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ABSTRACT 

 

Managing development of large and complex enterprise 

architectures is a key problem in enterprise engineering. 

Nowadays one of the breathtaking topics considering enterprise 

context is real-time system agility. The paper discusses an 

appropriate general architecture pattern and provides insights 

how dynamic process management environment could be made. 

We survey general enterprise software architecture and current 

agility problems. We introduce a special component called a 

process knowledge base and justify its crucial role in achieving 

agility within the enterprise. We study both the architecture of 

the process knowledge base as well as formal basis for its 

implementation which relies upon the type theory. 

 

Keywords: Enterprise Architecture, Data Management, Process 

Management. 

 

 

1.  INTRODUCTION 

 

Usually, a system designed with flexibility as one of its key 

properties in mind could be decomposed on smaller sub-

systems that could be then arranged from “higher to lower” 

level. Complex and mission-critical enterprise architecture 

usually focus on: business processes, software systems and data.  

 

Appropriate structuring, however, is not enough in the current 

economic era of high turbulence, where fluctuating customer 

demand shapes the enterprise value-added chains every day and 

leaves non-accommodated enterprises with higher resource 

consumption, bigger costs and smaller profits. Under such 

conditions architectural design generally reaches beyond the 

software engineering scope, and could be related to system 

engineering. Agile methodologies widely used in 2000s in 

system engineering could assist in overcoming the modern era 

challenges in enterprise engineering.  

 

In this paper, we discuss how such agility may be achieved 

through usage of an integration environment augmented with a 

knowledge base about formal specifications of processes and 

artifacts. We outline here a formal basis necessary for such a 

knowledge base.  

 

The rest of the article is organized as follows. Section 2 gives a 

survey of the general enterprise software architecture and 

studies the aspects of enterprise agility. Section 3 outlines the 

concept of the process knowledge base. Section 4 gives a 

formal basis for the knowledge base implementation build upon 

the type theory. In conclusions we summarize the proposed 

ideas. 

 

 

2.  GENERAL ARCHITECTURE: ENTERPRISE 

SOFTWARE ENGINEERING MATRIX 

 

Let us begin with a general enterprise software architecture that 

we will use throughout in this paper. As main architecture 

pattern we propose to use the Enterprise Engineering Matrix 

that consists of processes, data and systems [1]. It is presented 

in fig. 1.  

 

The first perspective shows the dynamics of architecture, 

namely the decomposition of strategic goals on business 

processes, actions and tasks. The second perspective reflects the 

decomposed data objects used in processes while the third one 

— enterprise systems that operate those data.  

Fig. 1. The Enterprise Engineering Matrix 

 

Agility via the Dynamic Process Management Environment 

The agility of Enterprise Architecture is becoming a concept 

that incorporates the ideas of “flexibility, balance, adaptability, 

and coordination under one umbrella” [2]. This concept 
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includes coordination costs needed for communication between 

process participants and enhancing services orchestration and 

choreography. This effort requires a number of collaboration 

initiatives with the customer and expert communities that 

should be supported either by technical tools or expert 

communities to find a way to build up the “collaboration of 

business processes from both sides” [3].  Observing corporate 

performance from the longitude perspective one can see the 

intangible components shaping corporate strategies, such as 

enterprise learning and corporate knowledge. While since 2000s 

knowledge management could use only static database 

structures for storing the knowledge assets (wiki, blogs, content 

management systems — CMS, etc.), nowadays modern 

semantic technologies could drive the performance of such 

content (knowledge) storing and integrating it on the level of 

processes and making it highly accessible for every employee.  

We now outline in general the high-level pattern [4-7], which 

describes enterprise hardware-and-software system conceptual 

scheme (Fig. 1 shows the diagram). The general idea is that, 

abstraction level, data aggregation degree and abilities for 

strategic analysis, justification and decision-making are 

growing bottom-up across the layer hierarchy. Each layer 

communicates directly with those adjacent to it, being consumer 

for lower levels and provider for higher levels.  

 

The top (“strategic”) layer of the enterprise software-and-

hardware system is represented by the software toolkit for 

integrate representation of strategic data slices for enterprise 

management. It is the dashboard, which allows enterprise top 

management to track dynamics of key performance indicators. 

The data is aggregated from software systems for planning 

enterprise resources, both general-purpose, such as human 

resources, financials, time and the like, and domain-specific. In 

oil-and-gas enterprise examples of domain-specific reports 

would be gas balances, deposit assets, oil-and-gas upstream and 

downstream, seismic exploration data etc. An enterprise internet 

portal or a similar tool is used to integrate and visualize high-

level reports, and to provide flexible, reliable and secure online 

access for the management by means of dashboard-like 

interface.   

 

The next (“relationships”) layer’s purpose is to inform the end-

user employees of urgent updates of standard business 

processes, such as document approval, communication with 

clients and suppliers, and target email messaging. In essence, 

the current layer is represented by the software system for 

interaction of the key organizational units and responsible 

enterprise employees with the respective clients and partners. 

Thus, the “relationships” layer is functionally similar to 

customer relations management (CRM) system. In oil-and-gas 

industry we have to work with oil-and-gas shipment contracts, 

oil-and-gas distributors, gas pipeline producers, etc.  

 

The next, “resource” layer represents the Enterprise Resource 

Planning (ERP) software systems. Again, this layer consolidates 

the lower (“accounting”) layer data to get a more strategic 

representation of key business indicators. This level includes 

ERP software modules and subsystems, which assist in 

management and planning of oil-and-gas products including: 

fixed assets, human and financial resources, documentation 

management, facility supplies for oil-and-gas deposit 

construction, and oil/gas processing, supplies for NPP unit 

construction, electricity processing. Possible instances of such 

systems for the NPP industry include Siemens and Catie 

software products [9].   

 The “accounting” layer, contains lower-level software systems 

as compared to the previous ones. While the previous layer is 

more of analytical kind and focuses on forecasting dynamics of 

key production indexes (such as revenues, profits, overheads, 

personnel defections, expenditures etc.), the current layer’s 

tasks are more operational in nature. This includes software 

systems for accounting, warehousing, inventory management 

and the like. In NPP, that includes reaction unit construction, 

shipment, and assembly, monitoring NPP unit assembly maps, 

and technical conditions  

  

The next architectural layer, called the “supervisory” layer, 

contains the software systems, which incorporates the “drivers”, 

i.e. the interfaces between software and hardware components. 

This layer contains the SCADA systems for the end-users who 

interact with field-based devices and sensors, which perform 

plant operations, such as assembly-line production.  In oil-and-

gas we have to deal with, e.g., exploration and seismic data 

maps, and the systems interacting with the devices and sensors, 

which perform plant operations, such as drilling exploration 

wells, and oil-and-gas production. In NPP - unit assembly maps, 

technical conditions, and the anthropic-oriented systems 

interacting with devices and sensors, which perform plant 

operations such as heat generation and reaction unit 

temperature/pressure control.  

 

The data layer is represented both by databases and data 

warehouses. Naturally, that includes DBMS with data mining 

plug-ins, analytical and online transaction processing 

(OLAP/OLTP), middleware, and enterprise content 

management tools. In case of the enterprise software-and-

hardware system, essential features of the data layer are: (i) big 

data size, (ii) high availability, and (iii) data base/warehouse 

heterogeneity. Therewith, the heterogeneity can be subdivided 

into architectural (such as non-normalized data, legacy systems 

data), and structural (such as weak structured flows of audio- 

and video data, and scanned documentation). For instance, in 

NPP there are custom-integrated with both domain-specific 

PLM and ERP applications for NPP design and production 

lifecycle management, electricity production and distribution, 

and with online 6D modeling and data visualization tools 

(including 3D-visualization of the units to be designed). 

Heterogeneity, as usual, is both architectural and structural [8]. 

Below the data layer, one more layer can be identified, which is 

the “hardware” layer. It includes devices such as programmable 

logic controllers, sensors and the like, including human-

machine interfaces. The hardware layer operates in terms of 

analog data, which is aggregated at the Layer 0, where it is 

converted into digital form, stored, and used for enterprise 

applications.   

 

 

3.  ENTERPRISE PROCESS KNOWLEDGE BASE 

AS A KEY COMPONENT FOR AGILITY 

 

As shown above, large enterprises usually use a broad range of 

different software systems. Business processes also often 

involve the usage of multiple systems. On the other hand, each 

system introduces new datasets that usually have a unique 

format but, possibly, semantically intersect other datasets. In 

order to automate process and data integration tasks the 

enterprise needs a special software component that could serve 

as a knowledge repository and provide tools for building both 

top-down and bottom-up integration solutions. This calls for an 
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enterprise-grade integration bus, and with it come a whole zoo 

of integration processes that require managing and maintaining.   

 

Process knowledge base of the enterprise (PK-Base) is designed 

for consolidation, storage, handling and use of standard and 

most successful processes of the organization, as well as to 

provide information on existing standard methods of solving 

problems.  

 

The system allows simplifying the solution of typical problems 

encountered in the work of employees, significantly increases 

productivity by reducing the cost of the search for solutions to 

reduce the risk of suboptimal decision-making, enables the 

reuse of results of performed work, simplifies the training of 

new employees.   

 

The proposed solution has three main Components (modules):  

1) Base processes that describe the company's activities. 

Processes are stored as reference models for each type of 

action, inputs and outputs, as well as optional additional 

metrics such as cost of performing step and links to related 

processes or processes of the lower level.  

2) The business goals processing module. The user can 

formulate a request to the knowledge base in the form of 

goals seeking for an algorithm to achieve what he needs to 

get. The answer from KP-Base would be a process, built 

from the available primitives, allowing to achieve this 

goal. All the related documents and objects of the 

conceptual model are applied to this constructed process.  

3) Integration Module. KP-Base can be used to automate 

processes. Some process steps may be associated with 

performing reception or transmission of data in one of the 

available methods of implementation. Steps of obtaining 

information from a known source could be automated, as 

well as sending the results of step or process, invitations, 

notifications of errors or completed action, etc.  

 

The PK-Base plays a key role in achieving agility within the 

enterprise. It offers a repository of formal specifications and 

their implementations and tackles the lack of documentation 

and excessive volatility problems of agile systems. It comes 

useful in both top-down and bottom-up process construction 

when processes and/or artifacts are either are build based on 

their formal specification through either composition of existing 

artifacts processes (in a self-organized way by employees that 

are subjects of the corresponding tasks [10]), or through 

consecutive decomposition of more abstract constructions 

 

 

4.  TYPE-THEORETIC APPROACH TO PROCESS 

KNOWLEDGE MANAGEMENT 

 

Now as we described the general architecture of the PK-Base 

and its key role in improving enterprise agility let us consider 

an approach to implement such a system. We will think of 

enterprise process model as of computational objects that could 

be represented in some form of computer programs. In order to 

preserve high agility we need to use tools that allow us to 

automate both the synthesis of processes according to some 

formal specification (top-down approach) and the analysis of 

existing composite processes by inferring or verifying their 

specifications (bottom-up approach). Both problems need to be 

addressed with minimal overhead costs. Thus, we have to use 

tools that allow us to make logical inferences about programs. 

In computer science, the necessary means are provided by type 

theory.   

 

There is a connection between type theory and formal logics 

known as Curry-Howard isomorphism [11]. It enables one to 

formulate the integration tasks as logical formulae and then 

automatically or semi-automatically connect them with software 

solutions. Same formal logic approaches could be used both for 

process and data integrations [12, 13]. The logical formula that 

is used in the process integration task is a formal statement of 

the corresponding business goal while the formula that is used 

in data integration is a concept description.  

 

A goal (of a process) represents a logical description of a state 

that must be achieved by the organization which automates a 

process. The goal formalization represents a high-level 

specification for the process being constructed. In other words 

the goal description answers the question “What the process 

does?” and the resulting process model answers the question 

“How should it be done?”. Thus, the tasks of goal description 

and process modelling require different knowledge and skills: 

the goal description requires a high-level problem domain 

knowledge whereas the process modelling requires knowledge 

of technologies and programming skills.  

 

A concept description is a statement that describes distinctive 

features of a class of data objects. A set of logical concept 

descriptions forms an ontology. Complex descriptions are built 

from simpler ones using a set of special operations called 

concept constructors. Different sets of constructors correspond 

to different logical systems which are formalized by description 

logics [14].  

 

Both process goals definitions and concept descriptions — i.e. 

formal specifications — could be represented by logical 

formulae. If a complex integration solution is to be built or 

generated from scratch the corresponding formal specification 

could also be pretty complex. This fact could make the whole 

task as complex as programming the software by hand.  

 

The key to achieve the required agility is the possibility to split 

the while process of generating an integration solution into 

several steps of specification refinement. One could start with 

simplest definitions and then automatically or semi-

automatically refine them. Once the specification is precise 

enough the resulting solution will be automatically generated. 

From the formal point of view the fact that the specification 𝑆2 

refines the specification 𝑆1 corresponds to the implication 

between the corresponding statements, i.e. 𝑆1 → 𝑆2.  

 

Subsequent specifications could differ in several ways. First, 

they could have different detailing level: the reified 

specification can describe more steps, properties or components 

of the corresponding process or concept. For example, the basic 

process goal definition could be described as “Hire an employee 

with skill 𝑆𝑘1” and then reified to “Hire an employee with skills 

𝑆𝑘1 and 𝑆𝑘2 then sign up this employee in the new employee 

training program”. In the field of data integration, a simple 

concept description could look like “Oil exploitation rate” and 

the more detailed version — “Oil exploitation rate on south 

region sources”.  

 

Second, the reified specification can be described in more 

complex and expressive logic system. I.e. simple specifications 

can be described in propositional logic while complex 

specifications could use quantifiers, i.e. predicate logic. 
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Different types of logics: modal logics, temporal logics, linear 

logics etc. could be used to describe the required properties of 

specifications or achieve certain features such as decidability.  

 

Type Theory Application 

Let us recollect some basic definitions of the type theory which 

we will be using further. Type system is a flexible syntactical 

method of proving nonexistence of certain kinds of behavior in 

a program using classification of language expressions 

according to the kinds of in values they compute [15].  

 

More formally, the Type Theory (TT) studies processes of type 

inference and type checking in programs. For this purpose, it is 

necessary to have a formal representation of programs — λ-

calculus, where programs are interpreted like the composition 

of computable functions. We will be giving only major 

definitions omitting details that can be found in [16].  

 

Basic constructs in λ-calculus — basic λ-terms — are defined 

as follows. Variables are denoted by arbitrary strings of letters 

and numbers. Constants are also denoted by strings. We will 

distinguish them based on a context. Abstraction of λ-term M 

by a variable x — λx.M is a unary function of parameter x. 

Application — is an application of a function (which is a term) 

M to an argument N (which is another term) and is denoted as 

(MN). Braces have left associativity and can be omitted if 

possible.  

 

The key moment here is a concept of a function as an object. 

This, in particular, relieve from the necessity to consider 

functions with many arguments — they can be regarded as a 

function of single argument, computational result of which is a 

new function and so on.  

 

Basic rule of computing (“reduction”) a value of expression is 

(λx.M)N = M[x := N], where M[x := N] is a result of 

substituting all free occurrences of x for N in M. This rule is 

also equipped with a set of rules that enable reduction of not 

only a full term but of it’s parts as well.  

 

Types are defined as follows. If V is a type variable or constant 

then V is a type. If V and U are types then V → U is a type.  

 

Finally, the typing rules. Let Γ be some context, then Γ   m : V 

means that term m has type V in a context Γ. For instance for 

simple terms like variables this is stated explicitly. For the 

consideration of architecture at the top level, without details of 

the implementation, it is enough to observe simply typed λ-

calculus, which has the following system of typing rules:  

  

 

 

  

Formalizations  

From the Curry-Howard correspondence point of view the 

arrow symbol in logic corresponds to the arrow symbol in 

types, i.e. the formula 𝐴 → 𝐵 , “𝐴 implies 𝐵”, corresponds to 

the type of functions from 𝐴 to 𝐵. Types correspond to 

formulae and terms of these types correspond to proofs of these 

formulae. If we could construct a function of type 𝐴 → 𝐵 it will, 

given an object of type  𝐴 (a proof of 𝐴), compute an object of 

type 𝐵 (a proof of 𝐵) — thus it will prove that 𝐴 implies 𝐵.  

 

In the area of process integration functions of type 𝐴 → 𝐵 

correspond to processes that transform some state 𝐴 into the 

state 𝐵. In the area of data integration it is a transformation 

function that transforms instances (objects) of concept 𝐴 into 

instances of 𝐵. In description logics taxonomic relation between 

concepts 𝐴 ⊑ 𝐵  also correspond to implication 𝐴 → 𝐵 — this 

exhibits the fact that taxonomic relations are just a special kind 

of systems of transformation functions. These functions are 

called ‘casting functions’ and transform the representation of an 

object from more to less specific concept. Besides 

transformation functions we can formalize data extraction and 

loading functions. Their simplest types are 𝑈𝑛𝑖𝑡 → 𝐴 and 𝐴 →
𝑈𝑛𝑖𝑡 . Here 𝐴 is a type, which corresponds to the concept of 

extracted/loaded data. Unit is a special type with only one 

value. We use the type Unit as input or output value types of 

functions that do not accept or do not return any values. In other 

words, the value of type Unit has no information attached to it 

and is unique because there is no way to distinguish it from 

other values of this type.  

 

Let us briefly describe some methods that enable the automatic 

integration solution construction. Namely, we will consider the 

usage of functional composition and product operations to 

construct terms of the given type. The composition of functions 

f and g is a function 𝑓 ∘ 𝑔 = 𝜆𝑥. 𝑓𝑔𝑥. The composition 

operation (      ) is associative: p   (q  r) = (p  q)  r, and 

therefore, the parenthesis may be omitted. The following rule 

for typing the composition is valid:  

 
 Γ ⊢ 𝑓: 𝐶 → 𝐵       Γ ⊢ g: A → C

Γ ⊢ 𝑓 ∘ 𝑔: 𝐴 → 𝐵
 

 

In order to simplify the definition of product we will introduce 

the notion of ordered pair (𝑎, 𝑏) of type  𝐴 × 𝐵  if  

𝑎: 𝐴 and  𝑏: 𝐵.  

 

The product of functions f and g is a function 𝑓 × 𝑔 which, 

given a pair (𝑥, 𝑦) computes the pair (𝑓𝑥, 𝑔𝑥). The 

corresponding typing rule is as follows:  

 
 Γ ⊢ 𝑓: 𝐴 → 𝐵       Γ ⊢ g: C → D

Γ ⊢ 𝑓 × 𝑔: 𝐴 × 𝐶 → 𝐵 × 𝐷
 

 

Practical meaning of the described operations could be defined 

in the following way. In process integration, the functional 

composition is the sequential execution of separate processes to 

achieve the required state via an intermediate state. A product of 

two processes is a process that executes them in parallel while 

the type-level product 𝐴 × 𝐵 is the product of states, i.e. a state 

when both states are present simultaneously.  

 

In data integration, a composition corresponds to chaining 

different transformations. 𝐴 × 𝐵 is the concept of pairs of 

objects from  and from  and the product of transformations is a 

transformation between pairs of objects. Pairs could be nested 

to represent tuples of arbitrary size.  

 

Typing rules for composition and product could be understood 

as rules for generating the terms of given type. If we read these 

rules bottom-up we see that in order to construct an object of a 

special type we need to construct two objects of other types and 

then connect them using the given operation. This idea can be 

straightforwardly implemented as a function that constructs 

terms of a given type in a given context.  
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The described combination of functional composition and 

product operations represent a powerful mechanism to automate 

the generation of sequential functions that use ‘parallel’ 

branching via products. Still, the ‘separation’ and ‘joining’ 

functions of types like P→ 𝐴 × 𝐵 and 𝐴 × 𝐵 → 𝑄 must be 

provided manually. It can be avoided by including more 

operations into our basis which requires additional analysis and 

is not included into this brief survey.  

 

From the practical point of view we constructed a mechanism to 

automate the generation of sequential or parallel processes 

which can branch if atomic ‘separation’ and ‘joining’ processes 

are provided; sequential or parallel data extraction-transform-

load tasks which are automatically combined with 

packing/unpacking objects to/from tuples (‘separation’ and 

‘joining’ functions).  

 

Formalizing Patterns  

Further analysis of occurring artifacts would very likely yield 

certain typical configurations, or patterns, that multiple 

processes followed. These patterns might span across multiple 

enterprise activities, or they may be specific to certain domains. 

Such patterns are useful in multifold ways; when it comes to 

enterprise agility, if there is a number of processes constructed 

using a certain pattern, it suffices to alter just the pattern to 

propagate changes to all the relevant processes.  

 

In general, a pattern is a function 𝜆𝑥1 … 𝑥𝑛 . 𝑝, where 𝑥1  through 

𝑥𝑛 are certain parameters and 𝑝 is a process definition in which 

𝑥1, … , 𝑥𝑛 usually occur at least once. The occurrence of 

𝑥1, … , 𝑥𝑛 is not mandatory from the formal point of view; 

unused parameters normally should be eliminated, but may be 

(temporarily) retained for maintaining legacy 

patterns/processes. The term 𝑝 defines the structural aspect of 

processes, and pattern type describes certain constraints applied 

to processes. Consider a number of examples.  

 

Given a process  we will write 𝑝 = 𝒫(𝑝1, … , 𝑝𝑛) to denote that 

𝑝 is constructed using the pattern 𝒫 from subprocesses 

𝑝1, … , 𝑝𝑛 .  

 

As a first example, consider we want to specify that processes 

of certain kind must necessarily contain a certain step. For 

example, every contract, before been approved by executive 

council (𝐶), must be preliminarily reconciled by the technical 

(𝑇) and marketing (𝑀) directors (we don’t care in what order), 

and even before that – ratified by the financial department (𝐹). 

The corresponding pattern would look like this:  

𝜆𝑝: 𝐴 → 𝐹′𝑓: 𝐹′ → 𝐹 𝑡: 𝐹 → 𝑇 𝑚: 𝐹 → 𝑀. 𝑐 ∘ (𝑡 × 𝑚) ∘ 𝑓 ∘ 𝑝 

The process structure is this: 𝕥 = 𝑐 ∘ (𝑡 × 𝑚) ∘ 𝑓 ∘ 𝑝.  𝑝 stands 

for an arbitrary process that prepares a contract for review by 

financial departments. 𝑓 is a process of reviewing and 

approving the contract within the financial department 

(assuming that there may be more than one way of doing so; 

otherwise, the parameter 𝑓 should be replaced with a 

corresponding constant). 𝑡 and 𝑚 are reviewing processes for 

technical and marketing directors, respectively. The part 𝑡 × 𝑚 

indicates that the processes are performed independently and in 

parallel; again, we assumed there may be more than one way of 

doing each work, otherwise a corresponding constant would 

have been used. Finally, 𝑐: 𝑇 × 𝑀 → 𝐶 stands for the final 

approval procedure by the executive council, which is fixed. If 

at some point we decided to change that procedure, we would 

not have to review all the processes involving this procedure, 

we would go away with just replacing the process 𝑐 with 

another one of the same type.   

 

Supposing we want to build a specification of an integration 

processes that provide transition from state 𝐴 to state 𝐵, and we 

want such processes to satisfy a specific condition that they 

must pass through a given state 𝐶. A corresponding pattern 

would look like that: 𝒫 =  𝜆(𝑝1: 𝐴 → 𝐶 𝑝2: 𝐶 → 𝐵). 𝑝2 ∘ 𝑝1. 

The type of this pattern is (𝐴 → 𝐶) × (𝐶 → 𝐵) → (𝐴 → 𝐵). It 

means that if we want to construct a process from state 𝐴 to 

state 𝐵 using this pattern, we must first come up with two 

(possibly, composite) processes: one from the initial state 𝐴 to 

the intermediate state 𝐶, and the other from the intermediate 

state  to the final state 𝐵.  

  

Of course, if we decided to alter the pattern 𝒫 so as to require 

corresponding processes to pass through a certain state 𝐷 

instead of 𝐶 (let’s call the new pattern 𝒫′), we would also have 

to come up with two transformations for all processes of types  

𝐴 → 𝐶 and 𝐶 → 𝐵: 

𝕥1: (𝐴 → 𝐶) → (𝐴 → 𝐷), 

𝕥2: (𝐶 → 𝐵) → (𝐷 → 𝐵). 

Now, if we are given a number of processes 𝑝𝑖 = 𝒫(𝑝1
𝑖 , … , 𝑝𝑛

𝑖 ) 

and we want reengineer those processes so that they would 

conform the new pattern 𝒫′, we will, in fact, need a procedure 

(a process) of type:  

𝕋: ((𝐴 → 𝐶) → (𝐴 → 𝐷) × (𝐶 → 𝐵) → (𝐷 → 𝐵)) →
(𝐴 → 𝐵) → (𝐴 → 𝐵). 

We can read this type as ‘if we need a (non-identical) 

transformation of processes of type 𝐴 → 𝐵 , we need a couple 

of additional processes – one that transforms processes of type 

𝐴 → 𝐶 to processes of type 𝐴 → 𝐷 , and the other that 

transforms processes of type 𝐶 → 𝐵 to processes of type 𝐷 →
𝐵’. We silently presume that we consider only those processes 

of type 𝐴 → 𝐵 that are built using the pattern 𝒫. If there are 

others, we use the technique that in functional programming is 

known as pattern-matching: we write the transition 𝕋 in such a 

way that it accepts only arguments of the kind 𝒫(𝑥, 𝑦) (where 𝑥 

and 𝑦 are variables of types 𝐴 → 𝐶  and 𝐶 → 𝐵, respectively), 

and skips all other objects (of type 𝐴 → 𝐵). The fact that a 

certain object is constructed via a certain pattern is not usually 

reflected in object’s type, but may be conveyed through other 

kinds of metadata, if necessary.  

 

In λ-calculus, we do not particularly care if we deal with 

functions or data objects – so long as all type constraints are 

satisfied. It means that if certain technique is applicable to 

processes, than it is also applicable to data objects.   

 

Many of the artifacts enterprise deals with on daily basis are 

structured objects, like contracts or other documents. What if 

we wanted to produce a specification on the structure that all 

contracts of certain kind (𝐾) must conform to? For example, we 

want all contracts to include four sections: general terms (𝐺), 

financial obligations (𝐹), technical terms (𝑇) and signature list 

(𝑆). The signature list consists of signatures of financial, 

technical and marketing directors (𝑆𝑓, 𝑆𝑡  and 𝑆𝑚, respectively) 

and signatures of tree members of executive council: 𝑆𝑐1, 𝑆𝑐2, 

and 𝑆𝑐3. So we can write:  

𝐾 = 𝐺 × 𝐹 × 𝑇 × 𝑆, 

where  

𝑆 = 𝑆𝑓 × 𝑆𝑡 × 𝑆𝑚 × 𝑆𝑐1 × 𝑆𝑐2 × 𝑆𝑐3. 

 

The corresponding pattern for such contracts, in its simplest 

form, would be like this:  
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𝕋 =  𝜆𝑔: 𝐺 𝑓: 𝐹 𝑡: 𝑇 𝑠 ∶ 𝑆. (𝑔, 𝑓, 𝑡, 𝑠), 
which has type  

𝐺 → 𝐹 → 𝑇 → 𝑆 → 𝐺 × 𝐹 × 𝑇 × 𝑆,  

or, in this case equivalently,  

𝐺 → 𝐹 → 𝑇 → 𝑆 → 𝐾. 

 

Now, suppose that general terms are written by a secretary, 

except one last clause which is provided by, say, the marketing 

director; in this case, assuming that 𝐺𝑖  stands for the type of 

general term item and that 𝐺 = [𝐺𝑖] (general terms section is a 

list of general terms), secretary’s work should be a process 

looking like this: 𝜆𝑙: [𝐺𝑖]. 𝜆𝑖: 𝐺𝑖 . (𝑙@𝑖, 𝑓, 𝑡, 𝑠). Its type is [𝐺𝑖] →

(𝐺𝑖 → 𝐹 → 𝑇 → 𝑆 → 𝐾). If choosing specific template were 

also part of secretary’s work, then the corresponding type would 

have been: (𝐺 → 𝐹 → 𝑇 → 𝑆 → 𝐺 × 𝐹 × 𝑇 × 𝑆) → [𝐺𝑖] →

(𝐺𝑖 → 𝐹 → 𝑇 → 𝑆). 
 

In any case, when the secretary has done his part, we have a 

partially filled template – an object of type 𝐺𝑖 → 𝐹 → 𝑇 → 𝑆 →
𝐾. If, for example, the contract had to be processed by the 

financial department, who had to supply financial terms for the 

contract and sign the contract of financial director’s behalf, the 

corresponding process would have the type: (𝐺𝑖 → 𝐹 → 𝑇 →

𝑆 → 𝐾) → (𝐺𝑖 → 𝑇 → 𝑆𝑡 × 𝑆𝑚 × 𝑆𝑐1 × 𝑆𝑐2 × 𝑆𝑐3 → 𝐾). After 

that, the treaty would be passed to, e.g. technical and marketing 

directors, and then to executive council.  

 

These examples illustrate that, theoretically, we can automatize, 

to a certain degree, the very process of reengineering enterprise 

architecture based on shifts in strategic goals. 

 

 

5.  CONCLUSIONS 

 

We have presented a general enterprise architecture that is 

aimed at raising the level of business agility. The key role 

belongs to the process knowledge base that accumulates 

business process and data integration artifacts as well as their 

specifications. The PK-Base reduces the “communication 

chaos” and provides tools for automatic or semiautomatic 

integration solution generation both in a top-down as well as in 

a bottom-up manner.  

We give a type-theoretical basis to construct the required tools 

for automatic synthesis and analysis of integration solutions. 

Semantically the proposed approach is similar to automated 

type-based program generation, which was studied in previous 

decades. Our plan is to extend this theoretical approach to solve 

real-world process and data integration problems. 
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