

Incorporating Gaming in Software Engineering Projects: Case of RMU Monopoly

Sushil ACHARYA

School of Engineering, Math and Science, Robert Morris University
Moon Township, Pennsylvania 15108, USA

and

David BURKE

School of Engineering, Math and Science, Robert Morris University
Moon Township, Pennsylvania 15108, USA

ABSTRACT

A major challenge in engineering education is retaining student
interest in the engineering discipline. Active student
involvement in engineering projects is one way of retaining
student interest. Such involvement can only be realized if
project inception comes entirely from the student. This paper
presents a software game, RMU Monopoly, developed as a
project requirement for a software engineering course and
describes the challenges and gains of implementing such a
project.

The RMU Monopoly was proposed by three junior software
engineering students. The game is a multi-platform software
program that allows up to eight players and implements the
rules of the Monopoly board game. To ensure agility the game
was developed using the spiral software development model.
The Software Requirements Specification (SRS) document was
finalized through an iterative procedure. Standard Unified
Modeling Language (UML) diagrams were used for product
design. A Risk Mitigation, Monitoring, and Management Plan
(RMMM) was developed to ensure proactive risk management.
Gantt chart, weekly progress meetings and weekly scrum
meetings were used to track project progress. C# and Sub-
Version were used in a client-server architecture to develop the
software. The project was successful in retaining student
interest in the software engineering discipline

Keywords: Software Game, Monopoly, Retention, Education

1. INTRODUCTION

A major challenge in engineering education is retaining student
interest in the engineering discipline. This has been a concern
for many years. More than 70 years ago student graduation rate
stood at 28%, in 1993 the graduation rate stood at 47%, and
now the average graduation rate stands at 56% [1]. Like other
engineering programs Robert Morris University (RMU)
engineering department also has its share of student retention
issues. Researchers have mentioned unapproachable
condescending faculty [2], inability of schools to admit better
students [3], and lack of learning communities [4] as factors
affecting engineering student retention rate. At RMU it was felt
that having lecture intensive engineering courses did not assist
in student understanding, did not provide adequate hands-on
real life experience needed for the competitive job market, did
not make education interesting enough for students and
contributed to reduced student interest in engineering. In view

of these issues, as of spring of 2006, RMU’s engineering
department enhanced all of its engineering courses by
incorporating laboratory sessions. Two 50 minutes session per
week was allocated for lectures and one 2.5 hours session per
week was allocated for lab exercises. This strategic decision
was made to ensure that students had adequate hands-on real
world experience. After all we tend to retain 70% of what we
learn when our involvement is receiving and participating, and
90% when our involvement is being there [5]. Hands-on
experience assists in students understanding of processes,
methods and tools by mapping theory to practice. In addition
all course instructors were given the liberty to incorporate
hands-on components like course-based projects, field visits
and expert talk sessions into their syllabi.

One such course incorporating all of the listed hands-on
components is ENGR3410: Fundamentals of Software
Engineering. This is a required junior level course for software
engineering majors. However in this course the approach of
assigning course-based projects takes into consideration student
interest. It is felt that active involvement in course-based
projects can only be realized if project inception comes entirely
from the student and the student is eager to see project
completion. Students are encouraged to propose gaming
projects. Introducing games in software engineering is not a
new concept but rather one that is being used by many
programs to add the fun factor needed to engage students. The
growing popularity of computer games coupled with the
Computer Science sophistication required to build today’s
entertainment applications, presents an opportunity to use
computer games as a means to better train Software Engineers
[6].

This paper presents a software game, namely “RMU
Monopoly”, developed as a student initiated course-based
project requirement for ENGR3410. The paper makes an
attempt to present the pains and gains of major activity areas of
the Software Development Life Cycle (SDLC) from a student –
instructor perspective.

The Need for Course-Based Projects
In order to keep up with the demand for skilled software
developers, academia must respond by developing curriculum
that fuels the creativity and passion of students. Software
Engineering students at RMU are introduced to programming
concepts through required courses like C++, Java, and Data
Structures. However students are not challenged enough to
develop software programs that would further strengthen their
understanding of programming methods and tools. One

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 1 - YEAR 2009 25ISSN: 1690-4524

approach in keeping students motivated is rapid functional
development of a software product with the assurance that the
product will be publicly displayed. Releasing a program to the
public is a major incentive to spend the time required to make
quality software products. ENGR3410 recognizes that students
need to be challenged to a certain level and uses course-based
projects to achieve this. One team released their creativity and
passion into building a software version of the Monopoly board
game. Figure 1 depicts the game’s user interface.

Figure 1: RMU Monopoly

Project Inceptions by Students
Software projects are more interesting to students when the
students themselves participate in project inception and decide
on what to create. In the case of RMU Monopoly, students
choose the project and decided on the implementation
methodology. Students were put into teams and asked to
propose three possible software projects. The instructor
evaluated the proposed projects and selected one project to
qualify as a course project.

In section 2 we briefly describe the features of RMU
Monopoly. In section 3 we discuss how key software
development activities namely, requirement gathering, design,
coding, testing and project management were implemented in
the context of this project. The challenges and the gains from
the student side are reflected. And finally in section 4 we
present the project postmortem and conclusions.

2. RMU MONOPOLY

RMU Monopoly is a RMU version of the Monopoly board
game developed by three software engineering juniors: David
Burke, Mike Brown, and Shaun Findlay. This game was
developed as an educational tool and as a game students could
play with their friends. The game was designed to make use of
pictures and references from the RMU campus. Students
playing the game would immediately recognize RMU
landmarks and friends (maybe even see themselves in the
game). Many game features include inside references that only
a RMU student would understand. Furthermore the game is
completely platform independent. Students can play on
Windows, Mac, and Linux. The game can be edited in any
platform. Thus future students will be able to learn from the
code, regardless of the platform. The game is played with 2 to 8
players. It features everything one would expect in a regular
game of Monopoly. For example properties are bought and
traded. Chance cards add some surprises into the mix as well.
Here it was decided to vary from traditional Monopoly and
make up new chance cards. Often these cards feature a funny
story resulting in the loss or gain of money or spaces. All in all,

the most important requirement was to have fun in both
development and playing. Working on a software project with
insider jokes and some degree of silliness is just more fun to
program.

3. SOFTWARE DEVELOPMENT ACTIVITIES AND
CHALLENGES

A uniqueness in this project is that students were not equipped
with all the skills at project start time. Software developed
skills were taught in class in parallel to students implementing
them on their projects. This meant students were responsible
for implementing the skills after they were taught in class.

Software Development Environment

Programming Environment: Students were given
the responsibility of deciding the tools to use to develop the
game. This gave students the freedom to work in the
programming environment of their choice. Though the students
had already taken courses on C++ and Java this approach was
used to encourage students to try out new tools so as to
improve and/or complement their programming skills.
However the drawback of this approach was for the students to
learn the new tool on their own with very limited support from
the professor. Without hesitation, students decided to program
in C#. Their decision was based on the fact that C# was
platform independent and at least some members of the team
had been exposed to C# in the required C++ course. By
choosing what to build and how to build it, students took
ownership of the project. It was no longer a homework exercise
to teach merely a language X, a tool Y, and a concept Z. The
project and tools for creating it belonged to the students.
However a major challenge the students faced was in learning
C# to be able to program games. Students acquired two C#
books and relied heavily on internet resources. Students also
taught each other anything they knew about the language that
they could use to meet their objectives. C# was not the only
challenge however. Learning general programming techniques
was a considerably more time consuming task. Difficulty in
learning to work with graphical user interfaces, threading, and
communication between classes were all noted in the post
mortem report as being very time consuming.

Software Design Studio: Many of RMU's computer

labs are restricted as a defense against students installing
inappropriate software. However the Software Design Studio
(SDS) did not have such restrictions. The software design
studio is setup to serve the student body in a unique way.
Software engineering students are authorized to install and
uninstall software for education purposes. Students wanted to
run a Subversion server, and were freely able to do so. Students
preferred OpenOffice.Org to the Microsoft Office already
installed on all school computers, so the students were able to
install it themselves. Upon request, Visual Studio 2005 was
installed to the computers being used. None of this would have
been possible had the school setup strict guidelines on
computer usage. The students were even given after hours
access into the SDS. The freedom to use the computers in the
way students wanted to, assisted immensely in the success of
the project.

Hardware Environment: Hardware requirements
were well defined. Students wanted the game to run on all

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 1 - YEAR 200926 ISSN: 1690-4524

major platforms, Windows, Linux, and Mac, and so they
needed the platform specific machines to test their program.
Unfortunately only Windows and Linux machines were
available in the SDS. A hardware requirement was that it must
be able to run .NET or Mono. However as a Macintosh
machine was not available in the SDS this could not be tested.
Another hurdle was that the school did not allow the SDS’s
Linux server to be accessed off campus for security reasons.
Since the students used this server for hosting their subversion
repository, this handicapped students ability to work remotely.
This issue was resolved by doing most of the work on campus.

Research and Requirements Analysis
After the inception the first software development activity
carried out was research and requirements analysis. The output
of this activity was a Software Requirement Specification
(SRS) document. The students spent time researching the game
of Monopoly. The students had played the game before and
knew the basic rules of play. Still the research provided each
student a better understanding of the game. For the
requirements analysis activity the students were asked to play a
dual role of a customer and a software developer so as to
effectively define the requirements and the project scope.
Requirements engineering was taught in the lecture part of
class and the students used this theoretical understanding for
requirements analysis in a lab session. The students performed
elicitation, analysis, specification and validation of the
requirements. This forced students to really think hard about
their project. It changed the ambiguous project of RMU
Monopoly into a well defined project with adequate features.
Students choose to include features like computer controlled
players and real photos taken around campus to use in parts of
the game. Students also surveyed their friends in what they
wanted in the game. To make the project have real life flavor,
the professor implemented “creeping requirements” by adding
a new requirement as the students were beginning to work on
the design phase. The new requirement was to include video
streams in the game. This was added to simulate the changing
requirements of real world customers. All of this stimulated
students to really think about and get involved with the project.
Students also decided on the scope of the project.\

Software Design
It was decided that the spiral software development model
would best fit a project of this nature. The spiral model allows
agility and easy removal of requirements when running behind
schedule. The model also helped students make better
estimations. Unified Modeling Language (UML) diagrams
were used for software design. Students created a use case
(Figure 2) and class diagrams (Figure 3) for the project.

Software Coding
Coding the program took a significant amount of time. Code
was divided up into modules. At weekly scrum meetings the
team discussed which modules needed to be done and which
were ready. The team assigned who would be in charge of each
module and design them too. Most of the design work was ad
hoc, written on white boards. Coding the project required large
amount of time just in research. The team decided to try
something like threading, when no one had actually used
threading before. This made coding the hardest part of the
project. The only way to make up for this deficiency was to
spend more time coding and researching how to code.

Starts Game

Primary User

Saves Loads

Examines Assets

Changes Options

Rolls Dice

Decides to Buy or

Pass-on Properties

Exits Game

Pays Mortgage

Buys House

Trades with Other

Players

1
1

1

1

Casual User

1

1

1

1

1

1

1

1

1

1

1

1

1 1
1
1
1

1

1

1
1
1

1

1

1

1
1
1

Figure 2: A Use Case diagram

The students were used to writing programs with only a few
hundred lines of code, but RMU Monopoly took thousands of
lines of codes (KLOCs). Students used Sub-Version to control
the source code and distribute it. They also used object oriented
design to ease in the design. Modules that required many
replications of data, such as data about each player, were made
much easier with classes and objects.

Figure 3: Early draft of a Class diagram

Software Testing
During the duration of this project informal unit and integration
tests were carried out. However no formal testing took place.
This was due to the fact that students had no knowledge of
formal testing and the deadline for delivery did not allow for
testing. The students did however use the same project for a
Validation and Verification class taken the following semester.
In this class unit and integration testing were taught in detail
and practiced on the RMU Monopoly program. Some students
decided for themselves to continue working on fixing the many
bugs found, despite no credit being offered. Students decided

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 1 - YEAR 2009 27ISSN: 1690-4524

for themselves to host the code to Google Code and start an
issues tracking system on it to monitor the bugs found. NUnit
was used to create unit test cases for the program. Also some
manual testing was performed to find other issues. Students
took part in an inspection meeting for one lab in the class.
During the inspection a RMU alumni came in to talk about how
his company did inspection meetings. While ideally this testing
should have been done concurrently with development, time
and lack of adequate knowledge forced this to be placed in a
separate class.

Project Management
The project was implemented mimicking a true software
development environment. Students took on self selecting roles
in the project, including requirements manager, design
manager, and code manager. These roles were not enforced and
as needs arose the students took additional roles that suited
them best. Some new roles were graphic artist and project
manager. The professor became the customer and the students
gave bi-weekly presentation on how the project was
progressing. The presentation came complete with prototypes
of the game, which was easy to do with the spiral development
model. Besides the professor another category of customers
were the students' colleagues in the same class and the
members of the RMU student chapter of the Association of
Computing Machinery (ACM). These colleagues looked at the
game and provided constructive suggestions. Many students
outside the development group also became partially involved
when the developers took photos of them to be used in the
game. This technique created a link between the developers and
the "customers" which strengthened the game design. It also
provided a real life experience to show the importance of good
communication with the customer.

Project Estimation: Estimations can be very
challenging to students who have no real world experience to
back up estimations. However as mentioned earlier the Spiral
model assisted students in making project estimations. The goal
was to keep a 40-20-40 time distribution for the three
development activities: design, coding, and testing. However
with the challenges in learning new concepts of a programming
language the time distribution had to be regularly re-estimated.
At project completion requirements gathering, research and
design required 70% of the total time. Research involved both
understanding the Monopoly game as well as learning new
programming concepts. Likewise coding and testing required
20% and 10% respectively of the total time. Figure 4 depicts
the final time distribution. In this chart the research component
involves understanding Monopoly as well as learning
programming concepts.

Requirements
Gather and
Design
Research
Coding
Testing

 Figure 4: Time allocation

Project Schedule: A project schedule (Gantt chart)
was created to ensure that tasks and subtasks were properly
understood and resources were adequately assigned. Like any

other project, scheduling was done to keep track of the project.
However changes in project scope required reworking of the
schedule towards the delivery deadline. Figure 5 depicts a
portion of the Gantt chart created for this project.

RMMM Plan: A Risk Mitigation, Monitoring, and
Management plan (RMMM) was developed to ensure proactive
risk management. This included what requirements could be
scrapped or down scaled if the project went behind schedule.
The project schedule and weekly progress meetings were used
to keep track of project progress. On days when work was done
(mostly weekends and late at night) a scrum meeting was held
to review progress and set goals for the day. When the project
did fall behind schedule, students were immediately aware and
made informed decisions on how to get back on track.
However the initial RMMM plan had to be changed as new
challenges became visible.

Figure 5: RMU Monopoly Gantt chart

4. PROJECT POSTMORTEM AND CONCLUSIONS

Project ownership namely a software gaming project was the
key factor in retaining student interest in the software
engineering process. This ownership created more of a drive to
finish the project than would a professor initiated course-based
project. The best example of this commitment was shown
during the latter part of development. Near the due date of the
project, it was decided that certain features had to be dropped
and/or scaled down in order to make a working game. These
dropped features wouldn't necessarily mean a bad grade, since
the students were also being graded on participation and the
understanding of the software engineering concepts being used.
However it was decided that, despite there being not enough
time, the feature to “trade properties with other players” was
crucial for an enjoyable game of monopoly. Another hurdle
that could stop an uninterested student was learning a number
of new tools for the project. C#, AgroUML, Mono (a .NET
implementation for Linux and Mac), and Sub-Version were all
new tools for the students. However, with interest in making
the best gaming program possible, students shrugged off the
necessary learning curve of these tools. Another factor in
handling these new tools was that by using the spiral model,
prototypes were made, inspiring the students that they can use
such tools to make real results. The problem could be mitigated
more by teaching a variety of tools and by having a
knowledgeable pool for guidance, so that answers to student
questions could be easily available.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 1 - YEAR 200928 ISSN: 1690-4524

There are unfortunately a number of challenges to
implementing a project similar to RMU Monopoly. A genuine
interest in software is needed for students to take interest and
ownership of their work. The best type of student for this type
of project is one that would probably be programming even if
they were not in school or work. While incorporating gaming
can help students gain interest in software development, it is up
to the student to commit. Also implementing this type of
project in a larger class size may be challenging. The RMU
Monopoly project was done in a small class size. This allowed
for individual attention from the professor. In a larger class, it
may be more tempting to assign one generic project that every
student must complete. While this would make grading and
teaching easier, it would strip the students of ownership and
interest of their project.

In the experiences at RMU, retaining student interest in
software engineering is vital to successful learning. Course
based gaming software projects like RMU Monopoly a gaming
software was a successful means of keeping student interest in
the SDLC. By letting students choose what their project will be
and how to implement it, ownership of the project was given to
the students. Overall this resulted in a functional game and a
superior learning experience with a fun factor for the students.
This method could easily be adapted to suit other colleges in
the effort to attract, educate and retain future software
engineers.

5. REFERENCES

[1] Knight, D.W., etc. al., “Improving engineering Student

Retention through Hands-On, Team Based, First-Year
Design Projects”, Proceedings 31st International
Conference on Research in Engineering Education,
ASEE, June 22-24, 2007, Honolulu, HI.

[2] Vogt, C. M., “Professors Need to Lighten Up”, ASEE
PRISM, March 2008, Volume 17, Number 7.

[3] Huband, F.L., “Attracting best – and Keeping Them -
Comments from the publisher”, ASEE PRISM, February
2008, Volume 17, Number 8.

[4] Meyer, J., et. al., “Retaining Freshman engineering
Students through participation in a first-Year Learning
Community: What works and what doesn’t”, Proceedings
of the 2007 American Society for Engineering
Education Annual Conference & Exposition, Copyright
2007, American Society for Engineering Education

[5] Morse, L.C. and Babcock, D.L. Managing Engineering
and Technology, 4th Edition, Prentice Hall International
Series in Industrial and Systems Engineering, Editors -
Fabrycky, W.J. and Mize, J.H., 2007.

[6] Claypool K., and Claypool M., “Teaching Software
Engineering through Game Design”, Proceedings of the
2005 conference on Innovation and Technology in
Computer Science Education (ITiCSE), 2005 June 27-
29, Monte De Caparica, Portugal.

[7] Welch, L. R., etc. al., “Enhancing Engineering Education
with Writing-to-learn and Cooperative Learning:
Experiences from a Software Engineering Course”,
Proceedings of the 2002 American Society for
Engineering Education Annual Conference &
Exposition, Copyright 2002, American Society for
Engineering Education.

[8] Wankat, P. and Oreovicz, F., “Making them want to stay”,
ASEE PRISM Volume 14, Number 7, 2005.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 1 - YEAR 2009 29ISSN: 1690-4524

	ZE817AN

