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ABSTRACT 1 
 

The Industrial Internet of Things (IIoT) describes a 
computing model where ubiquitous networks of 
heterogenous devices equipped with embedded sensors 
and actuators support innovative data-centric business 
models. Emergent IIoT use cases include Cyber Physical 
Production Systems (CPPS) to support asset optimization 
through self-organization of modular machines within 
production systems. In CPPS, raw materials, machines, 
and operations are interconnected to form a tightly 
integrated network. 
 
To ensure manufacturing continuity as CPPS networks 
evolve, asset managers will need to evaluate risk across 
multi-disciplinary domains. The domains have different 
architectures, lexicons, and priorities. To contribute to 
the eventual codification of data risk in CPPS, this 
research builds on previous literature to consider how 
data may traverse the CPPS model. The resulting models 
put forward in this research are informed by a 
transdisciplinary panel of experts drawn from disciplines 
including information and operational technology to 
bring greater specificity to the definition of business-
critical data in supporting IIoT. Based on these expert 
views, a conceptual hierarchical automation architecture 
that may characterize many future state production 
processes is presented. 
 
Keywords: Industrial Internet of Things (IIoT), Cyber 
Physical Production Systems, Risk Analysis, Security, 
Operational Technology, Information Technology, 
Industry 4.0. 
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1. INTRODUCTION 
 
Within IIoT, Cyber Physical Systems (CPS) refers to 
systems that integrate the computation and networking 
necessary to control physical processes bound by 
feedback loops [1]. For industrial manufacturing, Cyber 
Physical Production Systems (CPPS) describes a 
conceptual environment in which the attributes of CPS 
are extended to include the “5Cs: connection, 
conversion, cyber, cognition, and configuration” [2].  
 
Supporting these 5Cs in CPPS is the learned state  
necessary to provide for “adaptive, self-configuring and 
partly self-organizing, flexible production plants” [3]. 
Achieving this necessitates the data-centric model 
relying on continual data analysis to uncover previously 
unknown cause-and-effect relationships [4]. Therefore, 
CPPS will likely compose modules or components, 
which together fulfil a certain function, or can be 
reconfigured to achieve another function. These module 
referred to as Cyber Physical Production Modules 
(CPPM) will consist of heterogenous components [3] 
bound by Things connected to the Internet [5].  
 
It is these Things in the Internet-of-Things (IoT) that 
sense conditions [5], with that sensed data carried over 
the Internet to connect with other sensor nodes, which 
support collaboration. Extending the IoT, CPS-
embedded devices complement the IIoT by increasing 
“knowledge about the physical system of interest” [6]. 
Supporting this continual analysis of data in the IIoT are 
computationally powerful smart actuator and sensor 
devices connected to Mist, Fog and the Cloud, which use 
virtualization technologies. Cloud refers to Internet-
hosted data, and Fog refers to distributed computing, 
where computation is completed midway between the 
sensors and actuators to minimize data traffic and 
network latency. Mist refers to lightweight fog 
computation placed closer to the Things. Virtualization 
refers to the division of physical servers into multiple 
virtual server instances. This pooling of computing 
power supports optimization. However, the software-
defined abstraction of the underlying hardware still 
presents security issues. It is considered that the use of 
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Cloud, Fog, and Mist technologies will bring flexibility 
to the hierarchies that characterize manufacturing 
automation [7]. Assisting flexibility are Software 
Defined Networks (SDN), a recent network paradigm 
that virtualizes physically distributed network hardware 
in software [8]. In SDN, the centralised software 
backplane supports scalability and improves security 
through process isolation, micro segmentation [9], and 
Zero-Trust [10]. Additionally, many CPPM applications 
may use containerized microservices, an increasingly 
popular software architecture that can be readily 
modified and deployed. While loosely coupled, which 
reduces the risk in interdependencies across the system, 
microservices have a reliance on widely distributed 
communication interfaces [11]. 
 
Based on these technologies, CPS focuses on the 
integration of computation, networking and physical 
processes at a micro method level. In contrast, IIoT 
supports the macro functions through the transformation 
of information flowing from “machines, CPSs, advanced 
analytics, AI [Artificial Intelligence], people, cloud, and 
edge computing” in a connected, integrated manner [2]. 
In this research AI refers to software-defined and data-
centric algorithms.    
 
The continuing trend in integration of Information 
Technology (IT) and Operational Technology (OT) has 
been conceptualized as Industry 4.0 (also Industrie 4.0 or 
I4.0). I4.0 is described as a data-centric paradigm 
characterized by an “ability to accelerate corporate 
decision-making and adaptation processes” informed by 
“interconnectedness between cyber-physical systems and 
people” [4]. The concept of I4.0 emerged from academia 
and the German government, and the term IIoT was 
coined by General Electric to describe Internet-enabled 
Machine to Machine (M2M) communication. This 
research uses the term IIoT, as the objectives of I4.0 
align with those of the IIoT.   
 
Challenging precision in defining CPPS within IIoT is 
that its use-cases are a “thematic subject as opposed to a 
disciplinary topic” [12].  While emerging from IT and 
electrical engineering, [12] postulates that multi-
disciplinary fields such as CPPS often start as themes 
before becoming codified. For example, in considering 
Artificial Intelligence (AI) in IIoT, the International 
Organization for Standardization (ISO), a Standards 
Developing Organization (SDO), currently lists 32 
standards specific to AI. Of these 32 standards, 9 (28%) 
are published and 23 (72%) are under development [13]. 
Those under development include the use of AI in 
standards such as Functional safety and AI systems, as 
well as Risk Management [13], which are relevant to the 
IIoT. Adding complexity to identifying the issues and 
risks specific to IIoT implementations is the fact that 
different technical specialties have their own lexicons 
and differing rates of system change. Moreover, the 
International Electrotechnical Commission (IEC) 

considers that a challenge to IIoT adoption is the lack of  
technical standardization [2].  
 
Illustrating emergent IIoT type use-cases, Congnizant 
[14], a US-based technology company, states that use of 
IoT data to deliver tighter integration between a 
pharmaceutical client’s manufacturing and ERP systems 
delivered a 20% increase in production output. Also, a 
US tool manufacturer’s digital transformation, which 
focused on the use of IoT-derived data, has led to 
operational improvements projected to deliver US$100 
million in cost savings over 5 years [14]. Nonetheless, 
these use-cases are not exact CPPS implementations, so 
extending the functionality implicit in these case-studies 
into more complex self-organizing paradigms will 
require robust risk management.  
 
To contribute to the process of CPPS risk evaluation, 
given these challenges, this research presents generalized 
process boundaries showing the critical data interchange 
that will help asset owners to consider the priorities that 
risk identification must account for. To achieve this the 
expert input of a transdisciplinary panel of IT, OT, AI, 
and Legal and Risk experts informed the refinement of 
the conceptual model alongside key risk considerations.  
 
To satisfy the  objective of this research around 
contributing to the development of a systems approach to 
risk assessment in CPPS, this paper is structured as 
follows. Section 2 discusses the evolution of Industrial 
Automation and Control Systems (IACS) and key data 
considerations, including the current state of 
standardization.  Section 3 sets out the methodology 
adapted for use in this research. Section 4 brings 
specificity to where CPPS sits within the IIoT paradigm. 
Section 5 addresses how traditional data hierarchies will 
be compressed as an increased fidelity of business-
critical data is supported by new technologies. Section 6 
sets out the model validation methods used. Section 7 
presents the findings in a taxonomy. Section 8 explains 
this research’s future direction, with Section 9 
acknowledging the experts and reviewers who have 
kindly contributed to this research program. 
 
 

2. FOUNDATIONAL TECHNOLOGIES 
 
Related Work  
Across IT systems the CIA Triad (CIA) is used to 
broadly approximate the essential data properties of 
Confidentiality, Integrity, and Availability [1]. For OT, 
CIA is situationally modified to include data Availability 
and Integrity, given that they are key to process 
correctness, followed by Confidentiality (AIC) [1]. In 
OT safety-critical processes, Safety is added as SAIC, to 
emphasize the process redundancy necessary to ensure 
the data integrity required of functional safety systems. 
Process integrity is vital, as failures could result in injury 
or death, environmental degradation, and/ or significant 
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economic disruption. Criticality means different things 
across the different domains in the IIoT, so key 
considerations are discussed in the following sections.  

 
Industrial Automation and Control Systems (IACS) 
For processes in CPPS that are critical, the system will 
draw on IACS, a class of industrial computing within the 
domain of OT. IACS comprises hardware, data 
networks, and software.  
 
The progressive refinement of standards that provide a 
baseline of functional attributes has assisted the 
reduction of risk in the operation of IACS. Examples 
include: IEC 62443 - Industrial Automation and Control 
Systems (IACS); IEC 61508 covering functional safety of 
programmable electronic safety systems; and for data 
security in networks and systems, the IEC 62243 series. 
When in control of  hazardous processes, IACS will 
include the layering of redundant systems necessary to 
ensure the level of process safety specified in IEC 61508. 
 
In IACS systems, risk is defined as “a function of the 
frequency of an unwanted dangerous event and the 
severity of the consequences of that event/hazard” [15]. 
Illustrating the differing lexicons across IT and IACS, 
the IT standard ISO 27001 (part of the 27000 IT security 
series) includes a single reference to hazard. It refers to 
environmental hazards that threaten IT equipment [16], 
but not to equipment preventing the IACS categories of 
hazard that risk injury or the loss of life. Contributing to 
these different lexicons is that IT and OT are discrete 
disciplines characterized by differences including:  
 
• Separate architectures: the two domains have 

different computational  priorities in that OT 
emphasizes process correctness, whereas IT 
emphasizes performance. 

• Communication protocols: conflicting protocols 
may cause OT systems to enter an unsafe state  [17].  

• Asset lifespan: the IT asset lifecycle is typically 3 to 
5 years, whereas IACS assets may be required to last 
for 30 years or more [18]. 

• Divergent design: safety is a critical OT design 
criterion [17], whereas IT prioritizes confidentiality 
and integrity. 

• Hardware versus software: traditionally IT has 
utilized software security protections, and OT has 
favored hardware [17]. 

 
To provide for process continuity, risk management is 
the discipline that, following the identification of issues 
and appropriate compensating controls, reduces the risk 
of vulnerabilities being exploited to organizationally 
acceptable levels. With regard to data, the level of 
control applied needs to be proportionate to the process 
or function that the data supports; i.e., the economic 
value derived from that data in supporting the fidelity of 
organizational decision making.  

Verification and Validation (V&V) 
To assist the identification of vulnerabilities that could 
threaten SAIC, Verification and Validation (V&V) is 
used to measure how well the behavior of a physical 
system matches that of the engineering model it 
approximates [19]. Validation examines the processes 
used to determine that the right system was built, and the 
resulting behavior of the physical system [20]. 
Verification is used to ensure the system meets its 
functional requirements, including safety [20]. V&V is 
critical to the quality management necessary to ensure 
system integrity. Risk management is then used to 
further reduce the inherent risk to be within 
organizationally acceptable tolerances. Alongside V&V, 
certification is the quality management process where 
the robustness of V&V is assessed, often by an 
independent third party.  

 
Safety-Critical Data 
Reflecting the need for sequence in the way things 
happen, in support of OT correctness, the requirement 
for real-time execution gives rise to fundamental 
differences between IT and OT architectures. OT 
requires that processing tasks have set priorities, such 
that no lower-value task can execute before higher-value 
critical tasks [21].  In contrast, IT processing uses 
speculative execution, whereby instruction sets are 
loaded into memory in anticipation of their being called. 
Speculation lacks the precision required of OT critical 
task sequencing, and therefore process correctness [21]. 
 
Where hazards are present, and subject to the damage 
that could result from failure, Safety Instrumented 
Systems (SIS) are implemented to support fail-safe 
conditions [22]. SIS describes the hardened hardware 
and software that are implemented to ensure functional 
safety is maintained when abnormal operating conditions 
are encountered. In safety-critical systems, Defense in 
Depth (DiD) is considered during the design stage, with 
multiple levels of redundancy included to reduce the risk 
of serious accidents to be within an acceptable range 
[23]. DiD also addresses the risk that “a safe failure of 
one function may create a new hazard or be an additional 
cause for an existing hazard” [16]. 
 
Illustrating the risks to SIS, in 2017, nation state actors 
compromised an SIS installed in a Saudi Arabian oil 
refinery [24]. While the SIS had accidently been left in 
an incorrect operating state, researchers postulate it was 
only an error in the code of the TRISIS malware that 
prevented it from being capable of triggering a refinery 
explosion [25]. It is considered that TRISIS was likely 
installed following a compromise of the intermediatory 
IT networks used for remote access to the IACS [25]. So 
while attacks against OT assets are increasing, typically 
IT assets are used as the intermediary attack vector [1]. 
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Business-Critical Data  
Differentiating safety-critical from business-critical data 
is the fact that the OT term ‘safety’ addresses control of 
physical processes. These are processes for which 
failures are kinetic, and thus could cause physical 
damage. The consequences of failures in securing 
business data are typically financial or reputational [1]. 
Reputational losses may include loss of market share. 
Therefore, the risk controls appropriate to business-
critical data are those associated with IT systems, so they 
approximate CIA.  
 
Illustrating business-critical issues, in May 2021 a 
ransomware attack of IT systems resulted in the five-day 
shutdown of a key US pipeline. This economically 
critical asset supplies 45% of the fuel consumed on the 
US’s east coast [26]. While Colonial Pipeline’s IT 
systems served as the attack vector, the co-dependency 
of the IACS systems on the billing systems installed in 
the IT domain meant customers could not be charged for 
usage. As this business-critical information was 
unavailable, this contributed to Colonial’s IACS systems 
being shut down. Therefore, where vulnerabilities are 
present in the legacy cores of IT, given the tight 
integration across domains that IIoT presents, new 
classes of operational risk may arise from these tightly 
integrated co-dependencies.  
 
Like OT, IT also embraces the concept of DiD. In IT, 
DiD refers to successive layers of countermeasures 
necessary to thwart a threat actor pursuing the same 
attack vector [27]. Therefore, in IT deployments, DiD is 
a threat isolation mechanism protecting the interior from 
exterior disturbance. Highlighting different priorities, for 
IACS, DiD is a hazard containment mechanism, 
protecting the outside from internal process disturbance. 
For IT, DiD is dynamic, in that additional 
countermeasures may be introduced over time, or 
upgraded at frequent intervals. For IACS, the asset life, 
and the need to support continuous and potentially 
hazardous processes, limits the opportunity for new 
technologies to be introduced. Changes to IACS systems 
will necessitate further V&V, whereas changes to IT 
systems typically do not.  
 
IoT and IIoT Protocols 
A characteristic of IIoT environments is the integration 
of protocols, standards, and data buses of different 
technologies [28] necessary to support device and 
machine interoperability. While IT typically relies on the 
dominant and standardized TCP/IP protocol (or the IP 
variant, UDP), a multiplicity of communication protocols 
support differing IIoT use-cases.  
 
Those protocols targeting IoT and IIoT typically have 
trade-offs relative to performance, security, and energy 
consumption. For example, Lora is an open-standard, 
low-power physical layer protocol. Supporting the cyber 
layer, LoraWan extends connectivity across wide area 

networks up to 20km in range bidirectionally, and is 
normally deployed in a single-hop star network topology 
[29]. LoraWan’s security includes each smart device 
using robust AES data encryption, and globally unique 
identifiers to support device identity management [29]. 
However, weaknesses include encryption key 
management using long-term keys, and encryption 
functions relying on repetitive cipher patterns [28].  
 
Illustrating threats, in late 2021 a key US cyber agency, 
CISA [30], released an alert advisory that an open source 
middleware protocol, Data Distribution Service (DDS), 
which is used to integrate business-critical IoT systems, 
could be exploited.  Exploitation risks include 
Distributed Denial of Service (DDoS), remote code 
execution, and information exposure [30]. This 
middleware has been implemented by NASA, Siemens, 
and Volkswagen [31]. 
 
Standardization of Other Core Technologies 
As set out in the previous section, with 72% of AI-
related standards currently under development [13], this 
may challenge the V&V of systems, given the absence of  
uniform standards, particularly since developing 
standards is a time-consuming process for SDOs. For 
example, standardizing 5G specifications spanned 5 
years (2015 through 2020) [32]. It is postulated that the 
rate of research and innovation is now at such a level that 
traditional SDO processes “will not be able to keep up, 
speed-wise” [7] [32].  
 
To illustrate the complexity the IIoT presents to risk 
managers, in investigating the state of 24 standards 
which may be relevant to a generalised IIoT 
implementation, [33] identified that of the eight relevant 
to autonomous determinism in IIoT, four were under 
development. And within these drafts, while CPPS is 
referenced, there is no specificity [2]. Moreover the two 
standards covering Cyber Physical Production Systems, 
which form part of the ISO 23704 series addressing 
Cyber-Physically controlled Smart Machine Tools, are 
yet to be ratified [34].   
 
Therefore, a generalised risk model that can assist the 
process of identifying IIoT data risk, as well as emergent 
CPPS risk considerations, will significantly benefit asset 
owners as well as researchers. The next section sets out 
how the model this research presents was refined using 
expert input.  

 
 

3. METHODOLOGY 
 
To bring structure to the enumeration of risk across the 
IIoT ensemble, a pragmatic epistemology is used to map 
a generalized set of risk attributes across  the IIoT 
technical cores. Alongside the literature cited in this 
research, the IACS, CPS, and risk considerations 
discussed have been shaped by the insights of 24 
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transdisciplinary and heterogenous experts. The experts 
included 12 with domain expertise across IT, IACS, and 
IoT. In addition, 12 panellists were experts in AI as well 
as Legal & Risk. Using the Delphi research method, 
expert opinion was sought covering risk attributes in the 
IIoT integration cores relevant to each of the four cohort 
domains (IT, OT, AI, and Legal & Risk). These findings 
were used to refine the importance of key themes, as 
well as the model discussed in the following sections of 
this research. The IIoT and CPPS-related questions were 
seeded by a detailed survey of literature using semantic 
reduction and techniques from Corpus Linguistics, 
bound by the systematic processes prescribed by 
PRISMA [1]. 
 
Delphi is a data-driven research method used in 
emergent fields for which empirical evidence is limited 
[35]. The Delphi method uses semi-structured and open 
questions during interviews, to identify and refine 
emergent themes. The heterogenous makeup and size of 
the panel, comprising 24 transdisciplinary participants, 
aligns with directions in the existing literature, where 
[35] found that 59% of Delphi panels comprised between 
14 and 30 participants. Moreover, [36] noted that the 
early advocates of Delphi used and recommended a 
small panel size for emergent fields.  
 
The panellists’ experience was extensive, with an 
average of 23 years of professional practice. The 
industry exposure of the IT participants spanned 
operations and security architects, breach response, risk 
consulting and academia, with an average of 22.9 years 
of experience. The OT and IoT participants’ knowledge 
spanned industrial cyber security, electrical and 
mechanical engineering, as well as academia, with 
experience averaging 19 years. The Legal and Risk 
experts averaged 23 years spanning technology law and 
the underwriting of technology risk for the Insurance 
markets. Noting that AI in this research is defined as 
software-defined algorithms, the AI cohort’s experience 
averaged 25.8 years. 
 
The combined average of 23 years of professional 
experience indicates the information power of this panel 
to assist in the identification of patterns relevant to data 
risk considerations in emergent CPPS. Information 
power refers to the research technique in which the 
“information richness” of the dataset in research that has 
a broad aim is inductive and exploratory, and the method 
is to analyze the entirety of the dataset [37]. Research 
ethics permission was obtained from the researchers’ 
academic institution prior to this research commencing, 
and participants consented to their contributions being 
included in this research. First round one-on-one 
interviews lasted between 45 and 120 minutes.  
 
A specific focus was how the technical factors specific to 
the three technical cohorts (IT, OT, and AI) could be 
grouped under higher-order categorizations of 

Reputation and Trust. The categorisations were seeded 
from the detailed survey of literature [1]. Framed by the 
transdisciplinary panellist insights, Section 4 examines 
the emergent technological cores that are integrated in 
the IIoT.  
 
 

4. IIOT INTEGRATION 
 
CPPS within the IIoT Ecosystem 
Fig. 1 summarizes the view of the expert panel that while 
CPS and CPPS are smart “Things”, the functionality 
resulting from the intersection of IT, OT, and AI is more 
relevant to business-critical data. Limiting application in 
safety-critical functions is the issue that the system must 
not be allowed to self-determine whether an unsafe 
condition is present or is imminent. Rather, the SIS 
maintains functional safety when abnormal conditions 
are encountered. 
 
 
 

 
 

 
 
 
 
 

Fig. 1. CPPS, an intersection of technologies.  
 

Supporting CPPS type processing within the estate of 
IoT as shown in Fig. 1 are smart devices incorporating 
powerful microcontroller units that may include a central 
processor, memory, and have Real Time Operation 
Operating Systems (RTOS) installed. The inbuilt sensors 
and actuators enable algorithms, often  via Internet-
enabled communication, to act in concert with Mist, Fog 
and Cloud to monitor or deterministically control non-
critical functions [38]. These functions include 
performance, threat analysis, and CPPS re-configuration. 
Given this processing power and Internet-facing 
connections, onboard and networked threat detection is 
necessary, as these devices will be subject to IT-type 
attacks [39]. The literature identifies that device 
capability in IIoT is characterized by hardware that 
incorporates unique device identification, measurements 
(environmental sensors of non-hazardous properties), 
data transfer, data processing, and actuation to control 
non-hazardous environmental factors [40]. 
 
While CPPS behavior can achieve reliability through the 
use of error-correction algorithms, relying on a learned 
state acquired through Machine Learning (ML) [41], 
verification can be difficult as ML is often viewed as a 
black box function. Where the OT and AI panel has 
observed algorithms running on smart devices in support 
of IACS, they are typically in non-hazardous discrete 
processes. Furthermore, the ML functions are simpler, 
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rule-based algorithms used to measure physical change 
in support of business-critical processes. Nonetheless, 
increasing computation capacity will be supporting 
increasing algorithmic complexity, and therefore the 
dynamism of reconfiguration in CPPS. Algorithms can 
now compute over a trillion parameters; up from 110 
million four years ago [42]. This means the granularity 
of parameters or connection weights permits programs 
to“pay attention” to patterns rather than having to work 
each parameter sequentially [42]. 
 
Moreover, the panel view was that the absence of 
standardization is a constraint on the uptake of these new 
technologies. For example, elaborating the 
considerations discussed in Section 2 covering 
standardization is the fact that AI-related standards such 
as Functional safety and AI systems, and the 
methodology for Assessment of the robustness of neural 
networks, are under development. 
 
Comparison of CPS and IIOT   
To assist the categorization of CPPS and the IIoT, and 
therefore consideration of risk between them, the 
differences in the properties and functions flowing from 
the panel interviews are summarized in Table I. 

 
TABLE I.  CPPS AND IIOT ATTRIBUTES 

 
Property Function  CPPS Industrial IoT 

Data  Protocols OT or IoT 
i.e., 
EtherNet/IP 
or emergent 
IoT 
protocols. 

TCP/IP or 
UDP, and 
higher layer 
IoT-adapted 
protocols. 

Model Business 
Processes 

Micro Macro 

Time Execution 
speed 

Real time; 
e.g., milli 
seconds. 

Near real time; 
e.g., seconds. 

Criticality Functional 
priority 

Safety-
critical is 
not yet 
standardized
.  

Will rely on 
IACS. 

Business-
critical – IT 
type 
standardization
. 

Information Feedback 
loops 

Low error 
tolerance 
(time). 

Higher error 
threshold.  

System(s) Functional 
capability 

Sensing & 
actuation. 

Sensing 

Process Processing 
objective 

Correctness Performance 

Managemen
t 

Life-cycle 
Managem
ent 

Emergent 
device 
practices. 

IT practices 

Control Functional 
objective 

Physical 
process 

Asset 
optimization 

 
In Table I, micro describes functions concerned with 
specific processes (the OT in Fig. 1), whereas macro 
refers to the entire IIoT ensemble as shown in Fig. 1.  
 
The view of the OT panel cohort is that the goal of 
adaptive, self-configuring, and self-organizing systems 
will necessitate change in the hierarchical automation 
architecture that specifies IACS integration. The next 
section sets out the challenges posed by the 
characteristics of CPPS, namely system dynamism and 
reconfiguration. 
 

 
5. CPPS DATA MODEL 

 
Standardized Safety-Critical 
Fig. 2.A shows a four-layer representation of the ISA-95 
Automation Pyramid that generalizes IACS deployments 
as ratified under the IEC 6226 standard. The Automation 
Pyramid (pyramid) is applicable to manufacturing 
processes, whether they are hazardous or not. In Fig. 2.B 
the pyramid is adapted following panel feedback. 
 
In the traditional pyramid presented in Fig. 2.A, data 
flow between Level 0 field devices such as sensors and 
actuators to programmable controllers (PLCs). At Level 
1 those data are aggregated by the Supervisory Control 
and Data Acquisition System (SCADA), which 
centralizes plant processes. Where the implementation 
incorporates many devices, these devices may be 
grouped into semiautonomous subsystems, and 
networked with a Distributed Control System (DCS). 
 

 

 
Fig. 2. CPPS compression of the Automation Pyramid.  

 
The DCS supports data collection, analysis, and 
presentation of control information to human operators 
[43]. In Fig. 2.A, at Level 2 data are further aggregated 
in the Manufacturing Execution System (MES), which 
assists production planning [23]. Data from the MES can 
also be fed into the Enterprise Resource Planning system 
(ERP), which integrates the aggregated IACS data with 
data from other departments to assist enterprise-wide 
planning.  
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Based on the panel feedback, Fig. 2.B presents the 
integration of industrial computing that CPPS supports. 
Compression of the pyramid is achieved at Level 0, 
using computationally capable smart devices. The smart 
devices, including sensors and actuators, control 
processes at the process source (or at the Fog layer) in 
concert with other connected smart devices. In Fig. 2.B, 
the MES is superseded by algorithmic analysis of Big 
Data (Level 1), which is stored in Cloud data repositories 
at scale, which are referred to as Data Lakes (DLs) and 
used to inform business-critical decisions. This can 
include the retention of temporal process data for use in 
future ML training to support AI.  
 
While Fig. 2.B illustrates the compression of hierarchies, 
in this research Fig. 3 extends the decomposition of 
automation [7] to better account for both safety-critical 
and business-critical data risk. The panel view was that 
specificity was necessary to account for the co-
dependent risks that CPPS integration models present.  
 
Supporting the decomposition shown in Fig. 2 will be the 
implementation of meshed networks. Contextualizing 
mesh networks in CPPS, wireless network traffic is 
bridged from access point to access point, thereby 
reducing the need for ethernet cabling. Fig. 3 adapts the 
previous discussion of CPPS [7] to show IACS as a 
discrete safety function represented by the red boxes,  
necessary to control and contain hazardous processes. 
 

Fig. 3. CPPS meshed networks. 
 

These safety-critical processes (red boxes) continue to be 
controlled by PLCs (Level 0), consistent with the 
practices set out in Fig. 2.A. The business-critical 
components, or modular CPPM that form the basis of 
CPPS, are shown in the yellow boxes. These will include 
the components supporting self-organization; e.g., re-
configuration of packaging and dispatch functions 
appropriate to parcel sizes, or warehousing requirements 
as raw materials for draw-down arrive on the premises.  
 
To manage risk in the self-organization paradigm, the 
safety-critical processes should be ring-fenced (red boxes 
in Fig. 3) such that if variation in a process requires 
further V&V to be completed, its function is left 

unvaried, and the non-critical functions are positioned 
around it to support asset optimization. If V&V needs to 
be performed, the benefits of CPPS self-organization 
may be reduced or negated. Moreover, this reduces the 
risk of CPPM exacerbating an existing hazard, the 
avoidance of which is a key tenet of IACS safety 
management [16]. 
 
The heterogenous nature and computation power of the 
devices within business-critical functions (yellow boxes 
in Fig. 3) may allow greater resilience in the business 
processes they support, through the addition of cost-
effective CPPM-type redundant functions. Effectively, 
this is the business data equivalent of SIS supported by 
AI-type algorithms.  
 
Also shown within the mesh environment in Fig. 3, as 
the circles above the business-critical functions, are the 
Fog, Cloud, and DLs endpoints that form part of the 
CPPS environment. These are third-party hosted services 
and will rely on AI algorithms to inform optimization. 
To secure data within IACS, operational networks are 
divided into zones, with data security policies specific to 
the security levels specified in IEC 62443, and 
appropriate to that zone’s safety integrity requirements 
[23]. In Fig. 3, the red dashed line surrounding the red 
boxes reflects a Demilitarized Zone; physical or logical 
protection that treats the CMMP, Fog, Cloud, and DLs as 
untrusted entities, thereby limiting their data exchange 
and thus their control over the safety-critical functions.  
 
To support CPPS-type mesh networks, research is 
underway to extend protocols such as LoraWan from star 
to mesh deployments. As the mesh network likely 
represents a further erosion of traditional network 
borders, the encryption key management weaknesses in 
LoraWan will also need to be addressed [28]. CIA 
vulnerabilities have been identified in the DDS 
middleware that orchestrates the integration [30]. 
Therefore, key security considerations raised by the 
Delphi panel include the suggestion that networks may 
need to move from IT-type security protections in 
business-critical DiD, to more data-centric models like 
Zero-Trust. In Zero-Trust, segmented zones are created 
at a host or data layer to enforce CIA within  the CPPS 
model [10]. As the smart devices in Fig. 3 are 
computationally powerful, greater encryption can be 
applied at a granular level to data appropriate to their 
criticality, with encryption proportionate to the risk in 
that data, as well as the consumer of that data. Many 
Delphi panel participants noted that many businesses’ 
security policies lack data classification and appropriate 
confidentiality mechanisms. To address this, encryption 
policies can be implemented based on classification 
across the smart devices, Mist, Fog, and/ or Cloud 
applications. Cumulatively these protections will bolster 
IT-type DiD, thereby reducing the risk of IT-type assets 
being used as the attack vector by threat-actors.  
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To assist the categorisation of controls that could account 
for data risks within a CPPS environment, the next 
section sets out factors that provide a wide range of IIoT 
generic security capabilities. Moreover, these factors are 
grouped under higher order properties (Reputation, 
Trust, and additionally Resilience) to assist 
transdisciplinary appraisal of the data risks and controls.  
 
 

6. MODEL VALIDATION 
 
This section sets out the inductive and exploratory 
techniques necessary to identify patterns relevant to 
CPSS data risk, based on the transdisciplinary panels 
information power [40]. To bring organizational context 
to the panellist’s insights, the 24 interview transcripts 
were uploaded to a qualitative analysis tool. These key 
insights total 427, with AI accounting for 98 statements, 
DE 59, IT 118, and OT 152. Fig. 4 presents a word cloud 
based on a word frequency query across these 427 
statements to show the dominant thematics. 
 
As utility is a key objective of this research program, the 
panel was asked to confirm a set of attributes that can be 
used to group the risk controls relevant to CPPS and 
CPPM. The attributes applied in the initial round of the 
Delphi interviews were Reputation and Trust seeded 
from the directions in extant literature [1]. Initially 
Resilience was not included in the semi-structured 
questions put to panellists. 
 

 
 

Fig. 4. Word cloud visualization of thematics.  
 

Informing Reputation and Trust as possible attributes for 
discussion with the panel, were considerations drawn 
from a seminal IoT model [44], as well as IoT reference 
architectures [39] [45]. However, the expert insights 
considered resilience (as as bolded in black in Fig. 4) to 
be key as shown in Fig. 4, with Reputation less frequent 
(shown in grey). For the Legal & Risk cohort, Resilience 
and Reputation were primary attributes. In Fig. 4, Trust 
is shown as a dominant theme (based on word size 
within the diagram as well as being bolded in orange), 
primarily across the IT, AI, and in respect of process, the 

OT cohorts. In summary, all four cohorts consider these 
three attributes conferred a plain language context that 
can assist shared reference across transdisciplinary 
project teams. 
 
The objectives of information systems inherent in these 
three attributes is summarized as: 
• Reputation: That an entity integrated into the 

ecosystem can be relied upon to perform correctly, 
is authenticated so that confidentiality and integrity 
are maintained, and that the Thing(s) do not 
introduce vulnerabilities.  

• Resilience: The ability to maintain critical 
operations, or recover from an impacted state. And 
can maintain the “5Cs: connection, conversion, 
cyber, cognition, and configuration” [2]. 

• Trust: That functions are performed correctly and 
through context-awareness, safety and integrity are 
maintained across sensors, actuators, algorithms, 
and networks.  

 
Also forming part of the taxonomy resulting from this 
research are Factors. The taxonomical hierarchy flows as 
Domain  Attribute  Factor, where Factor refers to 
those elements that can be used both to classify the 
sources of risk, and under which grouping of risk control 
capabilities can be nested. In Section 2 under the IACS 
subsection, the difference between the discrete 
disciplines of IT and OT are set out. To identify the 
shared data security concerns across the IT and OT 
cohorts highlighted in grey in Table II are those factors 
that are shared factors (F1 – Identity, F7 – 
Communication Protocols, F8 – Energy, and F10 – Time 
& Consensus).  
 
TABLE II.  TAXONOMICAL FACTOR BASED ON 
DELPHI EXPERT OPINION 
 

 
 

Reputation Trust  Resilience  

Auditing (F5) Auditing (F5) Auditing (F5) 

Identity (F1) Authentication 
(F3) 

Data Classification 
(F9) 

Inventory (F2) Authorisation 
(F4) 

Lifecycle 
Management (F6) 

Lifecycle 
Management (F6) 

Communication 
Protocols (F7) 

Regulation & 
Compliance (F11) 

Regulation & 
Compliance (F11) 

Data 
Classifications 
(F9) 

Time & Consensus 
(F10) 

 Energy (F8)  

 Identity (F1)  

 Lifecycle 
Management (F6) 

 

 Time & 
Consensus (F10) 
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To measure the level of agreement between the IT and 
OT cohorts regarding Factors common to both domains, 
Kendall’s W was used as a measure of concordance. To 
assist measurement, during the initial Delphi round the 
IT and OT cohort were asked to rank the importance of 
the attribute on a 5-point Likert scale ranging from ‘1 = 
Not Important At All’ to ‘5 = Absolutely Essential’. 
While this determined there was agreement between the 
practitioners across cohorts, challenging the use of model 
rank correlation typically associated with Likert scales is 
the fact that such measures assume equidistance between 
consecutive ranks. However, in Fig. 4 the words need(s) 
and critical reflect that the ranking between factors is 
implementation-specific; e.g., remote deployment of IoT 
sensors that inform business-critical data will emphasise 
energy, whereas those with mains power in a hazardous 
process industry may emphasize identity and 
authentication. Kendall’s W was used as it does not 
include a restriction around the assumption that the 
distance between consecutive ranks is equidistant. 
 
The risk factors identified in this research must be 
tactical, yet sufficiently generalised to provide for the 
containment of exploits not yet known, regardless of the 
severity they present. The next section presents the CPPS 
risk taxonomy including these Factors, based on the 
input of the of the next stage of the Delphi rounds.  
 
 

7. FINDINGS 
 
To further refine the model taxonomy, a closed 
questionnaire was sent to the 24 panellists to collect 
input covering the grouping of Factors under each 
Attribute as per Table II. To illustrate the resulting CPPS 
risk concepts, in Fig. 5 alongside the Attribute of 
Reputation, the Factors of Identity, Asset Inventory, 
Regulations & Compliance, are listed. Accompanying 
these Factors in Fig. 5 are a set of properties that are 
specific to that attribute’s role in protecting the CPPS or 
CPPM’s data assets.  
 

  
 

Fig. 5. Reputation Factors for CPPS Optimization.  
 

Concepts relevant to Reputation in Table II included 

Auditing, but the panel input to the questionnaire was 
that Auditing is not a discrete activity, rather it is a 
function of Verification & Validation (with V&V 
discussed in Section 2). V&V was viewed as being 
necessary to meet the requirements of  Regulation & 
Compliance,  specifically that the behavior of the CPPS 
system and/ or CPPM agrees with its design.  
 
In Fig. 6, supporting Resilience are Factors that while 
common to Reputation have a different contextual 
relevance. For example, Regulation & Compliance in 
Resilience addresses verification in V&V. Namely that 
the system meets its functional requirements, including 
safety. Also, Fig. 6 reflects the panel view that Auditing 
in terms of event and system logging is encapsulated in 
verification so is also a joined property of Regulation & 
Compliance. This satisfies the formal considerations tied 
to contractual requirements, and relevant to the Legal & 
Risk cohort. Namely, system service levels, Quality of 
Service (QoS), or more formal system recovery point 
and recovery time resilience type metrics applicable to 
measuring recovery from an impacted state. 
 

 
 

Fig. 6. Resilience Factors for CPPS optimization. 
 
The panel considered that where Reputation and 
Resilience were present, the optimisation flowing from 
those attributes transfers to Trust. Therefore, in Fig. 7 the 
Factors that are shared across Reputation and Resilience 
are represented by these higher order categories 
(represented graphically by Reputation and Resilience 
being inputs to Trust). An example is Identity, where in 
the panel’s views its relevance across the technical 
domains needs to account for the move from host-based 
authentication centred on IP addresses, to the world of 
service-based networking. In this service-driven 
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computation and networking paradigm, the service 
consumption models bought on by Mist, Fog, and multi-
Cloud environments, require that user and device 
identify are bound to constant re-authentication as a core 
tenant of Zero-Trust. Therefore, as shown in Fig. 7 the 
panel view was that Trust is an oxymoron, and in fact 
Legal & Risk considerations should be looking for 
system capabilities where trust is never required. In 
essence: verify identity and authenticate…then trust.  
 

 
 

Fig. 7. Trust Factors for CPPS optimization. 
 
To ensure utility in this taxonomy, technical security 
management capabilities based on a number of the 
synthesized themes in the extant literature are set out in 
Fig. 8. The Capabilities shown are specific to 
Authorization, discussed in Fig. 7 as a risk control factor 
that supports Trust.   
 

 
 

Fig. 8. Authorization capabilities. 
 

The technical capabilities set out in Fig. 8 are from the 

literature using the systematic processes prescribed by 
PRISMA [1], and that were discussed in Section 3.  
The addition of Capabilities extends the taxonomical 
hierarchal flows as Domain  Attribute  Factor  
Capabilities. 
The purpose of Capabilities is to capture the state of the 
art in generic security improvements and protections 
such as Network Virtualisation Overlay (NVO). To 
maintains state information at the edge of the network, 
NVO supports optimization of the underlying transport 
network necessary to measure and maintain contractual 
QoS legal and risk considerations. Such protections also 
include SD-Branch, an industry initiative for managing 
network complexity including increased IoT and Cloud 
traffic. Key functionality includes the discovery and/ or 
securing of Things, and SDI, or Software Defined 
Instructure, the categorization catch-all for SDN 
discussed in Section 1.  
 

 
8. CONCLUSIONS, FUTURE RESEARCH 

 
The introduction to this research explained that 
supporting CPPS and CPPM will be the 5Cs, which are 
centered around the adaption and flexibility of 
manufacturing processes [3]. Because CPPS is an 
emergent field within IIoT, 24 transdisciplinary experts 
knowledgeable in IT, OT, AI and Legal & Risk shared 
their expert views on directions in the technical domains 
and considerations that comprise CPPS, CPPM, and 
more broadly the IIoT. Following the interviews, themes 
were identified and coded, with the resulting insights 
reflecting data risk protections that can account for the 
hierarchical decomposition that characterizes emergent 
CPPS architectures. In Fig. 3 this decomposition of 
automation was extended to illustrate how integrated 
CPPS topologies will need to distinguish between safety-
critical and business-critical tasks and the associated data 
risk. Delivering on the objectives of CPPS requires data 
to be fit for purpose in terms of ensuring resilient SAIC 
is maintained, and that the new technologies improve the 
information state of CIA.  
 
In this research, it is noted that the fidelity of safety-
critical and business-critical data necessary to support 
CPPS and broader Industry 4.0 type innovation, will 
likely challenge traditional IT-domain type DiD 
strategies. NIST [46] defines criticality “as the measure 
of the degree to which an organization depends on the 
information or information system”. Therefore, the 
endpoints and nodes in Fig. 3 will need to support not 
only the critical functions implicit in reconfiguration, but 
also incorporate security protections given their 
integration within other CPS or CPPM may rely on the 
Internet as well as third-party computation services 
maintained by Mist, Fog, or Cloud providers. To assist 
shared reference across the transdisciplinary project 
teams that will be responsible for the implementation or 
maintenance of CPPS and IIoT assets, the three attributes 
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of Reputation, Resilience, and Trust are used to provide 
a plain language context under which a set of generalised 
data security factors can be ordered within a taxonomy.  
 
By extending the conceptual CPPS model taxonomy, this 
research contributes to the emerging body of knowledge 
covering risk, and in particular the controls relevant to 
protecting a firm’s dependency on the business-critical 
data that the CPPS system creates and consumes. As this 
research forms part of a program directed at developing 
methods that will help asset owners to enumerate data 
risk in emerging fields such as CPPS, the topics 
discussed in this research will be subject to further expert 
refinement.  
 
The next phase of this research will develop the final 
research artefact that captures the classes of risk 
protections appropriate to DiD across the 
multidisciplinary CPPS domain within IoT. This will 
inform support for the business-critical data boundaries 
that production systems will need to to re-organize 
around, particularly where hazardous processes may be 
present.  
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