

Adding agility to Enterprise Process and Data Engineering

Sergey ZYKOV

National Research Nuclear University MEPhI, 31 Kashirskoe shosse,

Moscow 115409 Russia

Pavel SHAPKIN

National Research University Higher School of Economics, 20 Myasnitskaya St.

Moscow 110000 Russia

Nikolay KAZANTSEV

National Research University Higher School of Economics, 20 Myasnitskaya St.

Moscow 110000 Russia

and

Vladimir ROSLOVTSEV

National Research Nuclear University MEPhI, 31 Kashirskoe shosse

Moscow 115409 Russia

ABSTRACT

Managing development of large and complex enterprise

architectures is a key problem in enterprise engineering.

Nowadays one of the breathtaking topics considering enterprise

context is real-time system agility. The paper discusses an

appropriate general architecture pattern and provides insights

how dynamic process management environment could be made.

We survey general enterprise software architecture and current

agility problems. We introduce a special component called a

process knowledge base and justify its crucial role in achieving

agility within the enterprise. We study both the architecture of

the process knowledge base as well as formal basis for its

implementation which relies upon the type theory.

Keywords: Enterprise Architecture, Data Management, Process

Management.

1. INTRODUCTION

Usually, a system designed with flexibility as one of its key

properties in mind could be decomposed on smaller sub-

systems that could be then arranged from “higher to lower”

level. Complex and mission-critical enterprise architecture

usually focus on: business processes, software systems and data.

Appropriate structuring, however, is not enough in the current

economic era of high turbulence, where fluctuating customer

demand shapes the enterprise value-added chains every day and

leaves non-accommodated enterprises with higher resource

consumption, bigger costs and smaller profits. Under such

conditions architectural design generally reaches beyond the

software engineering scope, and could be related to system

engineering. Agile methodologies widely used in 2000s in

system engineering could assist in overcoming the modern era

challenges in enterprise engineering.

In this paper, we discuss how such agility may be achieved

through usage of an integration environment augmented with a

knowledge base about formal specifications of processes and

artifacts. We outline here a formal basis necessary for such a

knowledge base.

The rest of the article is organized as follows. Section 2 gives a

survey of the general enterprise software architecture and

studies the aspects of enterprise agility. Section 3 outlines the

concept of the process knowledge base. Section 4 gives a

formal basis for the knowledge base implementation build upon

the type theory. In conclusions we summarize the proposed

ideas.

2. GENERAL ARCHITECTURE: ENTERPRISE

SOFTWARE ENGINEERING MATRIX

Let us begin with a general enterprise software architecture that

we will use throughout in this paper. As main architecture

pattern we propose to use the Enterprise Engineering Matrix

that consists of processes, data and systems [1]. It is presented

in fig. 1.

The first perspective shows the dynamics of architecture,

namely the decomposition of strategic goals on business

processes, actions and tasks. The second perspective reflects the

decomposed data objects used in processes while the third one

— enterprise systems that operate those data.

Fig. 1. The Enterprise Engineering Matrix

Agility via the Dynamic Process Management Environment

The agility of Enterprise Architecture is becoming a concept

that incorporates the ideas of “flexibility, balance, adaptability,

and coordination under one umbrella” [2]. This concept

72 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 2 - YEAR 2016 ISSN: 1690-4524

includes coordination costs needed for communication between

process participants and enhancing services orchestration and

choreography. This effort requires a number of collaboration

initiatives with the customer and expert communities that

should be supported either by technical tools or expert

communities to find a way to build up the “collaboration of

business processes from both sides” [3]. Observing corporate

performance from the longitude perspective one can see the

intangible components shaping corporate strategies, such as

enterprise learning and corporate knowledge. While since 2000s

knowledge management could use only static database

structures for storing the knowledge assets (wiki, blogs, content

management systems — CMS, etc.), nowadays modern

semantic technologies could drive the performance of such

content (knowledge) storing and integrating it on the level of

processes and making it highly accessible for every employee.

We now outline in general the high-level pattern [4-7], which

describes enterprise hardware-and-software system conceptual

scheme (Fig. 1 shows the diagram). The general idea is that,

abstraction level, data aggregation degree and abilities for

strategic analysis, justification and decision-making are

growing bottom-up across the layer hierarchy. Each layer

communicates directly with those adjacent to it, being consumer

for lower levels and provider for higher levels.

The top (“strategic”) layer of the enterprise software-and-

hardware system is represented by the software toolkit for

integrate representation of strategic data slices for enterprise

management. It is the dashboard, which allows enterprise top

management to track dynamics of key performance indicators.

The data is aggregated from software systems for planning

enterprise resources, both general-purpose, such as human

resources, financials, time and the like, and domain-specific. In

oil-and-gas enterprise examples of domain-specific reports

would be gas balances, deposit assets, oil-and-gas upstream and

downstream, seismic exploration data etc. An enterprise internet

portal or a similar tool is used to integrate and visualize high-

level reports, and to provide flexible, reliable and secure online

access for the management by means of dashboard-like

interface.

The next (“relationships”) layer’s purpose is to inform the end-

user employees of urgent updates of standard business

processes, such as document approval, communication with

clients and suppliers, and target email messaging. In essence,

the current layer is represented by the software system for

interaction of the key organizational units and responsible

enterprise employees with the respective clients and partners.

Thus, the “relationships” layer is functionally similar to

customer relations management (CRM) system. In oil-and-gas

industry we have to work with oil-and-gas shipment contracts,

oil-and-gas distributors, gas pipeline producers, etc.

The next, “resource” layer represents the Enterprise Resource

Planning (ERP) software systems. Again, this layer consolidates

the lower (“accounting”) layer data to get a more strategic

representation of key business indicators. This level includes

ERP software modules and subsystems, which assist in

management and planning of oil-and-gas products including:

fixed assets, human and financial resources, documentation

management, facility supplies for oil-and-gas deposit

construction, and oil/gas processing, supplies for NPP unit

construction, electricity processing. Possible instances of such

systems for the NPP industry include Siemens and Catie

software products [9].

 The “accounting” layer, contains lower-level software systems

as compared to the previous ones. While the previous layer is

more of analytical kind and focuses on forecasting dynamics of

key production indexes (such as revenues, profits, overheads,

personnel defections, expenditures etc.), the current layer’s

tasks are more operational in nature. This includes software

systems for accounting, warehousing, inventory management

and the like. In NPP, that includes reaction unit construction,

shipment, and assembly, monitoring NPP unit assembly maps,

and technical conditions

The next architectural layer, called the “supervisory” layer,

contains the software systems, which incorporates the “drivers”,

i.e. the interfaces between software and hardware components.

This layer contains the SCADA systems for the end-users who

interact with field-based devices and sensors, which perform

plant operations, such as assembly-line production. In oil-and-

gas we have to deal with, e.g., exploration and seismic data

maps, and the systems interacting with the devices and sensors,

which perform plant operations, such as drilling exploration

wells, and oil-and-gas production. In NPP - unit assembly maps,

technical conditions, and the anthropic-oriented systems

interacting with devices and sensors, which perform plant

operations such as heat generation and reaction unit

temperature/pressure control.

The data layer is represented both by databases and data

warehouses. Naturally, that includes DBMS with data mining

plug-ins, analytical and online transaction processing

(OLAP/OLTP), middleware, and enterprise content

management tools. In case of the enterprise software-and-

hardware system, essential features of the data layer are: (i) big

data size, (ii) high availability, and (iii) data base/warehouse

heterogeneity. Therewith, the heterogeneity can be subdivided

into architectural (such as non-normalized data, legacy systems

data), and structural (such as weak structured flows of audio-

and video data, and scanned documentation). For instance, in

NPP there are custom-integrated with both domain-specific

PLM and ERP applications for NPP design and production

lifecycle management, electricity production and distribution,

and with online 6D modeling and data visualization tools

(including 3D-visualization of the units to be designed).

Heterogeneity, as usual, is both architectural and structural [8].

Below the data layer, one more layer can be identified, which is

the “hardware” layer. It includes devices such as programmable

logic controllers, sensors and the like, including human-

machine interfaces. The hardware layer operates in terms of

analog data, which is aggregated at the Layer 0, where it is

converted into digital form, stored, and used for enterprise

applications.

3. ENTERPRISE PROCESS KNOWLEDGE BASE

AS A KEY COMPONENT FOR AGILITY

As shown above, large enterprises usually use a broad range of

different software systems. Business processes also often

involve the usage of multiple systems. On the other hand, each

system introduces new datasets that usually have a unique

format but, possibly, semantically intersect other datasets. In

order to automate process and data integration tasks the

enterprise needs a special software component that could serve

as a knowledge repository and provide tools for building both

top-down and bottom-up integration solutions. This calls for an

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 2 - YEAR 2016 73

enterprise-grade integration bus, and with it come a whole zoo

of integration processes that require managing and maintaining.

Process knowledge base of the enterprise (PK-Base) is designed

for consolidation, storage, handling and use of standard and

most successful processes of the organization, as well as to

provide information on existing standard methods of solving

problems.

The system allows simplifying the solution of typical problems

encountered in the work of employees, significantly increases

productivity by reducing the cost of the search for solutions to

reduce the risk of suboptimal decision-making, enables the

reuse of results of performed work, simplifies the training of

new employees.

The proposed solution has three main Components (modules):

1) Base processes that describe the company's activities.

Processes are stored as reference models for each type of

action, inputs and outputs, as well as optional additional

metrics such as cost of performing step and links to related

processes or processes of the lower level.

2) The business goals processing module. The user can

formulate a request to the knowledge base in the form of

goals seeking for an algorithm to achieve what he needs to

get. The answer from KP-Base would be a process, built

from the available primitives, allowing to achieve this

goal. All the related documents and objects of the

conceptual model are applied to this constructed process.

3) Integration Module. KP-Base can be used to automate

processes. Some process steps may be associated with

performing reception or transmission of data in one of the

available methods of implementation. Steps of obtaining

information from a known source could be automated, as

well as sending the results of step or process, invitations,

notifications of errors or completed action, etc.

The PK-Base plays a key role in achieving agility within the

enterprise. It offers a repository of formal specifications and

their implementations and tackles the lack of documentation

and excessive volatility problems of agile systems. It comes

useful in both top-down and bottom-up process construction

when processes and/or artifacts are either are build based on

their formal specification through either composition of existing

artifacts processes (in a self-organized way by employees that

are subjects of the corresponding tasks [10]), or through

consecutive decomposition of more abstract constructions

4. TYPE-THEORETIC APPROACH TO PROCESS

KNOWLEDGE MANAGEMENT

Now as we described the general architecture of the PK-Base

and its key role in improving enterprise agility let us consider

an approach to implement such a system. We will think of

enterprise process model as of computational objects that could

be represented in some form of computer programs. In order to

preserve high agility we need to use tools that allow us to

automate both the synthesis of processes according to some

formal specification (top-down approach) and the analysis of

existing composite processes by inferring or verifying their

specifications (bottom-up approach). Both problems need to be

addressed with minimal overhead costs. Thus, we have to use

tools that allow us to make logical inferences about programs.

In computer science, the necessary means are provided by type

theory.

There is a connection between type theory and formal logics

known as Curry-Howard isomorphism [11]. It enables one to

formulate the integration tasks as logical formulae and then

automatically or semi-automatically connect them with software

solutions. Same formal logic approaches could be used both for

process and data integrations [12, 13]. The logical formula that

is used in the process integration task is a formal statement of

the corresponding business goal while the formula that is used

in data integration is a concept description.

A goal (of a process) represents a logical description of a state

that must be achieved by the organization which automates a

process. The goal formalization represents a high-level

specification for the process being constructed. In other words

the goal description answers the question “What the process

does?” and the resulting process model answers the question

“How should it be done?”. Thus, the tasks of goal description

and process modelling require different knowledge and skills:

the goal description requires a high-level problem domain

knowledge whereas the process modelling requires knowledge

of technologies and programming skills.

A concept description is a statement that describes distinctive

features of a class of data objects. A set of logical concept

descriptions forms an ontology. Complex descriptions are built

from simpler ones using a set of special operations called

concept constructors. Different sets of constructors correspond

to different logical systems which are formalized by description

logics [14].

Both process goals definitions and concept descriptions — i.e.

formal specifications — could be represented by logical

formulae. If a complex integration solution is to be built or

generated from scratch the corresponding formal specification

could also be pretty complex. This fact could make the whole

task as complex as programming the software by hand.

The key to achieve the required agility is the possibility to split

the while process of generating an integration solution into

several steps of specification refinement. One could start with

simplest definitions and then automatically or semi-

automatically refine them. Once the specification is precise

enough the resulting solution will be automatically generated.

From the formal point of view the fact that the specification 𝑆2

refines the specification 𝑆1 corresponds to the implication

between the corresponding statements, i.e. 𝑆1 → 𝑆2.

Subsequent specifications could differ in several ways. First,

they could have different detailing level: the reified

specification can describe more steps, properties or components

of the corresponding process or concept. For example, the basic

process goal definition could be described as “Hire an employee

with skill 𝑆𝑘1” and then reified to “Hire an employee with skills

𝑆𝑘1 and 𝑆𝑘2 then sign up this employee in the new employee

training program”. In the field of data integration, a simple

concept description could look like “Oil exploitation rate” and

the more detailed version — “Oil exploitation rate on south

region sources”.

Second, the reified specification can be described in more

complex and expressive logic system. I.e. simple specifications

can be described in propositional logic while complex

specifications could use quantifiers, i.e. predicate logic.

74 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 2 - YEAR 2016 ISSN: 1690-4524

Different types of logics: modal logics, temporal logics, linear

logics etc. could be used to describe the required properties of

specifications or achieve certain features such as decidability.

Type Theory Application

Let us recollect some basic definitions of the type theory which

we will be using further. Type system is a flexible syntactical

method of proving nonexistence of certain kinds of behavior in

a program using classification of language expressions

according to the kinds of in values they compute [15].

More formally, the Type Theory (TT) studies processes of type

inference and type checking in programs. For this purpose, it is

necessary to have a formal representation of programs — λ-

calculus, where programs are interpreted like the composition

of computable functions. We will be giving only major

definitions omitting details that can be found in [16].

Basic constructs in λ-calculus — basic λ-terms — are defined

as follows. Variables are denoted by arbitrary strings of letters

and numbers. Constants are also denoted by strings. We will

distinguish them based on a context. Abstraction of λ-term M

by a variable x — λx.M is a unary function of parameter x.

Application — is an application of a function (which is a term)

M to an argument N (which is another term) and is denoted as

(MN). Braces have left associativity and can be omitted if

possible.

The key moment here is a concept of a function as an object.

This, in particular, relieve from the necessity to consider

functions with many arguments — they can be regarded as a

function of single argument, computational result of which is a

new function and so on.

Basic rule of computing (“reduction”) a value of expression is

(λx.M)N = M[x := N], where M[x := N] is a result of

substituting all free occurrences of x for N in M. This rule is

also equipped with a set of rules that enable reduction of not

only a full term but of it’s parts as well.

Types are defined as follows. If V is a type variable or constant

then V is a type. If V and U are types then V → U is a type.

Finally, the typing rules. Let Γ be some context, then Γ   m : V

means that term m has type V in a context Γ. For instance for

simple terms like variables this is stated explicitly. For the

consideration of architecture at the top level, without details of

the implementation, it is enough to observe simply typed λ-

calculus, which has the following system of typing rules:

Formalizations

From the Curry-Howard correspondence point of view the

arrow symbol in logic corresponds to the arrow symbol in

types, i.e. the formula 𝐴 → 𝐵 , “𝐴 implies 𝐵”, corresponds to

the type of functions from 𝐴 to 𝐵. Types correspond to

formulae and terms of these types correspond to proofs of these

formulae. If we could construct a function of type 𝐴 → 𝐵 it will,

given an object of type 𝐴 (a proof of 𝐴), compute an object of

type 𝐵 (a proof of 𝐵) — thus it will prove that 𝐴 implies 𝐵.

In the area of process integration functions of type 𝐴 → 𝐵

correspond to processes that transform some state 𝐴 into the

state 𝐵. In the area of data integration it is a transformation

function that transforms instances (objects) of concept 𝐴 into

instances of 𝐵. In description logics taxonomic relation between

concepts 𝐴 ⊑ 𝐵 also correspond to implication 𝐴 → 𝐵 — this

exhibits the fact that taxonomic relations are just a special kind

of systems of transformation functions. These functions are

called ‘casting functions’ and transform the representation of an

object from more to less specific concept. Besides

transformation functions we can formalize data extraction and

loading functions. Their simplest types are 𝑈𝑛𝑖𝑡 → 𝐴 and 𝐴 →
𝑈𝑛𝑖𝑡 . Here 𝐴 is a type, which corresponds to the concept of

extracted/loaded data. Unit is a special type with only one

value. We use the type Unit as input or output value types of

functions that do not accept or do not return any values. In other

words, the value of type Unit has no information attached to it

and is unique because there is no way to distinguish it from

other values of this type.

Let us briefly describe some methods that enable the automatic

integration solution construction. Namely, we will consider the

usage of functional composition and product operations to

construct terms of the given type. The composition of functions

f and g is a function 𝑓 ∘ 𝑔 = 𝜆𝑥. 𝑓𝑔𝑥. The composition

operation () is associative: p (q r) = (p q) r, and

therefore, the parenthesis may be omitted. The following rule

for typing the composition is valid:

 Γ ⊢ 𝑓: 𝐶 → 𝐵 Γ ⊢ g: A → C

Γ ⊢ 𝑓 ∘ 𝑔: 𝐴 → 𝐵

In order to simplify the definition of product we will introduce

the notion of ordered pair (𝑎, 𝑏) of type 𝐴 × 𝐵 if

𝑎: 𝐴 and 𝑏: 𝐵.

The product of functions f and g is a function 𝑓 × 𝑔 which,

given a pair (𝑥, 𝑦) computes the pair (𝑓𝑥, 𝑔𝑥). The

corresponding typing rule is as follows:

 Γ ⊢ 𝑓: 𝐴 → 𝐵 Γ ⊢ g: C → D

Γ ⊢ 𝑓 × 𝑔: 𝐴 × 𝐶 → 𝐵 × 𝐷

Practical meaning of the described operations could be defined

in the following way. In process integration, the functional

composition is the sequential execution of separate processes to

achieve the required state via an intermediate state. A product of

two processes is a process that executes them in parallel while

the type-level product 𝐴 × 𝐵 is the product of states, i.e. a state

when both states are present simultaneously.

In data integration, a composition corresponds to chaining

different transformations. 𝐴 × 𝐵 is the concept of pairs of

objects from and from and the product of transformations is a

transformation between pairs of objects. Pairs could be nested

to represent tuples of arbitrary size.

Typing rules for composition and product could be understood

as rules for generating the terms of given type. If we read these

rules bottom-up we see that in order to construct an object of a

special type we need to construct two objects of other types and

then connect them using the given operation. This idea can be

straightforwardly implemented as a function that constructs

terms of a given type in a given context.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 2 - YEAR 2016 75

The described combination of functional composition and

product operations represent a powerful mechanism to automate

the generation of sequential functions that use ‘parallel’

branching via products. Still, the ‘separation’ and ‘joining’

functions of types like P→ 𝐴 × 𝐵 and 𝐴 × 𝐵 → 𝑄 must be

provided manually. It can be avoided by including more

operations into our basis which requires additional analysis and

is not included into this brief survey.

From the practical point of view we constructed a mechanism to

automate the generation of sequential or parallel processes

which can branch if atomic ‘separation’ and ‘joining’ processes

are provided; sequential or parallel data extraction-transform-

load tasks which are automatically combined with

packing/unpacking objects to/from tuples (‘separation’ and

‘joining’ functions).

Formalizing Patterns

Further analysis of occurring artifacts would very likely yield

certain typical configurations, or patterns, that multiple

processes followed. These patterns might span across multiple

enterprise activities, or they may be specific to certain domains.

Such patterns are useful in multifold ways; when it comes to

enterprise agility, if there is a number of processes constructed

using a certain pattern, it suffices to alter just the pattern to

propagate changes to all the relevant processes.

In general, a pattern is a function 𝜆𝑥1 … 𝑥𝑛 . 𝑝, where 𝑥1 through

𝑥𝑛 are certain parameters and 𝑝 is a process definition in which

𝑥1, … , 𝑥𝑛 usually occur at least once. The occurrence of

𝑥1, … , 𝑥𝑛 is not mandatory from the formal point of view;

unused parameters normally should be eliminated, but may be

(temporarily) retained for maintaining legacy

patterns/processes. The term 𝑝 defines the structural aspect of

processes, and pattern type describes certain constraints applied

to processes. Consider a number of examples.

Given a process we will write 𝑝 = 𝒫(𝑝1, … , 𝑝𝑛) to denote that

𝑝 is constructed using the pattern 𝒫 from subprocesses

𝑝1, … , 𝑝𝑛 .

As a first example, consider we want to specify that processes

of certain kind must necessarily contain a certain step. For

example, every contract, before been approved by executive

council (𝐶), must be preliminarily reconciled by the technical

(𝑇) and marketing (𝑀) directors (we don’t care in what order),

and even before that – ratified by the financial department (𝐹).

The corresponding pattern would look like this:

𝜆𝑝: 𝐴 → 𝐹′𝑓: 𝐹′ → 𝐹 𝑡: 𝐹 → 𝑇 𝑚: 𝐹 → 𝑀. 𝑐 ∘ (𝑡 × 𝑚) ∘ 𝑓 ∘ 𝑝

The process structure is this: 𝕥 = 𝑐 ∘ (𝑡 × 𝑚) ∘ 𝑓 ∘ 𝑝. 𝑝 stands

for an arbitrary process that prepares a contract for review by

financial departments. 𝑓 is a process of reviewing and

approving the contract within the financial department

(assuming that there may be more than one way of doing so;

otherwise, the parameter 𝑓 should be replaced with a

corresponding constant). 𝑡 and 𝑚 are reviewing processes for

technical and marketing directors, respectively. The part 𝑡 × 𝑚

indicates that the processes are performed independently and in

parallel; again, we assumed there may be more than one way of

doing each work, otherwise a corresponding constant would

have been used. Finally, 𝑐: 𝑇 × 𝑀 → 𝐶 stands for the final

approval procedure by the executive council, which is fixed. If

at some point we decided to change that procedure, we would

not have to review all the processes involving this procedure,

we would go away with just replacing the process 𝑐 with

another one of the same type.

Supposing we want to build a specification of an integration

processes that provide transition from state 𝐴 to state 𝐵, and we

want such processes to satisfy a specific condition that they

must pass through a given state 𝐶. A corresponding pattern

would look like that: 𝒫 = 𝜆(𝑝1: 𝐴 → 𝐶 𝑝2: 𝐶 → 𝐵). 𝑝2 ∘ 𝑝1.

The type of this pattern is (𝐴 → 𝐶) × (𝐶 → 𝐵) → (𝐴 → 𝐵). It

means that if we want to construct a process from state 𝐴 to

state 𝐵 using this pattern, we must first come up with two

(possibly, composite) processes: one from the initial state 𝐴 to

the intermediate state 𝐶, and the other from the intermediate

state to the final state 𝐵.

Of course, if we decided to alter the pattern 𝒫 so as to require

corresponding processes to pass through a certain state 𝐷

instead of 𝐶 (let’s call the new pattern 𝒫′), we would also have

to come up with two transformations for all processes of types

𝐴 → 𝐶 and 𝐶 → 𝐵:

𝕥1: (𝐴 → 𝐶) → (𝐴 → 𝐷),

𝕥2: (𝐶 → 𝐵) → (𝐷 → 𝐵).

Now, if we are given a number of processes 𝑝𝑖 = 𝒫(𝑝1
𝑖 , … , 𝑝𝑛

𝑖)

and we want reengineer those processes so that they would

conform the new pattern 𝒫′, we will, in fact, need a procedure

(a process) of type:

𝕋: ((𝐴 → 𝐶) → (𝐴 → 𝐷) × (𝐶 → 𝐵) → (𝐷 → 𝐵)) →
(𝐴 → 𝐵) → (𝐴 → 𝐵).

We can read this type as ‘if we need a (non-identical)

transformation of processes of type 𝐴 → 𝐵 , we need a couple

of additional processes – one that transforms processes of type

𝐴 → 𝐶 to processes of type 𝐴 → 𝐷 , and the other that

transforms processes of type 𝐶 → 𝐵 to processes of type 𝐷 →
𝐵’. We silently presume that we consider only those processes

of type 𝐴 → 𝐵 that are built using the pattern 𝒫. If there are

others, we use the technique that in functional programming is

known as pattern-matching: we write the transition 𝕋 in such a

way that it accepts only arguments of the kind 𝒫(𝑥, 𝑦) (where 𝑥

and 𝑦 are variables of types 𝐴 → 𝐶 and 𝐶 → 𝐵, respectively),

and skips all other objects (of type 𝐴 → 𝐵). The fact that a

certain object is constructed via a certain pattern is not usually

reflected in object’s type, but may be conveyed through other

kinds of metadata, if necessary.

In λ-calculus, we do not particularly care if we deal with

functions or data objects – so long as all type constraints are

satisfied. It means that if certain technique is applicable to

processes, than it is also applicable to data objects.

Many of the artifacts enterprise deals with on daily basis are

structured objects, like contracts or other documents. What if

we wanted to produce a specification on the structure that all

contracts of certain kind (𝐾) must conform to? For example, we

want all contracts to include four sections: general terms (𝐺),

financial obligations (𝐹), technical terms (𝑇) and signature list

(𝑆). The signature list consists of signatures of financial,

technical and marketing directors (𝑆𝑓, 𝑆𝑡 and 𝑆𝑚, respectively)

and signatures of tree members of executive council: 𝑆𝑐1, 𝑆𝑐2,

and 𝑆𝑐3. So we can write:

𝐾 = 𝐺 × 𝐹 × 𝑇 × 𝑆,

where

𝑆 = 𝑆𝑓 × 𝑆𝑡 × 𝑆𝑚 × 𝑆𝑐1 × 𝑆𝑐2 × 𝑆𝑐3.

The corresponding pattern for such contracts, in its simplest

form, would be like this:

76 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 2 - YEAR 2016 ISSN: 1690-4524

𝕋 = 𝜆𝑔: 𝐺 𝑓: 𝐹 𝑡: 𝑇 𝑠 ∶ 𝑆. (𝑔, 𝑓, 𝑡, 𝑠),
which has type

𝐺 → 𝐹 → 𝑇 → 𝑆 → 𝐺 × 𝐹 × 𝑇 × 𝑆,

or, in this case equivalently,

𝐺 → 𝐹 → 𝑇 → 𝑆 → 𝐾.

Now, suppose that general terms are written by a secretary,

except one last clause which is provided by, say, the marketing

director; in this case, assuming that 𝐺𝑖 stands for the type of

general term item and that 𝐺 = [𝐺𝑖] (general terms section is a

list of general terms), secretary’s work should be a process

looking like this: 𝜆𝑙: [𝐺𝑖]. 𝜆𝑖: 𝐺𝑖 . (𝑙@𝑖, 𝑓, 𝑡, 𝑠). Its type is [𝐺𝑖] →

(𝐺𝑖 → 𝐹 → 𝑇 → 𝑆 → 𝐾). If choosing specific template were

also part of secretary’s work, then the corresponding type would

have been: (𝐺 → 𝐹 → 𝑇 → 𝑆 → 𝐺 × 𝐹 × 𝑇 × 𝑆) → [𝐺𝑖] →

(𝐺𝑖 → 𝐹 → 𝑇 → 𝑆).

In any case, when the secretary has done his part, we have a

partially filled template – an object of type 𝐺𝑖 → 𝐹 → 𝑇 → 𝑆 →
𝐾. If, for example, the contract had to be processed by the

financial department, who had to supply financial terms for the

contract and sign the contract of financial director’s behalf, the

corresponding process would have the type: (𝐺𝑖 → 𝐹 → 𝑇 →

𝑆 → 𝐾) → (𝐺𝑖 → 𝑇 → 𝑆𝑡 × 𝑆𝑚 × 𝑆𝑐1 × 𝑆𝑐2 × 𝑆𝑐3 → 𝐾). After

that, the treaty would be passed to, e.g. technical and marketing

directors, and then to executive council.

These examples illustrate that, theoretically, we can automatize,

to a certain degree, the very process of reengineering enterprise

architecture based on shifts in strategic goals.

5. CONCLUSIONS

We have presented a general enterprise architecture that is

aimed at raising the level of business agility. The key role

belongs to the process knowledge base that accumulates

business process and data integration artifacts as well as their

specifications. The PK-Base reduces the “communication

chaos” and provides tools for automatic or semiautomatic

integration solution generation both in a top-down as well as in

a bottom-up manner.

We give a type-theoretical basis to construct the required tools

for automatic synthesis and analysis of integration solutions.

Semantically the proposed approach is similar to automated

type-based program generation, which was studied in previous

decades. Our plan is to extend this theoretical approach to solve

real-world process and data integration problems.

9. REFERENCES

[1] Zykov S.V. (2015) Enterprise Applications as Anthropic-

Oriented Systems: Patterns and Instances. In: Proceedings

of 9th KES Conference on Agent and Multi-Agent

Systems: Technologies and Applications, Springer, 2015,

pp. 275-283.

[2] Dyer, L. and Ericksen, J. (2009). Complexity-based Agile

Enterprises: Putting Self-Organizing Emergence to Work.

In A. Wilkinson et al (eds.). The Sage Handbook of

Human Resource Management. London: Sage: 436–457.

[3] Gromoff A., Kazantsev, N., Kozhevnikov, D., Ponfilenok,

M. and Stavenko, Y. (2012). Newer Approach to Create

Flexible Business Architecture of Modern Enterprise.

Global Journal of Flexible Systems Management. 13(4),

Springer-Verlag, 207-215

[4] Gamma E., Helm R., Johnson R., Vlissides J. (1998)

Design Patterns CD: Elements of Reusable

ObjectOriented Software, Addison-Wesley, 1998

[5] Fowler M. (2002) Patterns of Enterprise Application

Architecture. Addison-Wesley, 2002

[6] Freeman E., Bates B., Sierra K., Robson E. (2004) Head

First Design Patterns, O'Reilly, 2004

[7] Hohpe G., Woolf B. Enterprise Integration Patterns:

Designing, Building, and Deploying Messaging

Solutions. Addison-Wesley, 2004

[8] Lattanze A. (2008) Architecting Software Intensive

Systems: A Practitioner’s Guide. Auerbach, 2008

[9] Zykov S. (2009) Designing patterns to support

heterogeneous enterprise systems lifecycle. In: Proc. 5th

Central and Eastern European Software Engineering

Conference in Russia (CEE-SECR), 2009

[10] Zykov S. (2010) Pattern Development Technology for

Heterogeneous Enterprise Software Systems. Journal of

Communication and Computer, 2010, 7(4), 56-61

[11] Fleischmann, A. (2010). What Is S-BPM? S-BPM ONE —

Setting the Stage for Subject-Oriented Business Process

Management. Communications in Computer and

Information Science. Heidelberg: Springer Berlin.

[12] Sørensen M. H., Urzyczyn P. (2006) Lectures on the

Curry-Howard isomorphism, Vol. 149. Elsevier, 2006.

[13] Shapkin P., Marenkov A., Shumsky L., Roslovtsev V.,

Wolfengagen V. (2015) Towards the Automated Business

Process Building by Means of Type Theory. Proceedings of

the 7th International Conference on Subject-Oriented

Business Process Management S-BPM ONE. 2015.

[14] Shapkin P., Pomadchin G. (2015) A Type-Theoretic

Approach to Cloud Data Integration. In: Proceedings of the

11th International Conference on Web Information

Systems and Technologies WEBIST. INSTICC Press,

2015.

[15] Baader F., et al. (2007) The Description Logic

Handbook: Theory, Implementation, and Applications.

Cambridge: Cambridge University, 2007.

[16] Pierce B. C. (2002) Types and programming languages.

The MIT Press, 2002.

[17] Barendregt H. (1991) Introduction to generalized type

systems. Journal of functional programming, 1(2):125–

154, 1991.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 2 - YEAR 2016 77

	ZA878YI16

