J.D. Tygar, and D. Song, “The TESLA

broadcast authentication protocol”, RSA CryptoBytes, 2005.

[13] T. Morris, “Trusted platform module”, Encyclopedia of

Cryptography and Security, 2011, pp. 1308-1310.

[14] C.P. Wright, M.C. Martino, and E. Zadok, “NCryptfs: A

secure and convenient cryptographic file system”, USENIX

Annual Technical Conference, 2003.

[15] J. Kaczmarek, and M. Wrobel, “Modern approaches to file

system integrity checking”, 1st International Conference on

Information Technology, 2008.

[16] F. Bellard, “FFmpeg multimedia system”,

http://www.ffmpeg.org/, 2005.

[17] T. Winkler, and B. Rinner, “Securing embedded smart

cameras with trusted computing”, EURASIP Journal on

Wireless Communications and Networking, 2011.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1800 3600 5400

A
v
er

ag
e

p
ro

ce
ss

in
g

ti
m

e
p

er
 f

ra
m

e
(s

ec
 /

 f
ra

m
e)

No. of frames
FFmpeg

FFmpeg+SIGMATA

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 2 - YEAR 2016 47

	ZA149AS16

