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ABSTRACT

The reliable solution of nonlinear parameter es-
timation problems is an important computational
problem in many areas of science and engineering,
including such applications as real time optimization.
Its goal is to estimate accurate model parameters that
provide the best fit to measured data, despite small-
scale noise in the data or occasional large-scale mea-
surement errors (outliers). In general, the estimation
techniques are based on some kind of least squares
or maximum likelihood criterion, and these require
the solution of a nonlinear and non-convex optimiza-
tion problem. Classical solution methods for these
problems are local methods, and may not be reliable
for finding the global optimum, with no guarantee
the best model parameters have been found. Interval
arithmetic can be used to compute completely and
reliably the global optimum for the nonlinear para-
meter estimation problem. Finally, experimental re-
sults will compare the least squares, l2, and the least
absolute value, l1, estimates using interval arithmetic
in a chemical engineering application.

Keywords: Global optimization, interval com-
putations, non-smooth optimization, least absolute
value, least squares estimators.

1. INTRODUCTION

In general, parameter estimation techniques are
based on some kind of least squares or maximum
likelihood criterion, and these require the solution
of a nonlinear and non-convex optimization problem.
The standard methods (gradient-based approaches:
Gauss-Newton methods, Gauss-Marquardt methods,

and successive quadratic programming methods, or
non-gradient methods, such as the simplex pattern
search) used to solve these problems are local methods
that provide no guarantee that both the global opti-
mum and the best model parameters have been found.
Interval arithmetic can be used to compute reliably
the global optimum for a nonlinear parameter estima-
tion problem.

The second section introduces the topic of para-
meter estimation. The third section presents basic
concepts in interval arithmetic and non-smooth inter-
val optimization techniques. The fourth section shows
numerical results in a chemical engineering application
and finally, the fifth section presents conclusions and
future work.

2. PARAMETER ESTIMATION

Suppose that n observations of m response va-
riables, yji, i = 1, . . . ,m, j = 1, . . . , n are avai-
lable, and that the responses are to be fitted to a
model of the form yji = fi(xj , θ), with independent
variables xj = (xj1, xj2, . . . , xjp)T and parameters
θ = (θ1, θ2, . . . , θq)T . Various objective functions (or
estimators) φ(θ) can be used to obtain the parameter
values that provide the best fit. In many circum-
stances, a maximum likelihood estimate is most ap-
propriate. However, assuming a normal likelihood in
the errors, this can be simplified to the widely used
relative least squares (LS) criterion or the l2 norm of
the relative errors, and to obtain the objective func-
tion

φLS(θ) =
n∑

i=1

m∑
j=1

[
yji − fi(xj , θ)

yji

]2

. (1)
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Similarly, using the l1 norm for the least absolute
value (LAV) criterion the objective function is

φLAV (θ) =
m∑

i=1

n∑
j=1

∣∣∣∣∣yji − fi(xj , θ)
yji

∣∣∣∣∣. (2)

LAV has been used successfully in multiple regres-
sion [2]. In general, there are a variety of standard
techniques to minimize φ that provide a local mini-
mum, but no assurance that a global minimum has
been found. This paper shows that the LAV crite-
rion combined with interval arithmetic techniques is a
reliable tool in parameter estimation.

3. INTERVAL ARITHMETIC

Real interval arithmetic is based on closed inter-
vals of real numbers, i.e. x = [x, x]. A real interval
vector is x = (x1,x2, . . . ,xn), where xi = [xi, xi] can
be interpreted geometrically as an n-dimensional box.
Comprehensive introductions to interval analysis can
be found in [6], [5] and [10].

The interval extensions and interval Newton
methods have been developed for global solution of
nonlinear systems of equations and for global opti-
mization. These techniques provide the capability to
enclose narrowly all roots of the systems within the
given initial interval. It is well known that when the
functions are given by smooth expressions, without
conditional branches, this technique is quadratically
convergent. For instance, in the unconstrained mini-
mization of the relative least squares function, φ(θ), a
common approach is to use the gradient of φ(θ) and
seek a solution of g(θ) = ∇φ(θ) = 0. The global mini-
mum will be a root of this nonlinear equation system,
but there may be many other roots as well, represent-
ing local extremes and saddle points. Thus, for this
approach to be reliable, it is necessary to find all the
roots of g(θ) = 0, and this is provided by the interval
Newton techniques.

Non-smooth phenomena in mathematics and opti-
mization occur naturally and frequently, and there is
a need to be able to deal with them. Recent literature
presents associated techniques which are well suited
to this purpose. Many practical optimization pro-
blems, in particular those containing expressions such
as |E(x)| and max{E(x), F (x)}, E,F : Rn → R or
functions defined by If-then-else branches, result in
discontinuous functions or functions whose derivatives
have jump discontinuities. For such problems, gradi-
ent type methods cannot be applied. There are differ-
ent approaches to overcome this difficulty.

Consider a function f : Rn → R, and a point
x ∈ Rn. The classical gradient of f at x is defined only

when f is differentiable at x. For non-differentiable
functions f , various generalizations of the gradient are
summarized in [1] which are termed Clarke subgradi-
ents. A common feature of these subgradients is that
they only capture information about the epigraph of
f near (x, f(x)). In [8] Muñoz and Kearfott showed
that it is possible to find an interval enclosure for all
these techniques that incorporates information of f in
a complete neighborhood of x.

In practice, the interval Newton procedure can also
be combined with an interval branch-and-bound tech-
nique, so that roots of g(θ) = 0 that cannot be the
global minimum need not be found. The solution al-
gorithm is applied to a sequence of intervals, begin-
ning with some initial interval vector θ(0) given by
the user. The initial interval can be chosen to be suffi-
ciently large to enclose all physically feasible behavior.
It is assumed that the global optimum will occur at
an interior stationary minimum of φ(θ) and not on the
boundary of θ(0). Since the estimator φ(θ) is derived
from a product of normal distribution or double ex-
ponential functions corresponding to each data point,
only a stationary global minimum is reasonable for
statistical regression problems such as those consid-
ered here.

Elementary Operations

Real interval arithmetic was introduced in its modern
form in [7], and is based on arithmetic within the set
of closed intervals of real numbers. Fundamental def-
initions of interval vectors, interval arithmetic opera-
tions, and interval slope sets now follow.

Definition 1 A real bounded and closed interval
is defined by

x = [x, x̄] := [inf x, supx] ∈ IR,

x̌ is the center or midpoint for the interval x An n-
dimensional interval vector, (also called box) is defined
by

X := (x1,x2, . . . ,xn)T ∈ IRn,

where x1,x2, . . . ,xn are real intervals and IRn is the
set of real interval vectors. An interval matrix A =
(aij) is a matrix all of whose entries aij are intervals.

Definition 2 For the intervals x = [x, x̄] and
y = [y, ȳ], the basic interval operations are defined
as follows.

x + y = [x + y, x̄ + ȳ]
x− y = [x− ȳ, x̄− y]
x× y = [m,M ] where

m = min{xy, xȳ, x̄y, x̄ȳ},
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M = max{xy, xȳ, x̄y, x̄ȳ}

if 0 /∈ x 1
x =

[
1
x̄

,
1
x

]
x÷ y = x× 1

y
(3)

The following example illustrates interval arith-
metic evaluations by using the formulas in Eq. (3).

Example 1 Let f : R2 → R be the func-
tion f(x, y) := (y − x2)2 + 2x. The interval eval-
uation of f on the interval vector X = (x,y)T =
([0.7, 1], [0.0, 0.3])T is obtained as follows. For any
x ∈ x and y ∈ y,

f(x, y) = (y − x2)2 + 2x
∈ (y− x2)2 + 2x
= ([0.0, 0.3]− [0.7, 1]2)2 + 2[0.7, 1]
= ([0.0, 0.3]− [0.49, 1])2 + [1.4, 2]
= ([−1.0,−0.19]2 + [1.4, 2]
= [0.036, 1] + [1.4, 2]
= [1.436, 3].

We will limit ourselves to the following definition
of interval slopes, taken from [6], p. 27.

Definition 3 Let f : Rn → R. The vector S is
said to be a slope set for f over x and centered on
the interval vector x̌ if, for every x ∈ x and x̌ ∈ x̌,
x 6= x̌, there is a S ∈ S such that

f(x)− f(x̌) = S · (x− x̌). (4)

Any smallest such set of vectors satisfying this con-
dition will be denoted by S](f,x, x̌). The smallest in-
terval vector (or interval hull) that contains S](f,x, x̌)
will be denoted by S](f,x, x̌), and is called the in-
terval slope of f over x, where it is not necessary that
f is differentiable.

Usually, x̌ is a point x̌ or a very small box. In
the one-dimensional case, the slope function of f with
center in x̌, s(f, x, x̌), can be defined by

s(f, x, x̌) =
{

f(x)−f(x̌)
x−x̌ , x 6= x̌,

ŝ, x = x̌,
(5)

where ŝ ∈ R may be arbitrarily chosen. Assuming f to
be continuously differentiable, we can define ŝ = f ′(x̌),
and thus make s(f, x, x̌) continuous in x and x̌.

Example 2 Let f : R → R be the continuous
function defined by

f(x) =
{

(x− 1)2, x ≥ 1,
1− x2, x < 1,

and x = [0, 2], x̌ = 1. From Eq. (5) the slope set
and the interval slope of f over x are S](f,x, x̌) =
[−2,−1]∪ [0, 1], and S](f,x, x̌) = [−2, 1] respectively.

Automatic Slope Computation for Non-
smooth Functions

The process of automatic slope computation (ASC)
for non-smooth functions is very similar to the pro-
cess of automatic differentiation. The ASC evaluates
functions specified by algorithms or formulas accor-
ding to the rules of a slope arithmetic. Through
this subsection, s(f,x, x̌) denotes the automatic in-
terval evaluation of S](f,x, x̌), when f is continu-
ous at x̌. Introduced in [6] (p. 211-218), the func-
tion xp = χ(xs, xq, xr) is a device that generates code
lists corresponding for the non-smooth functions χ (If-
then-else branches), | · |, and max.

The following formulas define the floating point
and interval evaluations, and the slope evaluation of
piecewise continuous functions. Example 3 illustrates
their application.

Formula 1 Floating point evaluation

χ(xs, xq, xr) =
{

xq, xs < 0,
xr, otherwise.

(6)

Formula 2 Interval evaluation

χ(xs,xq,xr) =

 xq, xs < 0;
xr, xs > 0;
xq∪xr 0 ∈ xs.

(7)

Formula 3 Interval evaluation of the slope s(χ,x, x̌)
when χ is continuous in xs.

s(χ(xs, xq, xr),x, x̌) =

 s(xq,x, x̌), xs∪x̌s < 0;
s(xr,x, x̌), xs∪x̌s > 0;
s(xq,x, x̌)∪s(xr,x, x̌) 0 ∈ xs∪x̌s.

(8)

Example 3 Let f : R → R be the function defined
by

f(x) =
{

(x− 1)(x− 4), x ≤ 2,
max {2x− 8, |x− 2| − 2} , x > 2,
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Figure 1: Graph of the function in Example 3

Since the graph of f is convex over the interval
x = [−1, 5], the interval slope set is easily evaluated
using Eq. (7) and (8), see Figure 1. From Eq. (7) an
interval evaluation of f over x = [−1, 5] with x̌ = 2,
is [−2.25, 10], while the exact range is [−2, 10]. From
Eq. (8), the interval slope of f over x = [−1, 5] is

s(f(x),x, x̌) = s(xq,x, x̌)∪s(xr,x, x̌)
= [−4, 2]∪[−1, 2] = [−4, 2].

4. NUMERICAL RESULTS

This section presents an application of interval
Newton techniques to a problem in thermodynamics,
viz. the estimation from binary vapor liquid equilib-
rium (VLE) data of the energy parameters in the Wil-
son equation

gE

RT
= −x1 ln(x1 + Λ12x2)− x2 ln(x2 + Λ21x1)

= x1 ln γ1 + x2 ln γ2, (9)

where gE is the molar excess Gibbs energy for a
binary system, x1 and x2 the liquid-phase mole frac-
tions.

From Eq. (9) expressions for the activity coeffi-
cients γ1 and γ2 are

ln γ1 = x2

[
Λ12

x1 + Λ12x2
− Λ21

x2 + Λ21x1

]
,

− ln(x1 + Λ12x2) (10)

ln γ2 = −x1

[
Λ12

x1 + Λ12x2
− Λ21

x2 + Λ21x1

]
,

− ln(x2 + Λ21x1) (11)

where the binary parameters Λ12 and Λ21 in Eq. (10)
and Eq. (11) are given by

Λ12 =
v2

v1
exp

[
−θ1

RT

]
, (12)

Λ21 =
v1

v2
exp

[
−θ2

RT

]
, (13)
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where v1 and v2 are the pure component liquid molar
volumes, T is the system temperature, and θ1 and θ2

are the energy parameters that need to be estimated.
Given VLE measurements and assuming an ideal

vapor phase, experimental values γ1,exp and γ2,exp of
the activity coefficients can be obtained from the re-
lation

γi,exp =
yi,expPexp

xi,expP 0
i

, i = 1, 2, (14)

where P 0
i is the vapor pressure of pure component

i at the system temperature T . Two VLE models
were considered, where the constants R and T in
Eq. (12) and Eq. (13), and the experimental data
in Eq. (14) were taken from Gmehling et al. [4]. By
using interval arithmetic techniques, the minimization
of the two objective functions for LS in Eq. (1) and
LAV in Eq. (2) was compared, with yji = γji,exp,
fi(xj , θ) = γji,calc(θ), and the relative errors are

yji − fi(xj , θ)
yji

=
γji,exp − γji,calc(θ)

γji,exp
, (15)

for j = 1, . . . , n, and i = 1, 2, where γji,calc(θ) are
calculated from Eq. (9) at the same conditions (tem-
perature, pressure and composition) used to measure
γji,exp.

Gau et al. [3] studied the relative errors in Eq. (15)
with the LS estimate in Eq. (1) with interval arith-
metic. We extend their procedure to non-smooth op-
timization by incorporating the LAV estimate in Eq.
(2) using interval Newton techniques. The following
two tables present estimates of the energy parame-
ters, θ1 and θ2. θ(LS) and θ(LAV ) denote the solutions
for the objective functions defined by Eq. (1), and
Eq. (2) respectively, and θ(D) is the solution published
in Gmehling et al. [4] by using the Newton method.
The second and third columns show the evaluation of
φLAV (θ) and φLS(θ) in the three solutions.

Table 1: Results for T = 30◦ C

Solution φLAV (θ) φLS(θ)
θ(LAV) = (−454.1,1255) 0.3639 0.0130
θ(LS) = (−468.5, 1320) 0.3758 0.0118

θ(D) = (437,−437) 0.7139 0.0383

Table 2: Results for T = 50◦ C

Solution φLAV (θ) φLS(θ)
θ(LAV) = (−388.2,861.4) 0.2923 0.0093
θ(LS) = (−417.9, 969.3) 0.3130 0.0081

θ(D) = (342,−342) 0.6838 0.0426

5. CONCLUSIONS

As both tables show, the evaluations of the objec-
tive functions φLAV (θ) and φLS(θ) at θLAV and θLS

are lower than their corresponding evaluations at θD,
the published result in [4]. Using interval methods, we
found that the published solution corresponds to local
optima, whereas interval methods enabled us to find
the global optimal parameter values. Significantly,
using Interval Arithmetic, both LS and LAV estima-
tors can be used to obtain globally optimal solutions.

The approach presented here can also be used in
connection with other objective functions, such as the
maximum likelihood. Note that in the above example,
differentiable functions (LS) and non-differentiable
functions (LAV) were considered using this technique.
Thus, it can be used in a wide range of applications.

We shall be applying interval arithmetic methods
to more complex parameter estimation problems, such
as those in fitness and health sciences or in the Hy-
poxia model for the Gulf Coast of Mexico [9], and
derive more accurate estimations than those obtained
by other means. We would like to know under what
circumstances LS and LAV estimators perform best,
and their sensitivity to the influence of different kinds
of outliers.
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