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ABSTRACT  

 

In distributed network intrusion detection applications, it is 

necessary to transmit data from the remote sensors to the 
central analysis systems (CAS). Transmitting all the data 

captured by the sensor would place an unacceptable demand on 

the bandwidth available to the site. Most applications address 

this problem by sending only alerts or summaries; however, 

these alone do not always provide the analyst with enough 

information to truly understand what is happening on the 

network. Lossless compression techniques alone are not 

sufficient to address the bandwidth demand; therefore, some 

form of lossy compression must be employed. Working on the 

theory that a network flow that is malicious will manifest this 

maliciousness early, we explore the impact of compressing 

network traffic by stopping the transmission of packets in a 

flow once a given threshold either in number of packets or 

number of bytes have been transmitted. 

 

Keywords: compression, network intrusion detection, flow, 

packet count, byte count 

1. INTRODUCTION 

Distributed Network Intrusion Detection Systems (NIDS) allow 

a relatively small number of analysts to monitor a much larger 

number of sites; however, NIDS require information to be 

transmitted from the remote sensor to the central analysis 

system (CAS) [1] as pictured in Fig. 1. This transmission 

typically uses the same channels that the site uses to conduct 

business. It is important to reduce the amount of information 

transmitted back to the CAS to minimize the impact that the 

NIDS has on daily operations as much as practical.  

 

Smith and Hammell [1] proposed creating a lossy compression 

tool using anomaly detection techniques to rate each session 

and a modification of the Kelly criterion [2] to select how much 

traffic from each session to return as seen in Fig. 2. 

 

The contribution of this research is to explore one method to 

compress network traffic without unacceptably impacting the 

ability of the NIDS to detect and analyze malicious activity. It 

considers the hypothesis that malicious network flows will 

manifest their maliciousness early. This research examines the 

implications of only transmitting the packets in a flow up to a 

threshold in either packets or bytes by comparing the results of 

a popular network intrusion detection tool before and after 

compression.  

 

The remainder of this paper is organized into the following 

sections: Section 2 provides background, Section 3 outlines the 

approach chosen to address this problem, Section 4 presents our 

results, and Section 5 provides a conclusion and discussion of 

future work. 

 

 
Figure 1. Distributed network intrusion detection 

 
Figure 2.  Kelly compressor 

2. BACKGROUND 

One popular strategy for implementing a distributed NIDS is to 

do all of the intrusion detection on the sensor and send only 

alerts or logs to the CAS. [3] [4] A second strategy might be to 

use lossless compression to reduce the size of the data returned 
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to the CAS. A third strategy is to implement some form of lossy 

compression algorithm to send back relevant portions of traffic. 

 

There are three problems with the first strategy. The first is that 

it has the potential to overburden the sensor's central processing 

unit (CPU) and introduce packet loss. Smith et al. discovered 

that the impact of packet loss can sometimes be quite severe for 

even small rates of packet loss. [5] The second problem is that 

the alerts by themselves often do not contain enough 

information to determine whether the attack was successful. 

The third problem is that these systems are most often 

implemented with signature-based intrusion detection engines. 

Signature-based systems may be tuned to produce few false 

positives; however, they are ineffective at detecting zero-day 

and advanced persistent threats. [6] 

 

The problem with the second strategy is that lossless 

compression alone simply is not capable of reducing the amount 

of traffic enough. Using GNU Zip to compress the 2009 Cyber 

Defense Exercise data set provides a compression ratio of 2:1. 

[7] Compression ratios of better than 10:1 are required to 

minimize the impact of NIDS on day-to-day operations. 

 

The third strategy is to use lossy compression to provide a 

solution. Network traffic may be considered to be composed of 

sessions that span spectrums from known to unknown and 

malicious to benign as illustrated in Figure 3. Quadrant III, the 

known malicious quadrant, is the domain of intrusion 

prevention systems as described by Ierace, Urrautia, and 

Bassett [8]. This research is most interested in quadrant II, the 

unknown malicious quadrant, because that is the quadrant 

where evidence of zero-day and advanced persistent threat 

attacks will be found. In 2004, Kerry Long described the 

Interrogator Intrusion Detection System Architecture [9]. In this 

architecture, remotely deployed sensors, known as Gators, 

collect network traffic and transmit a subset of the traffic to the 

analysis level. Interrogator employs “a dynamic network traffic 

selection algorithm called Snapper'”. [9]. Long and Morgan 

describe how they used data mining to discover known benign 

traffic that they excluded from the data transmitted back to the 

analysis servers [10]. Smith, Hammell, and Neyens compressed 

network traffic by removing packets based upon their entropy. 

[7] Smith and Hammell also truncated packets. [11] 

 

Figure 3. Network traffic composition 

3. APPROACH 

A transmission control protocol (TCP) session is identified by 

the internet protocol (IP) address and port of the client and the 

IP address and port of the server. Each TCP/IP packet contains 

a source IP address and port and a destination IP address and 

port. The source and destination change depending on whether 

the packet was sent by the client to the server or the server to 

the client. In this paper, a session is considered to be 

bidirectional and a flow is considered to be unidirectional. This 

research focuses on flows because it is simple to match source 

and destination IP addresses and ports. We leave paring 

opposite flows into a single session for future work. 

 

We began by constructing a tool to read a network capture file 

in libpcap [12] format and then keep track of the number of 

packets and bytes in each TCP flow. The flow engine would 

then return these values as the score for that packet. Packets that 

scored above the threshold would be dropped. When the flow 

compression tool completed it would output the number of 

packets and number of bytes read and written. Snort [3] was 

then used to analyze the compressed traffic. Upon completion, 

we extracted the number of alerts detected from the Snort 

report. We employed the sequence [13] tool to set the 

thresholds for each run which consisted of several iterations 

using different thresholds. When the run was completed, we 

plotted the amount of data transmitted as a percentage of the 

original, and the alert loss rate (ALR) against each threshold. 

 

Flow Compression Tool 

In order to be useful in our compression application the 

algorithm will need to be implemented as efficiently as 

possible; therefore, we chose to implement this flow 

compression tool in C++. A Flow class was implemented which 

stores the source and destination IP addresses and ports along 

with the number of packets and bytes observed in the flow. We 

chose to store these Flow objects in the map container from the 

standard library. The Flows class contains the map data 

structure encapsulating that implementation detail from the 

user. We created a FlowEngine child class of the 

AnomalyEngine super class which was created in a previous 

work [14]. 

 

As each packet is read from the capture file, it is scored by the 

FlowEngine. The FlowEngine adds the packet to the Flows 

object. If this is the first time we have seen this combination of 

IP addresses and ports, then a new flow is created; otherwise, 

we increment the packet and byte counters of the existing flow. 

The flow engine will then return either the current packet or 

byte count. 

 

Data Sets 

In the following section we provide a brief summary of the 

various data sets that were used in our experiment. It is 

necessary to abbreviate these data sets. This abbreviation will 

appear in parenthesis in the text and afterwards appear in tables 

and captions. Table 1 provides a summary of the duration and 

packet count for each of these data sets. 

 

DARPA Data Sets: As part of their evaluation of intrusion 

detection systems, Lippman et al. created a data set of synthetic 

network traffic [15]. We used the testing data from Friday of 

week 2 (DTE98W2D6). We selected this day because it 

contains the largest number of alerts in the 2 weeks of testing 

data. 

 

Cyber Defense Exercise 2009: In 2009 the National 

Security Agency/Central Security Service (NSA/CSS) 

conducted an exercise pitting teams from the military 

academies of the United States and Canada against teams of 

professional network specialists to see who best defended their 
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network. Data from this exercise was captured and used by 

Sangster et al. in his efforts to generate labeled data sets [16]. 

Two network traffic sensors were employed in the exercise: 

gator-usama010 and gator-usama020. We used the pcapcat [17] 

program to consolidate the individual hours of for network 

traffic collected by each sensor into files in Libpcap format. In 

these trials we used the data captured from gator-usama020 

(CDX09U020). 

 

Mid-Atlantic Collegiate Cyber Defense Competition: 

Based upon the pattern of the Cyber Defense Exercises, a group 

of industry academics created the collegiate cyber defense 

competitions [18]. We used the network capture data for the 

Mid-Atlantic Collegiate Cyber Defense Competitions from 

2010 (MACCDC10) which is available from: 

https://www.netresec.com/?page=MACCDC. 

 

Information Security Centre of Excellence Intrusion 

Detection System 2012: The University of New Brunswick’s 

Canadian Institute for Cybersecurity created the Information 

Security Centre of Excellence (ISCX) Intrusion Detection 

System (IDS) 2012 data set (ISCXIDS12) [19]. This synthetic 

labeled data set contains full network capture files. We used the 

data from Monday June 15, 2010. More information about this 

data set may be found at http://ww.unb.ca/cic/datasets/ids.html.  

 

Canadian Institute for Cybersecurity Intrusion 

Detection System: The University of New Brunswick’s 

Canadian Institute for Cybersecurity (CIC) created the CIC 

Intrusion Detection System (IDS) 2017 data set (CICIDS17) 

[19]. This synthetic labeled data set contains full network 

capture files. We used the data from Wednesday July 5, 2017. 

More information about this data set may be found at 

http://ww.unb.ca/cic/datasets/ids.html.  

 

Real World: We collected real world network traffic from 

the top level architecture of a laboratory on the Defense 

Research Engineering Network in Dec 2016 (RW2106). 

 

Table 1. Data sets 

Name Seconds Packets 

D98TEW2D6 90,432 2,177,646 

CDX09U020 345,600 42,293,657 

MACCDC10 275,666 264,973,151 

ISCXIDS12 86,400 34,983,042 

CICIDS17 30,458 13,788,878 

RW2016 38,337 213,803,423 

 

Rule Sets 

The more rules that are tested by Snort, the more computing 

resources Snort requires to complete its analysis. These 

resource requirements may climb to the point where Snort is 

unable to keep up with the network traffic causing packet loss. 

Therefore, the default rule sets have most of the rules 

commented out. In order to analyze older data sets, it is 

necessary to tailor the rule set to ensure that rules appropriate 

for the time period are active. 

 

Circa2000: The registered Snort rules downloaded from 

http://www.snort.org in Aug 2013 with rules activated to 

detected malicious activity from the year 2000. 

 

Circa2009: The registered Snort rules from Aug 2013 

with rules activated to detect malicious activity from 2009. 

 

RegAug2013: The registered Snort rules from Aug 2013. 

 

RegSep2018: The registered Snort rules from Sep 2018. 

4. RESULTS 

We conducted several trials where multiple runs of several 

iterations of the flow compressor were used to compress the 

data sets which were then given to Snort for analysis. A script 

was written to conduct these runs employing the sequence 

program [13] to define the threshold values. In Tab. 2 we have 

listed the trial number, data set abbreviation, rule set 

abbreviation, and the figures where the results are displayed.  

 

For each trial we plot the percentage of the initial size of the 

data set as the y value and the threshold as the x value as 

circles. On the same graph we plot the ALR, as the y value and 

the threshold as the x value in triangles.  A table showing the 

threshold, compression and ALR is provided for each run. 

These table are used to illustrate the two particular value of 

interest. The first is the point of most compression with zero 

ALR. The second is the point of most compression with less 

than 1% ALR. 

 

Table 2. Experiment Characteristics 

Trial Data set Rule set Figures 

1 DTE98W2D6 C2000 4 and 5 

2 CDX09u020 C2009 6 and 7 

3 MACCDC10 RegAug13 8 and 9 

4 ISCXIDS12 RegAug13 10 and 11 

5 CICIDS17 RegAug18 12 and 13 

6 RW2016 RegAug18 14 and 15 

 

Trial 1 

The first trial used the D98TEW2D6 data set and the Circa2000 

rule set. There were 2 runs where the data set was compressed 

with a packet threshold. The first used a geometric sequence 

Eq. (1) where n = 1 to 20 and the second used a square 

sequence Eq. (2) where n = 2 to 32. Figure 4 and Table 3 

display the most interesting combined results. Thresholds over 

2048 have been omitted because they result in zero alert loss.  

The data point for threshold 784 was added from the second run 

because it fills in the gap between 1024 and 512 showing 0.1% 

packet loss.   

 

𝑠𝑛 = 2𝑛       (1) 

 

𝑠𝑛 =  𝑛2       (2) 
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Figure 4. Trial 1 packet threshold 

 

Table 3. Trial 1 packet threshold 

Threshold Compression ALR 

2048 88.00% 0.00% 

1024 85.00% 0.00% 

784 83.00% 0.01% 

512 79.00% 0.01% 

256 73.00% 0.03% 

128 70.00% 0.04% 

64 67.00% 0.05% 

32 64.00% 0.08% 

16 58.00% 0.13% 

8 48.00% 0.33% 

4 33.00% 1.16% 

2 18.00% 2.25% 

 

There were 2 runs where the data was compressed with a byte 

threshold. The first used a geometric Eq. (1) sequence where 

n = 1 to 20 and the second used a cube sequence Eq. (3) where 

n = 3 to 41. Figure 5 and Table 4 display the most interesting 

combined results.  Thresholds over 131072 were excluded 

because they also generated zero alert loss.  The threshold 343 

was added to fill in the gap between thresholds 512 and 256.  

Thresholds under 128 were excluded because their ALR was 

over 1%. 

 

𝑠𝑛 = 𝑛3       (3) 

 

 
Figure 5. Trial 1 byte threshold 

 

Table 4. Trial 1 byte threshold 

Threshold Compression ALR 

131072 74.00% 0.00% 

65536 69.00% 0.01% 

32768 64.00% 0.03% 

16384 58.00% 0.05% 

8192 50.00% 0.08% 

4096 41.00% 0.11% 

2048 35.00% 0.14% 

1024 26.00% 0.29% 

512 23.00% 0.58% 

343 20.00% 1.27% 

256 19.00% 1.29% 

128 19.00% 2.25% 

 

Trial 2 

The second trial used the CDX09u020 and the Circa2009 rule 

set. There were 2 runs where the data set was compressed with 

a packet threshold. The first used a geometric sequence Eq. (1) 

where n = 1 to 20 and the second used an arithmetic sequence 

Eq. (4) where a = 2, d = 2, and n = 2 to 61. Figure 6 and Table 

5 display the most interesting combined results. Thresholds 

over 128 were excluded because they have an ALR of zero. The 

threshold of 94 and 92 was added from the second run to fill in 

the gap between the thresholds of 128 and 64. 

 

𝑠𝑛 = 𝑎 + 𝑑(𝑛 − 1)      (4) 
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Figure 6. Trial 2 packet threshold 

 

Table 5. Trial 2 packet threshold 

Threshold Compression ALR 

128 29.14% 0.00% 

94 28.00% 0.00% 

92 28.00% 0.03% 

64 27.74% 0.03% 

32 26.30% 0.29% 

16 24.90% 0.40% 

8 22.84% 0.58% 

4 20.25% 14.65% 

 

There were 2 runs where the data was compressed with a byte 

threshold. The first used a geometric sequence Eq. (1) where 

n = 1 to 20 and the second used a cube sequence Eq. (5) where 

n = 19 to 51. Figure 7 and Table 6 display the most interesting 

combined results. Thresholds over 131072 were excluded 

because their ALR is zero.  The threshold 110592 was added to 

fill in the gap between 131072 and 65536 and the threshold 

6859 was added to fill in the gap between 8192 and 4096. 

 

𝑠𝑛 = 𝑛3       (5) 

 

 
Figure 7. Trial 2 byte threshold 

 

Table 6. Trial 2 byte threshold 

Threshold Compression ALR 

131072 28.00% 0.00% 

110592 28.00% 0.00% 

65536 27.00% 0.03% 

32768 26.00% 0.03% 

16384 25.00% 0.09% 

8192 24.00% 0.40% 

6859 23.00% 0.44% 

4096 22.00% 1.75% 

 

Trial 3 

The third trial used the MACCDC10 data set and the RegAug13 

rules set. There was one run where the data set was compressed 

with a packet threshold. This trial used a geometric sequence 

Eq. (1) where n = 1 to 20. Figure 8 and Table 7 display the 

most interesting results. Thresholds over 64 were excluded 

because their ALR was zero. 

 

There was one run where the data was compressed with a byte 

threshold. This trial used a geometric sequence Eq. (1) where 

n = 1 to 20. Figure 9 and Table 8 display the most interesting 

results. Thresholds over 65536 were excluded because their 

ALR was zero. Although there is a large gap between threshold 

66536, which is the last threshold with zero ALR, and threshold 

1024, which is the first threshold with an ALR greater than 1%, 

a second run was not conducted because the size of the file was 

reduced only 1% at a threshold of 1024. 

 

 
Figure 8. Trial 3 packet threshold 

 

Table 7. Trial 3 packet threshold 

Threshold Compression ALR 

64 99.99% 0.00% 

32 99.00% 0.00% 

16 99.00% 0.04% 

8 99.00% 0.20% 

4 99.00% 0.71% 

2 99.00% 10.71% 
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Figure 9. Trial 3 byte threshold 

 

Table 8. Trial 3 byte threshold 

Threshold Compression ALR 

65536 99.00% 0.00% 

32768 99.00% 0.00% 

16384 99.00% 0.03% 

8192 99.00% 0.07% 

4096 99.00% 0.11% 

2048 99.00% 0.21% 

1024 99.00% 3.67% 

512 99.00$ 10.22% 

 

Trial 4 

The fourth trial used the data from June 15th of the ISCXIDS12 

data set and the RegAug13 rules set. There were 2 runs where 

the data was compressed with a packet threshold. The first used 

a geometric sequence Eq. (1) where n = 1 to 20 and the second 

used a cube sequence Eq. (5) where n = 2 to 25. Figure 10 and 

Table 9 display the most interesting combined results. 

Thresholds over 16384 were excluded because their ALR was 

zero.  Thresholds less than 4096 were excluded because their 

ALR was greater than 1%.  The threshold 12167 was added 

from the second run to fill in the gap between 16394 and 8192, 

and the threshold 5832 was added to fill in the gap between 

8192 and 4096. 

 

There was one run where the data was compressed with a byte 

threshold. This run used a geometric sequence Eq. (1) where 

n = 1 to 20. Figure 11 and Table 10 display the most interesting 

results.  Thresholds over 33554432 were excluded because their 

ALR is zero. Thresholds under 4194304 were excluded because 

their ALR were over 1%. 

 

 
Figure 10. Trial 4 packet threshold 

 

Table 9. Trial 4 packet threshold 

Threshold Compression ALR 

16384 95.00% 0.00% 

12167 95.00% 0.00% 

8192 95.00% 0.02% 

5832 94.00% 0.04% 

4096 93.00% 23.43% 

 

 

 

Figure 11. Trial 4 byte threshold 

 

Table 10. Trial 4 byte threshold 

Threshold Compression ALR 

33554432 96.00% 0.00% 

16777216 95.00% 0.02% 

8388608 94.00% 0.10% 

4194304 90.00% 42.95% 

 

Trial 5 

The fifth trial used data from day 3 of the CICIDS17 data set 

and the ReAug18 rules. There were 2 runs where the data set 

was compressed with a packet threshold. The first used a 
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geometric sequence Eq. (1) where n = 1 to 20 and the second 

used an arithmetic sequence Eq. (4) where a = 8, d = 1, and 

n = 1 to 24. Figure 12 and Table 11 displays the most 

interesting combined results. Thresholds over 128 were 

excluded because their ALR was zero.  Thresholds 31 and 20 

were added to fill in the gap between 32 and 16. 

 

 
Figure 12. Trial 5 packet threshold 

Table 11. Trial 5 packet threshold 

Threshold Compression ALR 

128 31.00% 0.00% 

64 28.00% 0.00% 

32 26.00% 0.00% 

31 25.00% 0.09% 

20 24.00% 0.94% 

16 23.00% 1.51% 

8 20.00% 3.03% 

 

There were 2 runs where the data was compressed with a byte 

threshold. The first used a geometric sequence Eq. (1) where 

n = 1 to 20 and the second used a cube sequence Eq. (5) where 

n = 16 to 25. Figure 13 and Table 12 display the most 

interesting combined results. Thresholds over 16384 were 

excluded because their ALR is zero. Threshold 9261 and 5831 

were added to fill in the gaps. 

 

 
Figure 13. Trial 5 byte threshold 

 

 

Table 12. Trial 5 byte threshold 

Threshold Compression ALR 

16384 23.00% 0.00% 

9261 17.00% 0.00% 

8192 14.00% 0.09% 

5831 9.00% 0.75% 

4096 7.00% 1.51% 

2048 5.00% 5.30% 

 

Trial 6 

The sixth trial used the RW2016 data set and the RegAug2018 

rule set. There was one run where the data set was compressed 

with a packet threshold. This run used a geometric sequence 

Eq. (1) where n = 1 to 20. Figure 14 and Table 13 display the 

most interesting results. Thresholds over 32 were excluded 

because their ALR is zero. 

 

There was one run where the data was compressed with a byte 

threshold. This run used a geometric sequence Eq. (1) where 

n = 1 to 20. Figure 15 and Table 14 display the most interesting 

results. Thresholds over 32768 were excluded because their 

ALR is zero. Thresholds from 1024 to 2 were excluded because 

their compression and ALR is identical that or thresholds 1024 

and 2. 

 

 
Figure 14. Trial 6 packet threshold 

 

Table 13. Trial 6 packet threshold 

Threshold Compression ALR 

32 71.00% 0.00% 

16 70.00% 0.00% 

8 69.00% 0.64% 

4 68.00% 0.96% 

2 68.00% 0.96% 
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Figure 15. Trial 6 byte threshold 

 

Table 14. Trial 6 byte threshold 

Threshold Compression ALR 

32768 71.00% 0.00% 

16384 70.00% 0.64% 

8192 69.00% 0.64% 

2048 68.00% 0.64% 

1024 67.00% 0.96% 

2 67.00% 0.96% 

 

Summary 

Since the goal is to compress the network traffic as much as 

possible without losing the ability to detect and investigate 

malicious activity, Table 15 displays the highest rate of 

compression for each experiment with no alert loss and the 

highest rate of compression with less and 1% alert loss. 

 

Table 15. Experiment Results 

Trial Threshold Value Size ALR 

1 Packets 784 85% 0.00% 

1 Packets 9 50% 0.21% 

1 Bytes 121,072 74% 0.00% 

1 Bytes 512 23% 0.58% 

2 Packets 94 28% 0.00% 

2 Packets 8 23% 0.58% 

2 Bytes 111,592 28% 0.00% 

2 Bytes 6,859 23% 0.44% 

3 Packets 32 99% 0.00% 

3 Packets 4 99% 0.71% 

3 Bytes 32,768 99% 0.00% 

3 Bytes 2,048 99% 0.21% 

4 Packets 12,167 95% 0.00% 

4 Packets 5,832 94% 0.04% 

4 Bytes 33,444,432 96% 0.00% 

4 Bytes 8,388,608 94% 0.10% 

5 Packets 32 26% 0.00% 

5 Packets 20 24% 0.94% 

5 Bytes 9,261 17% 0.00% 

5 Bytes 5,832 9% 0.75% 

6 Packets 16 70% 0.00% 

6 Packets 8 69% 0.64 

6 Bytes 32,768 71% 0.00% 

6 Bytes 2 67% 0.96% 

5. CONCLUSIONS 

The tool performs very differently on different data sets. With 

the older DTE98W2D6 data set Figs. 4 and 5, compressing by 

packet thresholds performs poorly while compressing by byte 

thresholds performs well. With the CDX09U020 and the 

CICIDS17 data sets Figs. 6, 7, 12, and 13, compressing by 

packet and byte thresholds perform equally well. With the 

MACCDC2010 and ISCXIDS 2012 data sets Figs. 8, 9, 10, and 

11, compressing by packet and byte thresholds performs poorly. 

With the RW2016 data Figs. 14 and 15, compressing by packet 

and byte threshold performed equally poorly. 

 

The difference compressing by packets and bytes on the 

DTE98W2D6 data sets may be explained by the extensive use 

of TELNET. TELNET generates a large number of very small 

packets as each character entered on the keyboard is sent from 

the client to the server then echoed from the server to the client. 

 

Surprisingly the poor performance of this compression tool on 

the MACCDC10 and ISCXIDS12 data sets seems to be for 

opposite reasons. The MACCDC10 data set has a lot of very 

small flows. This can be seen in that we were able to stop 

transmitting packets after only 16 while only changing the size 

of the data set by a single percentage point. These very small 

flows may have been generated by a large amount of scanning 

activity. The ISCXIDS12 data set has a lot of very large flows 

and the malicious traffic seems to be very deep in these flows. 

This is evident because when we stopped transmitting packets 

after 12,167, the size of the data set was reduced by 90% but 

42.95% of the alerts were lost. The preponderance of alerts 

were generated in the Hyper Text Transport Protocol. Almost 

5600 of these alerts involved a single host, 216.18.165.250. Of 

these flows 48 of them are over 5000 packets long with as many 

as 100 alerts per session. 

 

The live capture data is very interesting. We can stop 

transmitting flows after only 2 packets and compress the traffic 

to 68% of the original size. The reason behind this is that the 

flow compressor tool only works on IP version 4 (IPv4) TCP 

packets. Only 53% of this traffic is IPv4, and only 35% is 

IPv4/TCP. At 68% compression we have purged almost all of 

the IPv4/TCP packets. A closer examination of the alerts 

reveals that only 3 alerts were contained in the TCP traffic. If 

the flow compression tool handled IP version 6, we would have 

seen very good performance on this live capture data. 

 

The results of these experiments demonstrate that flows that are 

malicious manifest that maliciousness early. When we saw 

malicious activity deep in a flow, it was usually not the first 

occurrence of malicious activity in that flow. This strategy 

should be effective in reducing the amount of network traffic 

sent from the sensor to the CAS. This is especially true when 

coupled with Snort’s ability to capture malicious traffic once it 

has been detected. Merging traffic compressed by truncating 

flows with the traffic captured by Snort should provide the 

analyst with the complete session for review. We achieved 

some good compression, but flow based compression alone is 

insufficient to reduce the network traffic that must be 

transmitted from the sensor to the CAS to less than 10% of the 

original size. 

 

In future work, we will implement the processing of IP 

version 6, and conduct experiments with more data sets. The 

end goal is to integrate this technique and other network 
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compression techniques including lossless compression to 

reduce the amount of traffic that needs to be transmitted to the 

CAS to less than 10% of the initial traffic volume. 
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