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Abstract
2
 

 
Deep Learning (DP) models have been successfully applied to detect and predict 

failures in rotating machines. However, these models are often based on the 

supervised learning paradigm and require annotated data with operational status 

labels (e.g. normal or failure). Furthermore, machine measurement data is not 

commonly labeled by industry because of the manual and specialized effort that 

they require. In situations where labels are nonexistent or cannot be developed, 

unsupervised machine learning has been successfully applied for pattern 

recognition in large and multivariate datasets. Thus, instead of experts labeling a 

large amount of structured and/or non-structured data instances (also referred to 

as Big Data), unsupervised machine learning allows the annotation of the dataset 

from the few underlying interesting patterns detected. Therefore, we evaluate the 

performance of six unsupervised learning algorithms for the identification of 

anomalous patterns from a turbogenerator installed and operating in an oil and 

gas platform. The algorithms were C-AMDATS, Luminol Bitmap, SAX-REPEAT, 

k-NN, Bootstrap, and Robust Random Cut Forest. The evaluation performance 

was quantitatively calculated with seven classification metrics. The C-AMDATS 

algorithm was able to effectively and better detect the anomalous patterns, and it 

presented an accuracy of 99%, which leverages the further development of 

supervised DL models. 

     

Keywords: Multivariate Time Series, Anomaly Detection, Pattern Recognition, 

Unsupervised Machine Learning, Rotating Machinery. 
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1. Introduction 

 

Over the past decade, advances in technologies and engineering expertise 

have extended the lifespan of machines and devices of the oil and gas 

industry. However, machine malfunction and unexpected breakdown are 

still a reality for many oil companies. For example, in September 2019, 

Petrobras reported that the P-50 floating production storage and offloading 

(FPSO) had its production preventively interrupted because of a rupture of 

the mooring system. Fortunately, there was no record of labor accident or 

environmental disaster, but it caused an average loss of 20,000 bbl/d 

(barrels of oil per day), which means U$1,200,000 bbl/d considering an 

average value of U$60/bbl at the time (PETROBRAS, 2019). Furthermore, 

Petrobras has estimated a production loss from failures events in the 

Operational Unit located in the Brazilian state of Espírito Santo during 2016 

of 1,514,000 bbl, which corresponds to US$75.7 million considering an 

average value of US$50/bbl in this period. Despite production losses and 

the company's financial damage, failures in the oil industry can lead to 

serious catastrophes, such as the Macondo Incident in 2010 that 

unfortunately caused the deaths of 11 workers, the sinking of the Deepwater 

Horizon rig, and massive marine and coastal damage, which marked this 

incident as one of the largest environmental disasters in the US history 

(Vargas et al., 2019). 

 

Nevertheless, oil and gas production systems are designed to operate 

uninterruptedly, as the operating cost of an FPSO is high (approximately U$ 

250,000/month) (Perera et al., 2019). Thus, an intelligent maintenance 

management is crucial for the maintenance of operational activities under 

required levels of structural integrity and system security, as well for the 

prevention production losses, environmental accidents, and human 

casualties and for reduction maintenance costs. However, the maintenance 

of FPSO machinery can be challenging, since the entire system is in a 

highly hostile environment. 

 

Predictive Maintenance (PdM) is a specific method of maintainability that 

provides the integrity of the machinery and establishes the main necessary 

intervention activities. It uses historical measurement data for early 

detection of machine deterioration, i.e., long before the malfunction exceeds 
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the acceptable operating limits designed by the project. The method has 

gained prominence for providing great efficiency in the durability of the 

system and reducing maintenance costs and logistical footprints (Gombé et 

al., 2019).  

 

The measurement data of the machine are acquired in real time by multi-

sensor or periodically by inspection; both ways may indicate the health 

status of the machinery, but normally critical assets are monitored in real 

time. Thus, computation models designed to implement PdM capabilities 

can diagnose or predict failures based on a long record of historical data of 

machine health status. Therefore, with the diagnostic or prognostic 

information of failures inferred by these models, maintenance managers 

would have a greater basis in decision making to improve operational 

performance for scheduling maintenance, reduce unplanned repairs, and 

minimize downtime. 

 

In theory, the shutdown of machinery only occurs when there is an evidence 

of deterioration; however, the volume of data generated is large, and 

conventional diagnostic methods rely mainly on specialized knowledge, 

which hindes artificial characteristics and other factors that seriously restrict 

the intelligent and automated development of predictive models (Zhu et al., 

2019). 

 

Artificial Intelligence (AI) is an area of research that is currently on the rise 

and has been used to develop computational models for the detection, 

diagnosis, and prognosis of failures in dynamic machinery. The main tasks 

are: (i) to detect the normal or abnormal condition of the machine operation, 

(ii) to detect incipient failure and identify its cause, and (iii) to predict the 

development trend of the failures. The goal is to increase the reliability and 

safety of maintenance in dynamic and complex systems (Jardine et al., 

2006; Liu et al., 2018). 

 

Machine learning (within the AI field) has promising tools for pattern 

recognition of historical data from machine measurement (Caggiano et al., 

2019). The tools are conceptualized in two types of learning: (i) supervised 

and (ii) unsupervised, both being a viable paradigm for nonlinear data 

analysis (Wachowiak et al., 2019). 
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In supervised classification learning, the learner is given a stimulus, 

classifies it, and then it is provided with corrective feedback (Love, 2002). 

Nevertheless, supervised models are limited by the need to have an 

annotated dataset for the corrective feedback during the training process, 

i.e., each data sample must have its corresponding target or label, which can 

be  discrete or continuous and with single or multiple values. However, all 

of this generated data from machine monitoring sensors turns the annotation 

into an increasingly complex, harder and thus unfeasible task . Because it 

usually demands highly specialized human workforce, which is normally 

overloaded with demand and does not have time for this relevant activity. 

Thereby, despite all promising publications with supervised DP models for 

failure classification in rotating machinery (Li et al., 2020; Souza et al., 

2021), there is a gap in supervised machine learning models,which points to 

a desire and opportunity to employ unlabeled data in unsupervised machine 

learning algorithms (Jati & Georgiou, 2019). 

 

Unsupervised learning is a branch of machine learning that consists of 

finding interesting information from the raw data without the help of any 

targets or labels. For instance, dimensionality reduction and clustering are 

well-known categories of unsupervised learning (Chollet, 2018). These 

approaches can extract useful features to handle unlabeled data. 

Dimensionality reduction consists of reducing the high dimensional data, as 

it captures the essence of the data by projecting the data to a lower 

dimensional subspace. Clustering algorithms can be used to find natural 

groupings or patterns. Clustering approaches can also serve as an 

advantageous data-preprocessing step to identify homogeneous groups on 

which to build supervised models (Kakarla et al., 2021). 

 

There is an expectation that unsupervised machine learning will prove to be 

similarly effective in situations where labels are expensive, impractical to 

collect, or where the prediction target is unknown during the training 

process (Zhu et al., 2019). Thus, unsupervised algorithms can be 

implemented directly on raw data with no need of previous training. They 

only depend on internal clustering of the data without prior knowledge 

(Torabi Jahromi et al., 2016). This feature is one of the main advantages of 
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unsupervised methods, especially in industrial environments (Yiakopoulos 

et al., 2011). 

 

Unsupervised learning models have already shown good results for fialure 

recognition in rotating machinery. However, most researches studies in the 

literature have been limited to the analysis of only vibration data, i.e., an 

univariate approach (Abid et al., 2020; Ben Ali et al., 2018; Durbhaka & 

Barani, 2016; Nguyen et al., 2019; Soualhi et al., 2014; Wang et al., 2019; 

Yiakopoulos et al., 2011), but there are other numerous useful data for the 

failure diagnosis of rotating machinery, including for example oil analysis, 

acoustic emission, pressure and temperature measurement, and microwave 

energy. 

 

Critical rotating machinery is generally monitored by multi-sensors because 

of the probability of a more robust representation of the phenomena 

implicated. However, multivariate data presents a bigger challenge for the 

use of machine learning algorithms, as they must be able to process and 

correlate attributes in a greater amount of data (Figueirêdo et al., 2020). 

 

In this paper, we explored a turbogenerator, which is a critical rotating 

machine for the power generation system of an FPSO and other systems of 

oil and gas industry, for instance: Liquefied Natural Gas (LNG), pipeline, 

refinery, and petrochemical (Parrella et al., 2019). It operates on a wide 

variety of gaseous and liquid fuels, being extremely useful for offshore 

electricity generation, since oil and gas platforms are usually located 

hundreds of miles from the coast (Goldmeer et al., 2018). 

 

In this context, this work proposes a comparative performance assessment 

between six unsupervised machine learning algorithms for pattern 

recognition and anomaly detection in multivariate time-series data from the 

oil and gas industry. The goal is to reveal the capacity of unsupervised 

algorithms to assist experts in the task of data annotation and to leverage the 

supervised models. We use the labels of the data only for evaluation 

purposes. The data was acquired from a turbogenerator of an FPSO power 

generation system. 
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2. Unsupervised Learning Algorithms 

 

As our goal is to compare the performance of six unsupervised machine 

learning algorithms, understanding the logic of each one of them can 

contribute to a correct parameterization of the algorithm and consequently 

its performance. Thus, we review the concepts and applications of well-

developed unsupervised algorithms. 

 

2.1. C-AMDATS 

 

The Cluster-based Algorithm for Anomaly Detection in Time Series Using 

Mahalanobis Distance (C-AMDATS) is an unsupervised clustering 

algorithm designed for pattern recognition or anomaly detection in 

multivariable time series. 

 

The algorithm starts by dividing the time-series   into a set of groups   of 

the same size  , where each subset                   is sized       , 

i.e.,       (except the last set, in cases where     is not divisible by  ). 

Afterwards, the algorithm reconstructs   iteratively using its copy   . For 

this, the algorithm uses       to determine which set in   is closest to    by 

Mahalanobis distance. 

 

The function       computes the average of the time-series segments 

within each     group or its centroid,                        , and 

the distance ,         , from    for each    centroid, for         . 

Using these distances, the algorithm moves    from its current group in   to 

the group   , where   is the index of the group     whose centroid    is 

the closest to    according to         . 

 

After the iterative reconstruction of  , the set of groups   is definitely 

formed, which consists of groups of samples    of different sizes and better 

groups according to their values and distributed along the time axis, which 

is due to the Mahalanobis function. 

 

In general, clustering algorithms use the Euclidean distance, which tends to 

form groups with a circular shape (since it does not consider the variance of 

each dimension of the dataset). Thus, if the shape of the group is more 
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elongated on the x-axis or the y-axis, the general shape of the group will 

always be circular. However, this circular shape may not be adequate to 

represent the real shape of the group. Therefore, the C-AMDATS apply 

another distance to solve this problem. Eq. (1) presents the Mahalanobis 

distance formula. 

 

                        (1) 

 

Where:         is the Mahalanobis distance between a specific point in the 

time series and its respective centroid;               
  is a specific 

variable in the time-series data, where   is the number of variables; 

              
  is a certain cluster centroid; and   is the covariance 

matrix relative to that cluster. 

 

The next step implements the logic of finding the hidden patterns   in the 

time series  . After all the groups have been discovered, the algorithm 

compares which groups are similar to each other. This similarity is 

computed applying the standard deviation    of the actual values of the   

samples, the y coordinate of each centroid, and the clustering factor  . 

Thus, if the modulus of the difference between the   coordinate of the 

centroids of two groups is less than or equal to the product of   with   , 

then these groups can be merged, which means that they will represent the 

same pattern in  . This task is carried out until every group has been 

analyzed. 

 

In conclusion, the algorithm computes the probability of each pattern   

being interesting in terms of being an anomaly in the time-series  . This is 

done by computing the anomaly index for each pattern  , which is 

calculated as the ratio between the total size of the time-series and the size 

of the pattern present in  . The higher the anomaly score is, the greater the 

probability of an anomalous behavior in   (Nascimento et al., 2015). Eq. (2) 

presents the Anomaly Score formula. 

 

               
 

   

    
 (2) 
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Where                
 is the anomaly score of the pattern         is the 

size of the pattern   , and     is the size of the time series  . 

 

2.2. Luminol Bitmap 

 

Bitmap is an unsupervised learning algorithm in the Luminol library for 

anomaly detection or time-series correlation. The background of the Bitmap 

algorithm is based on the approaches of dimensionality reduction by 

symbolic aggregate approximation (SAX) and time-series bitmaps.  

 

Initially, the algorithm normalizes each time series for a mean of zero and a 

standard deviation of one, since it is well understood that it is meaningless 

to compare time series with different offsets and amplitudes. Eq. (3) 

presents the Z-Score formula: 

 

   
     

 
 (3) 

 

Where:    is the Z-Score value of   ,    is a specific sample in the time 

series data,    is the mean of the time-series, and   is the standard deviation 

of the time series. 

 

In the next step, the algorithm makes a feature extraction of the raw time 

series data by converting them into a Piecewise Aggregate Approximation 

(PAA). The PAA takes the real valued signal, divided into equal sized 

sections, and calculates the mean value of each section. Thus, by replacing 

each section with its mean, a reduced dimensionality piecewise constant 

approximation of the data is already obtained.  

 

A time-series   of length   can be represented in PAA number segments   

by a vector             . The ith element of    is calculated in Eq. (4): 

 

    
 

 
     

 
 
 

  
 
 
       

 (4) 
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After transforming a time-series dataset into PAA, it is applied for a further 

transformation to obtain a discrete representation. Once the normalized time 

series has a Gaussian distribution, a discretization technique can be 

achieved which will produce symbols with equiprobability. The conversion 

of the PAA number into SAX words is made by the Breakpoints  . 

Breakpoints are a threshold that will produce   equal-sized areas under the 

Gaussian curve, i.e., the Gaussian distribution is divided into   bins with 

equal probability at every bin. A set of break points corresponding to every 

symbol in SAX alphabet and   correspond to the alphabet size. SAX can 

produce strings on any alphabet size, but Luminol Bitmaps are defined for 

sequences with an alphabet size of four. 

 

For instance, Figure 1 shows an example of Gaussian distribution with two 

areas of equiprobability (    , i.e., the probability of a PAA number 

being in the left side is the same as the right side. We can clearly see   as 

the threshold between the areas, thus for example, if the PAA value is less 

than or greater than  , the value will be converted into A and B SAX 

symbol, respectively .That is how SAX transformation works (Lin et al., 

2003). 

 

 
Figure 1. Gaussian curve with two areas of equiprobability. 

 

The conversion into the SAX symbol is made by two slides of short 

windows. The lead window shows how far to look ahead for anomalous 

patterns and the lag window shows the size of the memory of the past to 

memorize. 
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After converting the original time series into SAX representation, the 

algorithm will count the frequencies of SAX subwords at the desired level 

of resolution to color the corresponding pixel of the bitmap grid in a 

principled way. The frequencies of SAX subwords are normalized [0,1] by 

the largest value and encode the pixels values to be in the RGB color space. 

 

At this point, the distance between the two bitmap windows is measured 

and reported as an anomaly score at each time instance. The distance 

between them is defined as the summation of the square of the distance 

between each pair of pixels. More formally, for two     bitmaps BA and 

BB, the distance between them are represented in Eq. (5): 

 

                         
 

 

   

 

   

 (5) 

 

The user must choose both lengths of the sliding window feature  , the 

number   of equal-sized sections in which to divide the time series  , and 

the detector score for the anomaly data computed. There is no choice to be 

made for alphabet size, because a simple alphabetical order of size 4 (e.g.: 

a, b, c, d) was fixedly defined in the Bitmap approach (Wei et al., 2005). 

 

2.3 SAX-REPEAT 

 

This approach consists of expanding the original SAX technique to handle 

multivariable data. The algorithm apply SAX to every dimension of the data 

separately and then combine the resulting string by assigning every possible 

combination of symbols in the resulting dimensionality   strings a unique 

identifier. The symbol combination leads to a string of length   but with an 

extended alphabet of length   . So, to remain the requirement that the final 

string must have an M-symbols alphabet, the algorithm use k-means in the 

multivariable SAX subwords to perform a clustering with   clusters and 

replace it with the centroid of its cluster (Mohammad & Nishida, 2014).  

 

K-means is an unsupervised algorithm for pattern recognition based on the 

distance of a data point to its cluster centoride in a Euclidean space. It aims 

to partition   data points into   clusters in which each data point belongs to 
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the cluster with the nearest mean (also called cluster centers or cluster 

centroid) (Figueirêdo et al., 2020). 

 

So, the SAX-REPEAT algorithm returned a set of groups or patterns from 

the multivariable dataset by applying SAX and k-means. Moreover, in order 

to extend this approach for an anomaly detection, we propose the Eq. (2) to 

compute the anomaly score for each cluster (the same approach used by the 

C-AMDATS algorithm). Therefore, SAX-REPEAT is now able to 

recognize interesting patterns in a multivariable dataset with their respective 

anomaly score, i.e., their probability of being an anomalous pattern. 

 

2.4 k-NN 

 

The k-Nearest Neighbors (k-NN) algorithm is a popular method for 

classification and regression applications. The principle behind it is to 

predict the new data from the closest   training samples. The   is the 

number of neighbors that is predefined by the user as a constant and the 

distance is calculated in an Euclidean space. In general, the distance applied 

is an Euclidean function, which is the most common choice, but it can be 

calculated using other distance functions (Cover & Hart, 1967). 

 

The Euclidean distance between the points                and   

            , in a n-dimensional Euclidean space is defined in Eq. (6): 

 

                 
 

 

   

 (6) 

 

Where:                and                are two points in 

Euclidean n-space. If we compare Eq. (6) to Eq. (1), a small difference can 

be noted, where Eq. (1) only includes the inverse of the covariance matrix 

in the calculation. 

 

Ramaswamy et al. (2000) have extended k-NN to an unsupervised approach 

using the distance to the     nearest neighbor as an anomaly score. The 

anomaly score for each data point is the sum of the distance from its   

nearest neighbors, called weight (Angiulli & Pizzuti, 2002). Each data point 
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is ranked by its anomaly score and the top   points of the rank are 

considered anomalous. The proportion of anomaly data is calculated based 

on contamination parameter times sample number. 

 

The k-NN algorithm depends on three parameters, a metric used to compute 

the distance between two points (the Euclidean function applied in this 

study), a   value of the number of neighbors to consider, and contamination 

to define the threshold on the decision function (Cover & Hart, 1967; Gou 

et al., 2019). 

 

2.5 Bootstrap 

 

Bootstrap is a particularly useful algorithm to estimate any summary 

statistics, for example: variance, mean, standard error, and confidence 

intervals. The name bootstrap concerns the use of the original dataset to 

generate new datasets   . The algorithm is statistical based and consists in 

generating samples of size   (called bootstrap samples) from an initial 

dataset of size   by randomly drawing with replacement   observations. 

There are two hypotheses that have to be verified to make this approach 

valid, which are: (i) the size   of the initial dataset should be large enough 

to capture most of the complexity of the underlying distribution 

(representativity), and (ii) the size   of the dataset should be large enough 

compared to the size   of the bootstrap samples so that samples are not too 

much correlated (independence). 

 

The algorithm uses computational power to generate the bootstrap sample, 

which is a resampling of size   drawn to replace the original dataset 

              . The bootstrap sample is represented    

   
    

      
  . Each   

  is one of the original   values randomly chosen; 

the chosen probability for each   value is equipollent, for instance:   
  

     
       

       
    , etc. Observe that the same original value can 

be chosen zero, one, or more times; in the example,    appeared twice, i.e., 

the selection of   value is not exclusive.  The algorithm generates a larger 

number of bootstrap samples   of each size   using a random number 

device to perform the training. The number of bootstrap samples defines the 

variance of the estimate, i.e., the higher the number is, the better the 
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variance, but, on the other hand, the computational cost increases 

withincreasing   value (Efron, 1992; Efron et al., 2015). 

 

In this sense, we used Bootstrap to calculate a confidence interval of the 

time series to get the potential anomaly data. The algorithm initially 

requests the statistics stored during the training and selects values in the 

chosen percentile for the confidence interval. The chosen percentile is 

denoted as   (Alpha or Significance Level). Eq. (7) and Eq. (8) define the 

formula to estimate the distribution of δ* for each Bootstrap sample. 

 

               (7) 

 

Where:     is the mean of an empirical bootstrap sample and    is the mean 

of the original data. 

 

After computing the distribution of the Bootstrap Sample, the confidence 

interval of the bootstrap distribution can be found. For instance, δ.05 and 

δ.95 are the 0.05 and 0.95 critical values of  , which gives a confidence 

interval of 90%; that confidence interval is defined in Eq. (8) 

 

                            
         

   (8) 

 

Where:    is the mean of the original data,     
  is significance level at the 5th 

percentile, and     
  is the significance level at the 95th percentile. 

 

Thus, in order to obtain a very accurate estimate of     
  and     

 , it is 

important to generate a large number of bootstrap samples. 

 

2.6 Robust Random Cut Forest (RRCF) 
 

RRCF is an ensemble algorithm for detecting anomaly data points. The 

algorithm takes a set of random data points (Random), cuts them to the 

same number of points, and creates trees (Cut). Then it looks at all trees 

together (Forest) to determine whether a particular data point is an anomaly.  

 

The user can choose the number of trees and the size of each tree. The size 

corresponds to the number of data points that each tree has which is 

randomly sampled from the original dataset. Once the forest is developed, 
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the algorithm injects the new data point   inside the trees and start to cut to 

compute the average depth of the point across the collection of trees. Point 

  is labeled as an anomaly if the score overtakes the threshold, which 

corresponds to the average depth across the trees (Guha et al., 2016). 

 

 

3. Multivariate Time-Series Data 

 

The comparative performance evaluation was done using multivariate time 

series data from the oil and gas industry. The data comes from a rotating 

machine of the P-50 FPSO. The platform is located in the Albacoara Leste 

field (latitude 22º05'04 '' S and longitude 039º49'45 '' W) in the Campos 

Basin, 120 km from the coast of the state of Rio de Janeiro, Brazil. The P-

50 is operated by Petrobras and Repsol Sinopec Brazil.  

 

The platform has many critical machines that are constantly monitored for 

maintenance purposes. In this sense, multivariate time series data was 

collected from a turbogenerator of the power generation system. The 

datasets refer to the turbogenerator health status. The machine consists of a 

multi-stage gearbox, a generator, and a turbine with an axis rotation speed 

of 6,000 rpm. 

 

The measurement data come from 28 different sensors installed in the 

gearbox, generator, and electrical parts of the turbogenerator, as given in 

Table 1. The variables collected are diverse, such as vibration, temperature, 

pressure, rotation, current, and reactive power. The high number of sensors 

installed on the machine demonstrates how important it is to the system. 

 

Our goal was to evaluate the performance of unsupervised algorithms on 

multivariate time series data, as usually several parameters are collected 

from critical machines for a better representation of phenomena. However, 

the greater the amount of data, the more difficult human analysis is, 

especially in real time. However, it also presents a challenge for machine 

learning algorithms because of the increased volume of data and attributes 

to be correlated. 
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Table 1. List of variables collected, including sensor number (N), 

description, and measuring units. 
 

N Description Unit 

1 Lube oil supply pressure kPa 

2 Input shaft speed RPM 

3 Generator reactive power VAr 

4 Generator radial bearing temperature 1 DE °C 

5 Generator radial bearing temperature 2 DE °C 

6 Generator radial bearing NDE temperature 1 °C 

7 Generator radial bearing NDE temperature 2 °C 

8 Gearbox radial bearing temperature 1 DE °C 

9 Gearbox radial bearing temperature 2 DE °C 

10 Gearbox high shaft bearing DE X temperature °C 

11 Gearbox high shaft bearing DE Y temperature °C 

12 Gearbox high shaft bearing NDE X temperature °C 

13 Gearbox high shaft bearing NDE Y temperature °C 

14 Gearbox shaft bearing NDE X temperature °C 

15 Gearbox shaft Bearing NDE Y Temperature °C 

16 Gearbox thrust bearing temperature 1 °C 

17 Gearbox thrust bearing temperature 1 °C 

18 Gearbox thrust bearing temperature 2 °C 

19 Gearbox thrust bearing temperature 2 °C 

20 Lube oil supply temperature °C 

21 Gearbox frame accelerometer 1 g 

22 Gearbox frame accelerometer 2 g 

23 Generator DE frame accelerometer g 

24 Generator NDE frame accelerometer g 

25 Gearbox X DE radial vibration of high shaft µm P-P 

26 Gearbox Y DE radial vibration of high shaft µm P-P 

27 Gearbox X DE radial vibration of low shaft µm P-P 

28 Gearbox Y DE radial vibration of low shaft µm P-P 

 

Four cases of multivariable time series data was acquired from the 

turbogenerator. All of them were collected at a rate of 1 to 30 samples per 

second. In summary, four datasets of real cases were structured for this 

study: 

 

Dataset I. Started on 07/17/2018 at 12:20:00 PM and ended on 07/19/2018 

at 02:21:00 PM (2 days, 2 hours, and 1 minute) and comprising 

82,174 data points; 
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Dataset II. Started on 06/25/2018 at 03:26:00 PM and ended on 27/06/2018 

at 05:22:00 PM (2 days, 1 hour, and 56 minutes) and comprising 

79,411 data points; 

Dataset III. Started on 06/29/2018 at 07:50:00 AM and ended on 07/01/2018 

at 04:05:00 PM (2 days, 8 hours, and 15 minutes) and comprising 

91,116 data points; 

Dataset IV. Started on 08/01/2018 at 04:00:00 AM and ended on 08/03/2018 

at 07:39:00 AM (2 days, 3 hours, and 39 minutes) and comprising 

83,297 data points. 

 

As our focus is to evaluate the performance of unsupervised machine 

learning algorithms to assist experts on labeling the normal/anormal data, 

all datasets contain normal data and abnormal events that were indicated in 

operational reports. However, we have noted that the operator recorded the 

time afterthey observed the abnormal event and performed immediate 

follow-up actions,  and thus some inaccurate records may be present. In 

addition, usually the control room clock does not display seconds (i.e., one-

minute resolution). Depending on the complexity of the abnormal event and 

the operator’s expertise, the time difference between the exact abnormal 

event and the recorded time could be several seconds to several minutes. 

 

As a data pre-processing step, a minute-to-minute resample was made to the 

interval of data points. We assume that all data points within the same one-

minute interval would be equivalent to the average of the value. Eq. (9) 

displays the preprocessing formula. 

                          
  
 
 

 

   

 (9) 

 

Where    is the initial time of 1 minute interval,       is the time of the data 

point  ,   is the amount number of data points between    and        , 

and    is the average of the value of data points between    and          

 

On July 18, 2018, the turbogenerator tripped because of the high vibration 

signal measured by sensor 28. Figure 2 shows the multi-sensor signals of 

the machine collected during this anomalous behavior (Dataset I). The 

vertical red lines indicate the beginning of the malfunction until the return 
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of the operation, which lasted at total of 2 hours and 1 minute. This event 

was recorded in the operational reports as two types of failures that occurred 

sequentially, which were: trip by vibration and trip by flame loss. 

Nevertheless, we can note that there are different sensors that show 

significantly distinct patterns and trends. Moreover, a comparison between 

this operation record and other records – as shown in Figure 3, Figure 4, and 

Figure 5 –from the same sensors show that they may behave quite 

differently under different operating circumstances. This complex data 

structure motivates us to explore the performance of unsupervised machine 

learning algorithms 

 
Figure 2. Multi-sensor signals of Dataset I with a recorded anomaly marked 

between the vertical red lines. Each sensor description can be found in 

Table 1 according to the sensor number . 

 

The failure in Figure 2 is a typical case of machine degradation that 

occurred gradually, i.e., in this case, predictive models can be used to detect 

the imminence of the failure to anticipate it. Thus, unsupervised algorithms 

can recognize interesting\anomalous patterns to assist specialists in data 

labeling for further training of DP models for maintenance purposes. All six 
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algorithms were applied in the same data to verify their ability to detect the 

same failure signal. 

 

In Dataset II, on June 26, 2018, the turbogenerator had another trip because 

of the low lube supply pressure measured by Sensor 1. Figure 3 shows the 

multi-sensor signals collected from the machine operation with this 

anomaly data. The operational reports described three different types of 

failure that occurred sequentially: trip during alignment of the exchanger, 

trip by gearbox vibration, and trip by flame loss. 

 

The beginning of the anomaly function until the return of operation of the 

machine is indicated between the vertical red lines in Figure 3, which lasted 

2 hours. 

 

 
Figure 3. Multi-sensor signals of Dataset II with a recorded anomaly 

marked between the vertical red lines. Each sensor description can be found 

in Table 1 according to the sensor number . 

 

In Dataset III, on June 30, 2018, the machine had another unscheduled stop. 

Figure 4 shows the multi-sensor signals collected before, during, and after 
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the machine operation at this specific unexpected stop. The operational 

reports described two different types of failure that occurred sequentially: 

trip by pressure differential in the pump filter and trip by vibration. In 

Figure 4, the red vertical lines represent the beginning of the anomalous 

behavior recorded in the operational reports until the return of the machine, 

which lasted 8 hours and 15 minutes. 

 

 

 
Figure 4. Multi-sensor signals of Dataset III with a recorded anomaly 

marked between the vertical red lines. Each sensor description can be found 

in Table 1 according to the sensor number. 

 

Lastly, in Dataset IV the machine shuts down unexpectedly because of a 

trip by Vacuum Solenoid Valve (VSV) failure on August 2, 2018. Figure 5 

shows the multi-sensor signals that contain the anomaly data that caused the 

machine shutdown, which lasted 3 hours and 35 minutes. 
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Figure 5. Multi-sensor signals of Dataset IV with a recorded anomaly 

marked between the vertical red lines. Each sensor description can be found 

in Table 1 according to the sensor number . 

 

Table 2 shows the statistics of each dataset and their respective failure 

signals. We can note that the datasets are highly unbalanced with 3.86 to 

14.65% of anomaly data. Unbalanced data is quite common in real machine 

measurement data, as the machine is expected to operate most of the time in 

good condition. Furthermore, the data has few Not a Number
3
 (NaN) 

records; Dataset II is the highest one, with 5.81%. However, the amount of 

NaN in the failure zone is quite significant: Dataset III has the highest 

proportion with 15.83%, and Dataset II has the lowest one with 6.10%. 

 

 

 

                                                           
3
 Not a Number means missing data points. 
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Table 2. Summary of the dataset statistics. 
 

Dataset 

Id 
Data Data Points (#) NaN (#) Variables (#) Rows (#) 

I 
Total 82,174 1,882 28 3,002 

Failure 3,175 241 28 122 

II 
Total 79,411 4,617 28 3,002 

Failure 3,107 281 28 121 

III 
Total 91,116 3,412 28 3,376 

Failure  13,348 540 28 496 

IV 
Total  83,297 3,391 28 3,096 

Failure  5,615 433 28 216 
NaN: Not-a-Number. 

 

A linear interpolation was performed to fill the NaN because most of the 

algorithms are sensitive to missing data points. The reason for existing NaN 

in the dataset is because the 28 sensors are not synchronized to collect data 

at the same sample rate. 

 

 

4. Experimental Setup 

 

Experimental setup in the field of machine learning is an optimization of 

parameters or adjustment of the algorithm. In summary, it concerns in 

choosing a set of ideal parameters to optimize the performance of the 

algorithm. 

 

Each algorithm has hyperparameters that need to be adjusted to each case 

study. Thus, expertise in the algorithm logic and some attempts at success 

and error are necessary to find good values among them. 

 

Figueirêdo et al. (2020) have reported difficulty in fine tuning the 

algorithms manually . Thus, we have implemented a loop in the execution 

of algorithms that varies the parameters in each iteration, which generates 

different combinations of parameters. The following combinations are 

defined in Table 3. 
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Table 3. Parameter tuning. 
 

Algorithm Parameter combination 

C-AMDATS 
 Initial Cluster Size (minutes): [15, 20, 25, 30] 

 Clustering Factor: [0.5, 1, 1.4, 1.6, 1.8, 2.0] 

Luminol Bitmap 

 Detector Score: [0.1,0.5,1.0] 

 Lead / Lag Size: [1, 10, 100, 1000] 

 Precision: [1, 10, 100] 

 Chunk Size: [1, 10, 100] 

SAX-REPEAT 

 Window Size: [1, 10, 100, 500, 1000] 

 PAA Size: [1, 2, 3, 4] 

 Alphabet Size: [1, 2, 3, 4] 

k-NN 
 K: [3, 5, 10, 50, 100, 150, 300, 500] 

 Contamination: [0.1, 0.2, 0.3] 

Bootstrap 
 Confidence Interval: [0.90, 0.95, 0.99] 

 Iteractions: [100, 200, 400, 500, 600, 1000, 2000, 5000] 

RRCF 

 Number of Trees: [55, 110, 220] 

 Tree Size: [128, 256] 

 Shingle Size: [4] 

 

The RRCF had the lowest number of iterations because of the small number 

of parameters and the little variation in results during the loop. The metric 

score to define the best model setting was Area Under the  Precision-Recall 

Curve (AUC-PRC). Section 5 describes AUC-PRC in more detail. Table 4 

summarizes the best parameter settings of the presented algorithms in the 

four case studies. 

 

We cannot say that our proposed parameterization is the best solution to the 

problem because it would be necessary to test all existing possibilities of 

hyperparameters, which would make this study exhaustive and with a high 

level of computational cost. 

 

As the different cases analyzed are data from the same machine and the 

same multiple sensors, but for different moments of time, the parameters 

values in Table 4 did not vary much between them. This suggests that for 

the same applications the parameters may vary little, which allows the 

skipping of the step of finding the best parameters and the reduction of the 

computational power once the application is already known. 
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Table 4. Parameter settings of the unsupervised algorithms. 
 

Algorithm Parameter 
Cases 

#1 #2 #3 #4 

C-AMDATS 
ICS (min) 30 30 30 30 

Cluster Factor 2.0 2.0 1.8 2.0 

Luminol Bitmap 

Detector Score 0.1 0.1 0.1 0.1 

Precision 10 10 10 10 

Window Size
(1)

 100 100 100 100 

Chunk Size 1 21 10 1 

SAX-REPEAT 

Window Size 1 1 1 1 

PAA Size 1 1 1 1 

Alphabet Size 4 4 5 4 

k-NN
(2)

 
k 300 300 500 500 

Contamination 0.1 0.1 0.2 0.1 

Bootstrap 
CI 0.99 0.99 0.99 0.99 

Iteractions 400 200 200 400 

RRCF
(3)

 
Number of Trees 110 110 110 220 

Tree Size 256 256 128 256 
ICS: Initial Cluster Size, PAA: Piecewise Aggregate Approximations, k: Number of Neighbors, 

CI: Confidence Interval, (1) same value applied for Lag window and Lead window, (2) Euclidean 

distance applied for every case, (3) Shingle Size = 4 for every cases. 

 

 

The algorithms were executed on the supercomputer named AIRIS 

(Artificial Intelligence Repsol Sinopec Brazil Integrated System) at the 

Supercomputing Center for Industrial Innovation (CS2I) at SENAI 

CIMATEC. The AIRIS processor model is the Intel(R) Xeon(R) Gold 6148 

CPU @ 2.40GHz and has 376 GB RAM memory. All algorithms have been 

implemented with Python 3.6. 

 

 

5. Metrics Employed for Evaluation Performance 

 

In this paper we evaluate the performance of the unsupervised algorithms 

for identifying the same anomaly patterns by seven metrics. It is prudent to 

measure the performance with a set of metrics to avoid any bias deviation. 

The evaluation compares the real data points (classified by experts) against 

the predicted data points (predicted by the unsupervised algorithms). The 

seven metric are: 
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 Accuracy (ACC): considering all normal and faulty samples, ACC 

can be computed as: 

 

     
     

      

      (10) 

 

Where:    and    are respectively the number of true positives and true 

negatives in samples, and        is the overall number of samples. 

 

 Precision (PR): indicates the true positive value compared to the 

false negative; PR can be calculate as: 

 

    
  

     
      (11) 

 

Where:    is the number of false positives. 

 

 Recall (REC): or True Positive Ratio (TPR) indicates the proportion 

of anomalies that are correctly detected out of all anomalies. 

Normally, it is a high prioritized metric since the failure of anomaly 

detection (false negatives) leads to much more deleterious results 

than false alarms (false positives) in industrial applications. REC can 

be calculated as: 

 

     
  

     
      (12) 

 

where    is the number of false negatives. 

 

 Specificity (SP): demonstrates the capacity of the model to predict 

the true negative over false positives, and it can be computed as: 

 

    
  

     
      (13) 

 

 F1-Score (F1): is a harmonic average between REC and PR, and it 

can be calculated as: 

 

    
          

      
      (14) 

 

 Area Under the Receiver Operating Characteristics Curve (AUC-

240                              SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 19 - NUMBER 7 - YEAR 2021                             ISSN: 1690-4524



 

 

 

ROC): provides a relative tradeoff between the False Positive Rate 

(FPR) and the TPR. FPR is the equivalent of     ; 

 

 AUC-PRC: provides a relative tradeoff between the PR and the REC. 

It is an important metric for assessing unbalanced datasets, being a 

great advantage over the others metrics, because the vast majority of 

real data has a higher volume of normal data in relation to abnormal 

data. 

 

All metrics above take a value between 0 and 1. A perfectly inaccurate 

anomaly detection model has a value of 0; a model that makes random 

guesses has a value of 0.5; and a perfectly accurate model has a value of 1, 

i.e., the higher the metric value, the better is the anomaly detection 

performance. 

 

The performance evaluation would not be properly fair as the Luminol, k-

NN, Bootstrap, and RCCF algorithms made an univariable analysis, unlike 

C-AMDATS and SAX-REPEAT that have a multivariate approach. Thus, 

to obtain a more appropriate analysis, the metrics were calculated for all 

proposed variables and then we extracted an average evaluation, except for 

C-AMDATS and SAX-REPEAT. 

 

 

6. Results and Discussion 

 

In this section, we present the results for all six unsupervised machine 

learning algorithms described in Section 2. The algorithms were applied in 

four different cases studies with multivariate time series data, described in 

Section 3. Therefore, the goal is to investigate how each unsupervised 

algorithm can work to detect anomalies. 

 

The C-AMDATS and SAX-REPEAT algorithms are designed to find 

interesting/anomalous patterns in a multivariate time series data, and each 

pattern of interest is assigned an anomaly index. Thus, patterns with the 

highest indexes are selected as anomalous patterns, unlike the other 

algorithms that are designed to find anomaly and normal data. 

 

The evaluation performance is summarized in Table 5. We can see that the 

C-AMDATS was the one that stood out among the other algorithms. The 
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algorithm achieved the best performance in all seven metrics. SAX-

REPEAT had the second best performance. A rank in decreasing order of 

performance the algorithms would be: (i) C-AMDATS, (ii) SAX-REPEAT, 

(iii) Bootstrap, (iv) k-NN, (v) Luminol Bitmap, and (vi) RRCF. Both C-

AMDATS and SAX-REPEAT algorithms with a multivariate analysis were 

intrinsically superior. However, more case studies must be carried out to 

affirm the superiority of the algorithms studied here. 

 

Table 5. Unsupervised machine learning performance in four real cases 

(the best performance is highlighted in bold). 
 

Algorithm Metric 
Cases (%) Mean 

(%) 

SD 

(%) #1 #2 #3 #4 

C-AMDATS 

ACC 99 100 99 99 99 1 

PR 80 100 94 90 91 8 

REC 98 99 97 100 99 1 

F1 88 100 95 95 94 5 

SP 98 99 97 100 99 1 

AUC-ROC 99 100 98 100 99 1 

AUC-PRC 79 99 92 90 90 8 

Luminol 

Bitmap 

ACC 61 68 70 75 69 6 

PR 14 19 43 33 27 13 

REC 100 100 91 99 98 4 

F1 24 31 55 48 39 14 

SP 100 100 91 99 98 4 

AUC-ROC 80 84 79 86 82 3 

AUC-PRC 14 19 39 33 26 12 

SAX-

REPEAT 

ACC 96 100 98 98 98 2 

PR 47 92 95 82 79 22 

REC 68 99 90 96 88 14 

F1 56 95 92 89 83 18 

SP 68 99 90 96 88 14 

AUC-ROC 82 99 95 97 93 8 

AUC-PRC 34 91 87 79 73 26 

k-NN 

ACC 93 95 92 96 94 2 

PR 34 46 72 65 54 17 

REC 65 91 85 90 83 12 

F1 44 60 77 75 64 15 

SP 65 91 85 90 83 12 

AUC-ROC 79 93 89 93 89 6 

AUC-PRC 25 43 65 60 48 18 
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Algorithm Metric 
Cases (%) Mean 

(%) 

SD 

(%) #1 #2 #3 #4 

Bootstrap 

ACC 95 94 94 97 95 2 

PR 51 55 89 78 68 18 

REC 62 87 66 88 76 14 

SP 54 65 73 82 69 12 

F1 62 87 66 88 76 14 

AUC-ROC 79 91 82 93 86 7 

AUC-PRC 35 52 65 71 56 16 

RRCF 

ACC 91 91 82 89 88 4 

PR 17 16 27 21 20 5 

REC 27 27 13 20 22 7 

SP 20 20 17 20 19 1 

F1 27 27 13 20 22 7 

AUC-ROC 61 60 53 57 58 3 

AUC-PRC 8 8 16 10 11 4 
SD: Standard Deviation 

 

With these outcomes, C-AMDATS demonstrated the highest capacity to 

detect the anomalous and normal patterns present in the multivariate time 

series. The algorithm revealed the highest and lowest value in all metrics for 

the mean and standard deviation, respectively. Therefore, with these 

automatically detected patterns, experts would be able to label a large mass 

of data in a few moments and with a high accuracy, as well as reduce the 

many hours of manual and tedious efforts of data annotation tasks. 

 

The SAX-REPEAT and the Bootstrap algorithms performed well for some 

case studies. The SAX-REPEAT detected the anomalous data in case 2, 

case 3, and case 4; however, it was unsuccessful in case 1. Bootstrap 

detected only anomalous data from case 4. The remaining algorithms scored 

low for all cases, as shown in Table 5.  

 

In addition to evaluating the performance of each algorithm, it is also 

essential to analyze processing time, which is directly proportional to 

computational cost. Thus, Table 6 shows this comparison: 
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Table 6. Processing time of each algorithm (the fastest algorithm is 

highlighted in bold). 
 

Algorithm 
Time of each case study (s) Mean 

(s) 

SD 

 (s) #1 #2 #3 #4 

C-AMDATS 429.2 73.9 703.5 8,439.0 2,411.4 4,026.7 

Bitmap 10.3 10.2 20.4 9.8 12.7 5.1 

SAX-REPEAT 18.3 201.2 184.8 221.7 156.5 93.3 

k-NN 11.5 8.6 14.8 14.3 12.3 2.9 

Bootstrap 3.0 3.5 3.3 3.7 3.4 0.3 

RRCF 1,625.7 1,519.1 2,449.7 5,849.1 2,860.9 2,035.1 
SD: standard deviation 

 

Bootstrap was the fastest algorithm with 3.4 and 0.3 seconds of mean and 

standard deviation, respectively. A fast algorithm enables real-time analysis. 

However, the processing time for RRCF and C-AMDATS were very high 

with an average of 2,860 seconds and 2,411 seconds, respectively. as C-

AMDATS showed the best performance (Table 5), it would be interesting to 

optimize its structure to speed up its processing time, such as parallelization 

of the calculation of the inverse of the covariance matrix and use of 

Multiple Graphics Processing Units (GPU). 

 

 

7. Conclusion 

 

In this work, we have demonstrated the effectiveness of a multivariate 

analysis using six different unsupervised machine learning algorithms in a 

real system from an FPSO. Our goal was to compare the performance of the 

algorithms to automatically identify anomalous patterns in multivariate time 

series data. The experimental results showed that unsupervised algorithms, 

such as C-AMDATS, have high ability to recognize and isolate abnormal 

events of rotating machinery, thus showing their great capacity to 

automatically label raw data with unsupervised learning.  

 

Therefore, instead of experts spending several hours of hard and tedious 

work labeling a large amount of data– as shown in Figure 2, Figure 3, 

Figure 4, and Figure 5 –, they would just have to label a few patterns 

recognized by unsupervised learning with demonstrated high performance, 

such as C-AMDATS which had 99% of ACC. However, C-AMDATS 
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revealed the need to speed up its execution time. 

 

In conclusion, unsupervised learning can leverage the development of DP 

models for industrial applications, which normally only have unlabeled 

data. This can be especially applied in the oil and gas industry as it has a 

large number of multivariate datasets. 

 

Future works include the extension of this analysis to more real cases in the 

oil and gas industry aiming to develop a broader assesment, as well as an 

extensive study and investigation of approaches of semi-supervised learning 

to train DP algorithms to predict and classify unknown data in different 

mechanical failure modes of rotating machinery for PdM tasks. 
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