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ABSTRACT 

  
The paper extends the teach-and-repeat paradigm that has been 
successful for the control of holonomic robots to nonholonomic 
wheelchairs which may undergo pivoting action over the course 
of their taught movement.   Due to the nonholonomic nature of 
the vehicle kinematics, estimation is required  --  in the example 
given herein, based upon video detection of wall -mounted cues  
--  both in the teaching and the tracking events.  In order to 
accommodate motion that approaches pivoting action as well as 
motion that approaches straight-line action, the estimation 
equations of the Extended Kalman Filter and the control 
equations are formulated using two different definitions of a 
nontemporal independent variable.  The paper motivates the 
need for pivoting action in real-li fe settings by reporting 
extensively on the abiliti es and limitations of estimation-based 
teach-and-repeat action where pivoting and near-pivoting action 
is disallowed.  Following formulation of the equations in the 
near-pivot mode, the paper reports upon experiments where 
taught trajectories which entail a seamless mix of near-straight 
and near-pivot action are tracked. 
 
Keywords: Control systems, Robotics, Mobile robot systems, 
Estimation using vision, Wheeled robots, Autonomous 
navigation. 
 

1. INTRODUCTION 
 

There has been considerable activity in the 
development of autonomous wheelchair action for individuals 
whose mix of disabiliti es precludes their self-navigation of a 
power wheelchair in certain environments [1].    One approach 
of several that have been tried is extended in the present paper; 
this is the use of a prior teaching episode for all path segments 
within the home or workplace that will , at the direction of a 
user, be subsequently selected for tracking.  As discussed in [2], 
it is useful in such cases to formulate both the estimation and 
control equations using an independent variable other than time: 
Specifically, the independent variable used in [2] is the average 
rotation  --  forward or reverse, depending upon the direction of 

the current path segment   --  of each of two independently 
driven wheels.  This variable is proportional to the distance 
traveled by the midpoint between the two wheels across the 
current path segment. 

The several advantages of formulating the governing 
equations in this way are discussed in the section immediately 
below.  The next section details the limitation of this 
formulation in terms of the categories of trajectory that may be 
taught and tracked: the formulation does not allow one to 
approach pure pivot, where the average wheel rotation 
approaches zero despite finite movement of the chair.   The 
discussion goes on to offer an alternative formulation for 
estimation and tracking that works in the pivot and near-pivot 
cases, but fails as straight-line motion is approached. 
The following section details experimental work to validate the 
use of a “shifting” strategy  -- applied both during the teaching 
and tracking events  -- which alternates the two formulations to 
estimation and/or tracking as a maneuver composed of both 
kinds of motion ensues.  A brief summary and conclusion 
follow this. 

 
2. TEACHING AND TRACKING WITH RELATIVELY 

LITTLE PATH CURVATURE 
 

Consider the motion of the wheelchair toward the 
table as indicated in Fig. 1.  During a teaching episode, the chair 
undergoes motion such that the midpoint A between the two 
wheels traverses from starting point C to destination point D.   
During this motion, the chair, either through being pushed or 
joystick-controlled, is guided by a human operator.   
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Figure 1- A typical taught  path from position C to table D. 

Beginning with the nominal (no-wheel-slip) kinematic 
equations of motion, given by, 
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and the starting pose of the wheelchair, XC, YC, φC, the 
numerical integration based on encoder-sensed wheel rotations 
produce dead-reckoned estimates of the ongoing values of X(α), 
Y(α),  φ(α). 

Here, X, Y are the Cartesian coordinates of the 
midpoint of the axle (denoted by A in Figure 1), Ø measures the 
orientation of the system with respect to the X axis of the fixed 
floor coordinates. The variables 

�
1 and 

�
2 are the left and right 

wheel rotations, respectively. We have two parameters, R, the 
radius of the drive wheel, and b which is the distance from the 
wheel to the midpoint of the axle. Finally, s is a measure of the 
distance traveled along a certain segment. It is explained in 
detail further below. 

The independent variable α is defined in terms of the 
individual wheel rotations, instead of the more famili ar variable, 
time. The reason this is convenient is explained further on. The 
quantity u is related to the steering control while tracking. 

Also, these equations describe the movement of the 
wheelchair while moving in the forward direction, not 
necessarily at the same speed. This is called the mode-1 
movement of the vehicle. If the chair is moving backwards the 
definitions in (3) change in terms of one sign. This is called the 
mode-2 movement of the chair. Since the basic form and 
approach are the same, we will not make a distinction in our 
discussion between modes 1 and 2. One only has to be careful 
in the propagation of this sign while calculating the covariance 
P as explained below. For further reference consult [3]. 

For purposes of notation, the kinematic equations of 
motion shown in (1) are grouped in vector form 
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where dx

� ��
 are known as the state equations and a process-

noise vector w has been added to f to account for errors in the 
nominal nonholonomic kinematics. The process w is assumed to 
be zero-mean, with Gaussian distribution, and random. This 
proposition is not essentially correct, since it assumes that the 
error in the kinematic equations can be represented by white 
noise. But the white noise assumption can be used as a 
representation of the errors in the system model and in the 
measurements of the physical system [2]. The idea is that the 
possible bias the state equations might have gets compensated 
by using the same physical system for both the teaching and 
tracking episodes. 

 
Figure 2-Two cameras are mounted below the seat and 

positioned to have clear view to wall cues. 
 

As the vehicle moves ahead, camera 1, as pictured in 
Fig. 2, acquires an image of a wall -mounted cue (see Fig. 3) 
which has known coordinates relative to the X Y coordinate 
system given in Fig. 1.  With each observation, xc, as designated 
in Fig. 2, the estimates are updated in accordance with the 
Extended Kalman Filter algorithm (EKF). 

 

Figure 3- Typical cue  

Specifically, the observation equation is given by: 
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where Xp, Yp are the coordinates of the cue p and C1-C4 (or C in 
the equation for h) are parameters that give the full description 
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of the camera’s position and orientation related to the base and 
the focal length. These can be obtained by calibrating the 
cameras. The vector equation z(αa) is only valid at discrete 
values of the independent variable αa when an observation is 
obtained, and  v(αa) is the measurement noise vector. In our 
specific case, we only have one observation equation, so both 
z(αa) and v(αa) are scalars. This process is assumed to be zero-
mean, with Gaussian distribution and random. The process 
noise w and the measurement noise v are assumed to be 
uncorrelated. 

Eq. (4) are based upon the pinhole camera model in 
the camera-xc direction as indicated in Fig. 2 [7]. 
 

 

Figure  4- Definition of parameter s 

 
During a teaching episode, the EKF is applied to Eq. (3) above 
in order to produce ongoing estimates of the pose.  Following 
teaching, in a postprocessor program, this sequence is reduced 
to a series of line segments as indicated in Fig.1.  Each segment 
is characterized, as indicated in Figs 1 and 4, by a 
parameterizing scalar s which ranges from 0 to 1.  At the 
starting end of the interval, s =0, estimates from the teaching are 
assigned to create the reference path.  At the terminal end, s =1, 
the same occurs.  The strategy for dividing the dense sequence 
of estimates acquired during teaching into such intervals or 
segments is outlined in detail i n [4].  Generally, with locally 
small radius of curvature, the path is reduced to relatively short 
segments.  As discussed herein, this strategy is effective only up 
to a point:  With increasingly small radii of curvature the 
effectiveness of the strategy diminishes, and hence an 
alternative formulation is required.  A typical comparison 
between the raw estimates, represented as points, and the 
postprocessor’s reduced representation of the path, represented 
as line segments, is ill ustrated in Fig. 5. 

 
Figure 5- Typical comparison of sequence of pose estimates 

compared with the generated trajectory. 
 

The estimate of the state is represented by )(ˆ αx and the 

estimation error covariance matrix of the state is P and given by 

[ ]TxxxxE ))(ˆ)(())(ˆ)(()( ααααα −−=P        (5) 

 

where E[.]  is the expected value of the process. The diagonal 
terms of the matrix P represent the variances of the estimation 
errors of the state. It is to note that for nonlinear systems, P is 
only an approximate mean square error and not a true 
covariance [5]. 

An advantage of using α rather than time as the 
independent variable for purposes of estimation has to do with 
propagation of P: 
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Where Q is the covariance vector associated with the noise 

vector w, and ( )TYXx )(ˆ)(ˆ)(ˆ)(ˆ αφααα = corresponds to the 

estimates of ( )TYXx )()()()( αφααα = . 

 The state estimates are updated at αa when a new 
observation is acquired: 
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where R(αa) is the covariance matrix of v(αa). The quantities 

P(αa|αa) and )|(ˆ aax αα are the updated estimate vector and 

covariance matrix, respectively (a posteriori). This process, 
which incorporates weighted observations to the equations of 
motion, is known as the Extended Kalman Filter [6]. 

To complete the estimation strategy, we have to 
consider that there is some finite time needed to process an 
image acquired by a camera. Since α continues to grow while 
the program is extracting the information from the image, the 
observations obtained to update the estimates must be 
transitioned from αa - the value of α when a video sample was 
acquired - to αp the value of α when a the cues have been 
identified. So, our modified equation for the EKF is: 

))](ˆ()()[(),()(ˆ)|(ˆ axhazaappxapx αααααααα −+= K
�

      (8) 
where �����0) is known as the state transition matrix. It is 
obtained by integrating numerically the equation 
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with the initial condition ���0

��
0) = I, the 3x3 identity matrix. 

A similar analysis can be done in the case of the estimation 
error of the covariance matrix at αp given the observations up to 
αa, P(αp|αa). The full procedure is detailed in [3]. 

Because the encoder-advanced α is nominally 
proportional to the physical distance traveled by the midpoint 
A, varying speeds of the teacher are accommodated. If time 
were the independent variable, and for instance the teacher were 
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to pause during teaching of a path, variances would continue to 
grow between observations despite the fact that there is no 
motion of the chair. A more reasonable assumption is to make 
the dependence of the variances on the actual distance traveled 
during teaching. 

 

Figure  6-Identification of reference point s on a given 
straight-line path segment.   

The counterpart advantage to this strategy during tracking 
also relates to speed:  During tracking, as a practical matter, 
vehicle speed should be set based upon a range of possible 
considerations:  

• Since the tracking depends on the ‘goodness’ of the 
estimates, the information received should be dense, that is, the 
observations should be frequent and reliable. When this is not 
the case, the vehicle should slow down until dense cue 
information is available again. If the flow of valid estimates is 
not reestablished, the chair should stop, to avoid a possible 
colli sion. The inverse of this situation is when the observations 
arrive constantly. In this case, the speed of the wheelchair can 
be increased to complete the path more quickly. A strategy to 
regulate the velocity of the vehicle can be devised, based on 
these simple considerations. 

• The maximum speeds of each segment of the path can 
be assigned in terms of the path geometry  – for example, in 
terms of the curvature. Also, a predefined profile of speeds can 
be built on the trajectory. This is a desired behaviour when the 
chair is about to change directions, for example. 

• The advantage of the geometric approach is the 
calculation of the maximum speeds off-line, that is, while using 
the postprocessor that generates the path segments after 
teaching has been completed. That takes a calculation burden 
from the navigation computer while in teaching or tracking 
mode. This reference velocity could then diminish when the 
path is tracked if the estimation information becomes poor. 

Three quantities that measure the difference between the 
estimated position of the chair, and the position where the 
vehicle should be at a certain juncture are now to be described. 
These variables will help design a viable tracking control for the 
wheelchair, and are defined 
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where en is the error normal to the trajectory, eØ is the 
difference in the angle between the desired and the actual 
positions, and et is the error in the tangential direction. The 
values Xref and Yref are the reference values of the trajectory, and 
they are a function of the distance traveled s 
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where the constants ai, bi, ci are the polynomial coeff icients that 
define the segment to be traveled. Since the segments are linear, 
the order is one. The postprocessor calculates these constants. 
We use a normalized s so that the navigation program knows it 
must switch to the next segment when s

� 	

 To finish the design 

of our controller, we must find a way to calculate s, our only 
unknown quantity, since the position and orientation of the 
vehicle are available at any instant.  

By choosing et = 0, the distance traveled in a segment 
can be calculated as, 
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The definition of the variable u given in Eq. (2) is 

calculated from wheel rotations in a teaching episode. When 
tracking the trajectory, we use it as our control parameter based 
on the normal and angular error.  We can steer using a 
combined proportional controller 

φφ ePKnepnKu += .    (13)

       
A closed-loop performance analysis can be done to 

determine the stabilit y of the system and the validity of the 
linearization of the state equations. Such an analysis has been 
done and can be consulted in [3]. In that same work, a number 
of experiments with this control approach are detailed and 
demonstrate that this strategy is stable and effective. 
 

3. A NEW TRACKING APPROACH FOR 
TRAJECTORIES WITH LOW RADIUS OF 

CURVATURE 
 

The approach in the above section works very well 
when the trajectories are linear or have large or moderate radius 
of curvature. But as the vehicle approaches a movement that is 
pure rotation, our control variable u tends to grow, as the 
denominator tends towards zero. This is because in pure 
rotational motion, 

� �
1= -

� �
2 . This type of movement is called a 

pivot or near-pivot, and it is produced when the wheels are 
turning in opposite directions, though not necessarily at the 
same speed. Clearly, the above strategy is no longer effective in 
these cases, as our independent variable α approaches a 
constant (dα/dt tends to zero). 

Pure rotational-motion capacity is desired in a vehicle li ke 
this for a variety of reasons: 

• A chair that can only move in modes 1 or 2 (linear or 
with a large to moderate radius of curvature) has the 
same maneuverabilit y as a car; it cannot do sharp 
turns, and has to compensate with several li near 
movements what could be done with one single 
rotation - for example, parking a car in a small spot.

• Realistic working areas are normally very crowded, 
and space is at a premium. They could include small 
corridors, narrow doorways, bedrooms with 
furniture, bathrooms and kitchens. Some of these 
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environments are simply impossible to navigate 
without pivoting.

• This limitation is arbitrary with respect to the range 
of trajectories that a human could teach to the 
vehicle.

We start by introducing our new definitions for α and u, 
for the case where the chair would rotate to the right: 
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where 

� �
1 >0 and 

� �
2 <0. We call this behavior “pivot right” or 

mode-4 type movement. Note that u*=1/u. This property will be 
important when we try to track mixed-mode paths. Making this 
change of variables yields a new set of equations of motion: 
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There is one last case, when 

� �
1 <0 and 

� �
2 >0. We 

call this rotational behaviour “pivot left” or mode-3 movement. 
The definitions of u* and α∗ change slightly 
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The equations of motion have the same form as in 

(15), with some sign differences. For the purpose of this article, 
we will concentrate on mode-4 motion as an example of a 
rotational mode since the procedure is the same for mode-3 
motion.  

As in the earlier case, a person ‘ teaches’ a rotational 
path to the chair. The estimates using our new definitions of the 
equations of movement are recorded and trajectory segments 
are generated using a new version of the postprocessor. But, 
when tracking the path, we are doing a basic rotational motion 
(the mixed rotational-near-rotational-linear-near-linear case is 
analyzed in the next section), and our old definition of the arc 
length is no longer useful.  

In the postprocessor, we construct the new segments 
as linear functions of s in the φ coordinate: 
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where s, as before, takes values from 0 to 1, and φref(0) and φ 

ref (1) are the reference values of φ at the beginning and end of 
the maneuver, respectively. These are calculated by the 
postprocessor when it creates the rotational ‘segments’ that are 

to be tracked by the vehicle. Since the value of φ̂  is known at 

all ti mes, we can calculate from the value of s (now more like 
an angular distance traveled) and the values of Xref and Yref: 
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With the reference values in X and Y, it is possible to 

calculate the ongoing position error while trying to track a 
trajectory. Then, en, eØ and et can be calculated using equations 
(10). Refer to Figure 7.  
 

 

Figure 7- Sequence of estimates of taught poses  --  and 
alternative definition of s  --  during a mode-4 segment of the 

path. 

As before, the speed dα* /dt (which is proportional to 
angular speed dφ/dt in this instance) is set based on independent 
considerations. With dα* /dt determined at any juncture based 
on these considerations, the commanded speed for the two 
wheels at the current instant only requires determination of u*.  

The strategy for computing u* is to actuate the wheels 
in order to correct to the extent possible the current translational 
error e as indicated in Fig. 8.  Because instantaneous progress in 
translation can only occur in the direction of the chair, we use 
the component et as defined in Fig. 8. 

 

Figure  8- Error e while tracking in rotational mode 

One possible control law would be u*= Kp et .  The 
resulting commanded angular velocity for the two wheels 
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should tend, over the rotational course of the maneuver to 
diminish current translational error while undergoing the 
required rotation. Our actual control law is: 
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where u*

kinematic is the calculated u as per Eq. (14). This added 
part of the equation gives a weighted difference between the 
commanded control u (dependent on the tangential error) and 
the u calculated by the kinematic equations of motion. This 
difference tends to be significant at the start of a new mode of 
motion, and diminishes quickly afterwards. The term was added 
to the control law after several experimental runs showed that 
an extra ‘push’ was needed right after the wheelchair was 
switching modes.  

With this control approach we retain the benefits of 
specifying the velocities for each segment beforehand – using 
our modified postprocessor.  
 

4. CREATING A MIXED-MODE TRAJECTORY 
 
So far, the capabilit y exists to track a segment in each of the 
four possible modes: 1- forward linear motion, 2- backward 
linear motion, 3- pivot left rotational motion and 4- pivot right 
rotational motion. If a segment is tagged (in a file, for example) 
with a certain mode beforehand, we can make our tracking 
program ‘dumb’ and just move the wheels according to the 
appointed control basis, without worrying if the control might 
become unstable or indeterminate. All this process of 
appointing a mode to each segment can be done ‘off-line’ , that 
is, after a teaching episode, with the vehicle at rest. 

But numerical integration and estimation occurs in 
real time during teaching. So, the strategy is to find a way to 
know when to switch to different sets of equations of motion 
while teaching, so numerical-integration instabilit y does not 
occur. The calculated estimation points are saved to a file that 
will l ater be processed by our postprocessor program. This 
program will calculate individual segments sorted according to 
mode, and then join everything into a single path file. 

A way to implement this is to use the calculated value 
of u at each juncture during teaching (Eq. (2), (14) and (16)) to 
determine in which mode of movement the vehicle currently 
operates. For each series of joint rotations, u and u* are 
calculated, which correspond to mode-1 and mode-4 type of 
movement (the values of mode-2 and mode-3 are the same as 1 
and 4 respectively, except for a sign change). 

In mode-1, the more near-straight the motion, the 
smaller u becomes. In the limit, as the traced path is a complete 
straight line, the value of u is equal to zero. Conversely, as the 
path becomes more curved, the value of u grows. When u is 
equal to one, one of the wheels has stopped moving, and we are 
about to switch the form of motion. As u becomes bigger than 
one, we have 

� �
1<0 or

� �
2<0 (but not both). This corresponds 

to a near-pivot motion. In the limit as we approach a pure 
rotational motion, u becomes indeterminate due to a zero 
denominator, and the equations of motion are no longer valid. 
An analogous analysis can be made for u* since u* =1/u. 

One last thing to consider is that an hysteresis effect is 
desirable. If we just set a threshold of the value of u and u* to 
switch modes, we might get noise or a “chattering” effect. This, 
in turn, would result in unstable paths where we are switching 
back and forth between modes. To prevent this, we keep in 
memory the mode for the earlier set of joints and calculate u or 
u* depending on this past information. If – say -- u in mode-1is 

bigger than 1.2, then switch to a rotational mode; it could be 
mode-3 or mode-4 depending on the sign of u*. 

There is still t he matter of the stabilit y of these hybrid 
segments, in particular the rotational ones. But the first 
experiments look encouraging, as long as any linear segment 
measures in length at least 7.0 inches, and any rotational 
segment subtends an angle of no less than 5 degrees. 

In the next section, some preliminary results are 
discussed. 
 

5. RESULTS OF MIXED-MODE TRACKING 
 

A special testing area has been arranged at the laboratory of 
room B-28 Fitzpatrick Hall of Engineering at the University of 
Notre Dame. The following rotational and mixed path tracking 
tests were conducted with the described prototype chair in this 
laboratory. 
 
Trajectory 1: 
In this first trajectory, the wheelchair was taken from a door-
like entrance (room coordinates X=56.5 in, Y=0.0 in), to in 
front of a wall , from that position, backwards to a metal desk. 
Finally, the path passes through in the middle of two chairs and 
returns to the original position. Refer to Figure 9. 
 

Figure  9- Trajectory 1 and tracking data 

In the figure, the lines represent the trajectory that the 
chair will t rack (generated by the postprocessor, after a teaching 
episode) and the small circles indicate the estimates of the 
wheelchair while tracking, during one typical tracking test. The 
square is one of the bases of the desk and the big, solid circles 
are two chair stools. The dimensions of the chair, roughly, are 
24 inches in width and 49 inches in length. 

Figure 10 gives a better idea of the trajectory tracked 
by the wheelchair. The arrows indicate the direction of the 
movement; the rectangles are an approximation of the chair size 
and the ‘o’ represents the side that is the back of the chair. 
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Figure 10- Chair representation in trajectory 1 

 
To be able to complete such a diff icult maneuver, the 

chair has to turn about its Z axis (perpendicular to the floor) 
several times, doing pivots and near pivots, combined with 
linear segments. Some of the parts of this path require great 
precision, in particular the one that goes to the center of the 
desk. The small discrepancies between the tracking and the 
reference path are due to slow control steering and not to errors 
in the estimates. That is, the wheelchair ‘knows’ where it should 
move, but the control cannot react fast enough. This tends to 
happen in mode-1segments that have some curvature, due 
primarily to inertial effects.  

This trajectory was tracked successfully 30 times with 
no failures (bad estimation, no observations, erroneous tracking, 
etc.) and with good terminal position (about 1 or 2 inches 
difference from the desired coordinates in terms of tracking 
error). 
 
Trajectory 2: 

In this second trajectory, the wheelchair started again 
from the same door-like entrance, went to the middle of the 
room, did a 360-degree counterclockwise turn and arrived in 
front of a wall . Then, it moved backwards to the center of the 
test space and did a clockwise 360-degree turn. Then, it 
continued backwards to the initial position. See Figure 11. 

 

Figure  11- Trajectory 2 and tracking data 

The purpose of this exercise was to test all four modes 
of movement. Note that the data plotted do not correspond to 
the central point between the wheels, but to a point 6.375 inches 
behind the axle. The reason for this is simply convenience of 
measurement, and that is why the pure pivots would be shown 
as circles instead of points. 

Again, tracking and terminal position are within 2 or 
3 inches. This trajectory was tested successfully 30 times, with 
no failures. 
 
Trajectory 3: 

In this last tested trajectory, the vehicle would go 
forward from our door-like entrance, past a second ‘door’ 
(made out of two bars of Styrofoam), and then do a sharp turn 
and return close to our first door-like structure. Then it turns on 
its Z axis to position itself in its original placement. It must be 
noted that there is a wall at X=0 making the returning maneuver 
as if the chair was crossing another door, simulated by the wall 
and one of the Styrofoam bars. Refer to Figure 12. 

 

Figure 12- Trajectory 3 and tracking data 

In the figure, the two small rectangles in the upper 
part represent the two Styrofoam bars, and the two lower 
rectangles the door-like structure. The diff icult part of this 
maneuver is the very sharp turn after crossing the second ‘door’ . 
This posed several diff iculties, since visibilit y is poor in that 
particular section and the wheelchair has to navigate with 
information from just one of the cameras, since the other one is 
too close to the wall . In Figure 13, the plot shows the chair 
positions during travel. 
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Figure 13- Chair representation in trajectory 3 

The result is that, during testing, 10 tries were 
successful and three failed. In all of these unsuccessful tries, the 
estimates had an error of about 3 inches at the moment of 
failure that could not be corrected due to the lack of an 
observation in some criti cal juncture. This error was enough to 
interrupt the maneuver, since in this sharp turn, one of the front 
legs of the chair has less than 3 cm of space to pass. 
 

6. FUTURE WORK 
 

This last test confirms the idea that, as long as we have 
good estimates and constant flow of observations, we can track 
reliably a very complicated path - as was demonstrated in tests 1 
and 2. So, the future work to be done is to guarantee good 
estimates during the full tracking maneuver. There are several 
ways to do this: 
 

• Install more cameras in the chair, maybe two facing 
backwards and to the sides. 

• Use programming to better validate each cue detected, 
i.e. discard false positives. There are some strategies 
that have been successfully used, but improvement is 
still possible. 

• Use faster hardware. With a faster CPU, the image 
information given by the cameras can be processed 
faster giving us a more dense flow of observations. 

 
What is important is that the general approach appears to 

work. Several more tests with different geometries and different 
working spaces need to be conducted, but the preliminary 
testing of the general strategy is very hopeful. 
 

7. CONCLUSIONS 
 

In this paper, the approach the teach-repeat paradigm 
applied to non-holonomic wheeled vehicles has been extended 
to include trajectories that have high radius of curvature, or 
mixed linear and rotational modes. The new rotational equations 
of motion have been described, along with our new control 
strategy in cases where the path has pivot-li ke geometry. The 
need for accurate estimates has been emphasized for reliable 
tracking in all four described modes of movement. The 
justification for this approach in realistic working environments 
was given. Experimental results were analyzed and future work 
was described. 
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