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Abstract 

 
We evaluate and compare the storage efficiency of 
different sparse matrix storage formats as index structure 
for text collection and their corresponding sparse matrix-
vector multiplication algorithm to perform query 
processing in information retrieval (IR) application.  We 
show the results of our implementations for several sparse 
matrix algorithms such as Coordinate Storage (COO), 
Compressed Sparse Column (CSC), Compressed Sparse 
Row (CSR), and Block Sparse Row (BSR) sparse matrix 
algorithms, using a standard text collection. Evaluation is 
based on the storage space requirement for each indexing 
structure and the efficiency of the query-processing 
algorithm. Our results demonstrate that CSR is more 
efficient in terms of storage space requirement and query 
processing timing over the other sparse matrix algorithms 
for Information Retrieval application. Furthermore, we 
experimentally evaluate the mapping of various existing 
index compression techniques used to compress index in 
information retrieval systems (IR) on Compressed Sparse 
Row Information Retrieval (CSR IR).   
 
 

1.  Introduction 
 
The mounting available information necessitates the 
invention of enhanced information retrieval systems. The 
decisive factors in the performance evaluation of an 
information retrieval engine are the disk space 
consumption and query processing time. The terabytes of 
information available on the Internet poses a grave 
challenge before experts to investigate into distinctive 
algorithms that can be used for the purpose and not to 
mention that information available on the Internet is 
growing with an explosive rate. 
For years inverted index algorithm is treated as the de 
facto standard for information retrieval systems. Inverted 
index structure supports a fast query processing. 
Furthermore it uses compression techniques to achieve a 
better storage on disk. Inverted index has it’s own 
limitations, such as complexity of update to inverted 
index and parallelization of inverted index. An alternative 
approach to inverted index is given in [1], to store the 
index of text collection in a sparse matrix structure and 

perform query processing using sparse matrix-vector 
multiplication. The approach is parallelized and achieved 
a substantial efficiency over the sequential inverted index 
[2]. In this paper we investigate the standard BLAS sparse 
matrix algorithms [3], namely Coordinate Storage (COO), 
Compressed Sparse Column (CSC), Compressed Sparse 
Row (CSR) and Block Sparse Row (BSR). In this paper 
we give a comparative analysis among the sparse matrix 
algorithms for information retrieval. We compare these 
storage structures and the efficiency of their 
multiplication algorithms to perform query processing. 
Furthermore, we evaluate various compression techniques 
used to compress inverted index on CSR IR.  A 
comparison of compression ratio and query processing 
timing of several different conventional index 
compression schemes is given in [4]. The readers are 
referred to [5; 6; 7] for information retrieval topics. The 
remaining of this paper is organized as the following: 
Section 2 gives a brief introduction of information 
retrieval engine architecture. Section 3 gives a brief 
description of each sparse matrix algorithm in the context 
of an IR application, with the aid of an example. The 
experiments and the results of experimental evaluation of 
the implementations and the analysis are given in sections 
4 and 5. The results and analysis of index compression 
techniques on CSR IR are presented in section 6. Finally, 
we conclude the paper in section 7.   
 

2. Architecture 
 
First significant component of an information retrieval 
system (IR) is the indexing component. Indexing involves 
creating an index structure that provides fast access to the 
data for query processing. Figure 1 shows the architecture 
of such system. The Parser component eliminates the tags 
and extracts the text to be parsed from the documents. 
Furthermore, parser eliminates the stop words from the 
text and passes the text to the indexer. Stop word 
elimination is a technique to effectively remove the 
frequently used insignificant words such as “a”, “an”, 
“the”, to reduce the size of the index. The Indexer 
component of an IR system then associates a weighing 
factor defined as inverse document frequency (idf) with 
each token and calculates term frequency (tf) for each 
term in a document. (tf is the number of occurrences of a 
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term in a document; idf is the inverse of document 
frequency, i.e., an indicator to show the importance of a 
term, often calculated as log(d/df), where d is the number 
of documents in collection and df is the number of 
documents in which a given term appears). Indexer stores 
the information about every term in every document of 
the collection in a storage structure called index, so that it 
can be efficiently accessed at the query time. 
 
The query processor component takes the query from the 
user, accesses the index to process the query by 
generating similarity scores for documents that are 
retrieved for a given query. The similarity scores are then 
ranked to indicate the relevance of each retrieved 
document to the user query. The reader is referred to [8] 
for detailed description of the architecture.  

 
 

 
Figure 1: Information Retrieval System Architecture 
 

 
3. Algorithms 

 
3.1 Coordinate Storage (COO) 
 A sparse matrix stores only non-zero elements to save 
space [9]. The simplest sparse matrix storage structure is 
COO. The index structure is stored in three sparse vectors 
in COO. The first vector (non-zero vector) stores non-
zero elements of the sparse matrix. Non-zero elements of 
the sparse matrix in information retrieval system 
correspond to the distinct terms that appear in each 
document. The term weight (tf-idf) of the term in a 
particular document represents the importance of a term 
in a document. Hence we store (tf * idf) for each element 
in non-zero vector. Second vector in COO is the column 
vector. Each element of column vector stores the term 

identifier or the column index for the corresponding term 
in non-zero vector. The third vector is the row vector that 
stores the respective document identifier or the row index 
for each term in the non-zero vector [10]. 
 
An example of building index structure is shown with a 
sample collection in figure 2 with documents D0, D1, D2, 
D3, D4, and query Q. Table 1 gives the document 
frequency (df) and term weight (idf) of the terms in the 
whole sample collection. The matrix representation of the 
document collection is shown in table 2.  Figure 3 is the 
COO representation of sample collection. The COO 
sparse matrix-vector multiplication algorithm to perform 
query processing is shown in figure 4. 
 
Using the algorithm given in figure 4, index structure of 
figure 3, and the query vector of figure 2, presented as 
Query Vector: <0.22, 0, 0, 0, 0.4, 0, 0, 0, 0>, the results of 
query processing and relevance ranking are shown in 
table3 and table 4. 
 
 
 
 
 
 
 
 

Figure 2: Sample Document Collection and Query 
 

 
Term ID Term df Idf 
0 apple 3 0.22 
1 eve 2 0.4 
2 adam 1 0.7 
3 portable 1 0.7 
4 computer 2 0.4 
5 big 1 0.7 
6 new 1 0.7 
7 york 1 0.7 
8 fast 1 0.7 

 
Table 1: Document frequency (df) and Inverse Document 

Frequency (Idf) for the Sample Collection 
 
3.2 Compressed Sparse Row (CSR) 
CSR permits indexed access to rows. Similar to COO, 
CSR storage structure also consists of three sparse 
vectors, non-zero vector, column vector and row vector. 
Index structure differs in the formation of row vector. In 
CSR row vector consists of pointers to each row of the 
matrix. The row vector consists of only one element for 
each row of matrix and the value of element is the 
position of the first non-zero element of each row in non 
zero vector. Figure 5 shows CSR storage structure for 
sample collection shown in figure 2.

D0:    apple apple eve eve 
D1:    eve adam eve adam 
D2:    apple portable computer 
D3:    big apple new york 
D4:    fast computer 
Q:      apple computer 
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  apple eve adam portable computer Big new york fast 
  0 1 2 3 4 5 6 7 8 
D0 0 0.44 0.8 0 0 0 0 0 0 0 
D1 1 0 0.8 1.4 0 0 0 0 0 0 
D2 2 0.22 0 0 0.7 0.4 0 0 0 0 
D3 3 0.22 0 0 0 0 0.7 0.7 0.7 0 
D4 4 0 0 0 0 0.4 0 0 0 0.7 
Q  0.22 0 0 0 0.4 0 0 0 0 

 
Table 2: Matrix Generated for the Sample Collection 

 
non_zero_vector 0.44 0.8 0.8 1.4 0.22 0.7 0.4 0.22 0.7 0.7 0.7 0.4 0.7 
column_vector 0 1 1 2 0 3 4 0 5 6 7 4 8 
row_vector 0 0 1 1 2 2 2 3 3 3 3 4 4 

 
Figure 3: COO Storage structure 

 
non_zero_vector 0.44 0.8 0.8 1.4 0.22 0.7 0.4 0.22 0.7 0.7 0.7 0.4 0.7 
column_vector 0 1 1 2 0 3 4 0 5 6 7 4 8 
row_vector 0 2 4 7 11 13 

 
Figure 5: CSR Storage Structure 

 
 

doc_id = 0; 
for (count=0; count<M; count++) 

if(doc_id != row_ind[count]) 
 COO_output[doc_id] = temp; 
doc_id = row_ind[count]; 
temp=0; 
endif 
col_ind = col_vector[count]; 
temp = temp + non_zero_vector[count] * Q[col_ind]; 

endfor 
Where M is the number of elements in the non_zero vector 

 
   Figure 4: COO Vector Matrix Multiplication Algorithm 

 
 

Document 
ID 

Score 

D0 (0.44) * (0.22) +(0.8)*0  = 0.097 
D1 (0.8) * 0 + (1.4) * 0 = 0 
D2  (0.22) *  (0.22) + (0.7) * 0 + (0.4) * 

(0.4) = 0.21 
D3 (0.22) * (0.22) +  (0.7) * 0 +  (0.7) * 0+  

(0.7) * 0 = 0.05 
D4 (0.4) * (0.4)  + (0.7) * 0 = 0.16 

 
   Table 3: COO Query Processing and Similarity Scores 
 
 

Document ID Rank 
D2 1 
D4 2 
D0 3 
D3 4 

 
               Table 4: COO Document Rankings 

 
It can be noticed here that CSR storage structure saves space 
on disk because unlike COO that stores one entry per non-
zero element in row vector, CSR stores only one element for 
each row of the matrix. The CSR sparse matrix-vector 
multiplication algorithm to perform query processing is 
shown in figure 6. 

 
Using the algorithm of figure 6, index structure of figure 5, 
and the query vector of figure 2, results of query processing 
and relevance ranking are shown in table 5 and 6. 

 
for (count=0; count<M; count++) 
     temp=0; 
      for(row_ind=row_vector[count]; 
                      row_ind<=(row_vector[count+1]-1); 

row_ind++) 
          col_ind = col_vector[row_ind]; 
          temp = temp + non_zero_vector[row_ind] * Q[col_ind]; 
     endfor 
     CSR_output[count] = temp; 
Endfor 
Where M = number of documents 

 
Figure 6 : CSR Vector Matrix Multiplication Algorithm 

 
Document ID Score 
D0 (0.44) * (0.22) +(0.8)*0  = 0.097 
D1 (0.8) * 0 + (1.4) * 0 = 0 
D2  (0.22) *  (0.22) + (0.7) * 0 + (0.4) * (0.4)  

= 0.21 
D3 (0.22)*(0.22)+ (0.7)*0+ (0.7)*0+ (0.7)= 0.05 
D4 (0.4) * (0.4)  + (0.7) * 0 = 0.16 

 
Table 5: CSR Query Processing and Similarity Scores 
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Document ID Rank 
D2 1 
D4 2 
D0 3 
D3 4 

 
Table 6: CSR Document Rankings 

 
3.3 Compressed Sparse Column (CSC)  
CSC in deviation to CSR and COO permits indexed 
access to column of the matrix. Similar to COO and CSR, 
CSC storage structure also consists of three sparse 
vectors, non-zero vector, column vector and row vector. 
Non-zero vector stores the non-zero elements of each   

column of the matrix and column vector stores pointer to 
the first non-zero element of each column. Row vector 
stores the row index associated with each non-zero 
element. Figure 7 shows storage structure for CSC for 
sample collection shown in table 1. The CSC sparse 
matrix-vector multiplication algorithm to perform query 
processing is shown in figure 8.  
 
Using the algorithm given in figure 8, index structure of 
figure 7, and the query vector of figure 2, the results of 
query processing and relevance ranking are shown in 
table 7 and 8. 

 

 
 

 
 
 
 

Figure 7: CSC Storage Structure 
 

  Apple eve adam Portable computer big new york fast  
  0 1 2 3 4 5 6 7 8 9 
D0 0 0.44 0.8 0 0 0 0 0 0 0 0 
D1 1 0 0.8 1.4 0 0 0 0 0 0 0 
D2 2 0.22 0 0 0.7 0.4 0 0 0 0 0 
D3 3 0.22 0 0 0 0 0.7 0.7 0.7 0 0 
D4 4 0 0 0 0 0.4 0 0 0 0.7 0 
 5 0 0 0 0 0 0 0 0 0 0 

 
Table 9: Modified Matrix Generated for the Sample collection for BSR 

 
non_zero_vector 0.44 0.8 0 0 0.22 0 0 0.7 0.4 0 0 0 0.4 0 0.7 0 
 0 0.8 1.4 0 0.22 0 0 0 0 0.7 0.7 0.7 0 0 0 0 
column_vector 0 2 0 2 4 6 4 8 
Row_vector 0 2 6 8 

 
Figure 9: BSR Storage Structure 

 
 
 

                                                                                                                          
for (count=0; count<M; count++)  
          for(col_ind=col_vector[count]; 
            col_ind<=(col_vector[count+1]-1);col_ind++) 
          row_ind =row_vector[col_ind]; 
          CSC_output[row_ind] = CSC_output[row_ind] + 
            non_zero_vector[col_ind] * Q[col_ind]; 
     endfor 
endfor 
 
Where M = number of distinct terms  

 
Figure 8: CSC Vector Matrix Multiplication Algorithm 

 
 
 

Calculation Document Score 
0.44 * 0.22 = 0.097 D0 = 0.097 
0.22 * 0.22 = 0.05 D2 = 0.05 
0.22 * 0.22 = 0.05 D3 = 0.05 
0.8 * 0 = 0 D0 = 0.097 
0.8 * 0 = 0 D1 = 0 
1.4 * 0 = 0 D1 = 0 
0.7 * 0 = 0 D2 = 0.05 
0.4 * 0.4 = .16 D2 = 0.05 + 0.16 = 0.21 
0.4 * 0.4 = .16 D4 = 0.16 
0.7 * 0 = 0 D3 = 0.05 
0.7 * 0 = 0 D3 = 0.05 
0.7 * 0 = 0 D3 = 0.05 
0.7 * 0 = 0 D4 = 0.16 

 
      Table 7: CSC Query Processing and Similarity Scores 

non_zero_vector 0.44 0.22 0.22 0.8 0.8 1.4 0.7 0.4 0.4 0.7 0.7 0.7 0.7 
column_vector 0 3 5 6 7 9 10 11 12 13 
row_vector 0 2 3 0 1 1 2 2 4 3 3 3 4 
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Document ID Rank 
D2 1 
D4 2 
D0 3 
D3 4 

 
Table 8: CSC Document Rankings 

 
3.4         Block Sparse Row (BSR) 
BSR is different from the other three algorithms that we 
discussed so far. Each element of non-zero vector in BSR 
is mapped to a non-zero square block of n dimensions. 
The block row algorithm assumes that the number of non-
zero elements in each row is a multiple of block size. 
Additional zeros are stored in a block to satisfy this 
condition. In BSR a non-zero vector is a rectangular array 
that stores non-zero blocks in row fashion, column vector 
stores the column indices of the first element of each non-
zero block and row vector stores the pointer to each block 
row in the matrix. Figure 9 shows storage structure for 
BSR for sample collection shown in table 1, taking a 
block size of 2. As earlier discussed that additional zeros 
can be added to make n dimensional blocks, we added a 
dummy document as the last row and a dummy term as 
the last column with all zero elements to the initial matrix 
shown in table 2. The modified matrix is presented in 
table 9.  The BSR sparse matrix-vector multiplication 
algorithm to perform query processing is shown in figure 
10. We consider a 2x2 block size. Using the algorithm 
given in figure 10, index structure of figure 9, and the 
query vector of figure 2, the results of query processing 
and relevance ranking are shown in tables 10 and 11. 
 
for(count = 0; count < M; count++) 
   doc_n = 2 * count; 
   temp = 0; 
   for(row_ind = row[count]; row_ind <= row[count+1] -1; 
                                                   row_ind++) 
       col_ind = col[row_ind]; 
       non_ind = row_ind * 2; 
       temp = Q[col_ind]; 
       if (temp > 0)  
          BSR_output[doc_n] =  BSR_output[doc_n]  
                                          + non_zero[0,non_ind] * temp; 
          BSC_output [doc_n+1] = BSR_output [doc_n+1]   
                                         +  non_zero[1,non_ind] * temp;   
          temp = Q[col_ind+1]; 
       endif 
       if (temp > 0) 
          BSC_output [doc_n] = BSR_output [doc_n]   
                                   + non_zero[0,non_ind + 1] * temp; 
          BSC_output [doc_n+1]= BSR_output [doc_n+1]  
                                   + non_zero[1,non_ind + 1] * temp; 
       endif 
   endfor 
endfor 
Where M = number of documents/2 or (number of document+ 
1)/2 if number of documents is odd 

Figure 10: BSR Vector Matrix Multiplication Algorithm 

Calculation Document Score 
0.44 * 0.22 = 0.02 D0 = 0.097 
0 * 0.22 = 0 D1 = 0 
0.22 * 0.22 = 0.05 D2 = 0.05 
0.22 * 0.22 = 0.05 D3 = 0.05 
0.05 + 0.4 * 0.4 = 0.21 D2 = 0.21 
0.05 + 0 * 0.4 = 0.05 D3 = 0.05 
0.4* 0.4  = 0.16 D4 = 0.16 

 
Table 10: BSR Query Processing and Similarity Scores 

 
Document ID Rank 
D2 1 
D4 2 
D0 3 
D3 4 

 
Table 11: BSR Document Rankings 

 
 

4. Experimental Results of Sparse Matrix 
Algorithms for IR 

 
We performed our experiments with a standard 
benchmark of text collection provided by Text Retrieval 
Evaluation Conference (TREC) sponsored by National 
Institute of Standard and Technology (NIST) [11]. We 
use TREC disks 4 and 5 data, a 2 Gigabytes text 
collection. We choose 50 TREC  topic and descriptive 
queries to compare the query processing efficiency of the 
sparse matrix algorithms. Topics are the small queries 
each having 1 to 4 words. Descriptive queries are usually 
longer queries, each with 5 to 30 words. The benchmark 
text collection statistics are in table 12. 
 

Document Collection Size 2GB 
Number of Files Parsed  2,295 
Number of Documents Parsed  527,580 
Total Number of Terms in Collection  
(distinct in each document & excluding  
Stop Terms) 

77,234,607 

Number of Distinct Terms in Collection  
(excluding Stop Terms)  

994,243 

 
          Table 12: TREC disks 4-5 Text Collection Statistics 
 
The experiments are performed on a 1 GHz, 4 GB RAM, 
Sun ES 450 server. For each of sparse matrix storage 
structures, described on the previous sections and used to 
implement our retrieval engine prototype, the disk storage 
requirement is measured and provided in table 13 and 
figure 11. The experimental results demonstrate that CSR 
storage structure takes the least amount of disk space 
compare to the other three structures. 
 
To study the query processing time, we used 50 TREC 
topic and descriptive queries on our collection using each 
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storage structure and the corresponding sparse matrix 
vector multiplication to perform query processing. The 
average query processing time for each set of 50 queries 
for each approach is recorded. The results for topics and 
descriptive queries are shown in figures 12 and 13.  
 

Storage Formats Disk Space Consumption 
in Megabytes 

COO 1541 
CSR 1021 
CSC 1147 
BSR 1581 

 
Table 13: Disk Space Requirements for CSR, CSC, COO, and 

BSR Sparse Matrix Structures for TREC disks 4-5 Text 
Collection 

 
 

 
 

Figure 11: Disk Space Requirements for CSR, CSC, COO, and 
BSR Sparse Matrix Structures for TREC disks 4 -5 Text 

Collection 
 

 
 

Figure 12: Query Processing Time for each Algorithm using 50  
TREC Topic Queries 

 
As shown in figure 12 and figure 13, in both cases of 
topic and descriptive, i.e. short and medium size of 
queries, the Compressed Sparse Row (CSR) performs the 
best in terms of query processing timing. 

 
 

Figure 13: Query Processing time for each Algorithm for 50 
TREC Descriptive Queries 

 
 

TREC 
 disks 4-5 

Number of  
Elements in 
Non-Zero  
Vector  

Number of 
Elements in  
Column 
 Vector 

Number  
of Elements i
Row  
Vector 

CSR 77,234,607 77,234,607 527,580 
CSC 77,234,607 994,243 77,234,607 
COO 77,234,607 77,234,607 77,234,607 
BSR 
(2x2 blk) 

298,622,476 
 

74,655,619 
 

263,790 

 
Table 14: Number of TREC Data Elements in each Sparse 

 Matrix Storage Formats 
 

5.  Analysis 
 
The sparse matrix storage formats, COO, CSR and CSC, 
are quite similar to each other. All three formats store the 
total number of non-zero elements, i.e., total number of 
terms in the collection calculated based on the total 
number of unique terms of each document in collection. 
The difference among these three structure formats is in 
column and row vectors.  COO stores row and column 
indices for each non-zero element that makes it the least 
efficient structure when using it for text collection domain 
as compare to CSR and CSC. CSR in deviation to COO 
and CSC stores only the pointers to each row in row 
vector and this marks the improvement in the storage in 
CSR over both COO and CSC, since we store only one 
element per document in row vector. As shown in table 
14, the row vector of CSR is about 78 times smaller than 
the row vector of COO and CSC for our 2 GB TREC text 
collection. The fact that average document length of 
TREC documents is approximately 80-100 words, 
explains the numbers. For column vector, CSC stores the 
pointers to the columns and that means only one value in 
column vector for each unique term as compared with 
COO and CSR that store the number of non-zero elements 
in their column vectors.  
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Table 14 shows that CSC storage will have a definite 
advantage over COO, but loose to CSR, because of less 
compression achieved in column vector of CSC than 
compression in row vector of CSR. BSR consists of 
blocks that include non-zero elements, along with zero 
elements. A zero block size BSR will result in a similar 
structure as COO. In order to make square blocks in BSR, 
we end up in storing as well zero elements in blocks. The 
two-dimensional blocks in BSR contain many zeros. 
Thus, the BSR storage structure takes much larger disk 
space compare to the other structures we discussed. The 
larger the dimension of the block in BSR, the higher is the 
number of zeros to be stored, which consequently requires 
more disk space.  
 
To process a query, we have to traverse through all the 
elements of non-zero vector, column vector and row 
vector to calculate the score of all the documents and then 
sort the documents on their relevance scores to get the top 
relevant documents. This signifies that the query 
processing time will also be proportional to the size of 
storage structure i.e. the more number of elements are 
stored in the index, the more elements we have to process 
and consequently the more time is needed for query 
processing. Based on our analytical and experimental 
results, the CSR format is identified the best storage 
format for storing the index of text collection and perform 
query processing when implementing information 
retrieval system as the application of sparse matrix vector 
multiplication.  
 
 

6.  Experimental Results of Index Compression 
Techniques on CSR IR 

 
We mapped several of the index compression techniques 
that are used to compress an inverted index on 
Compressed Sparse Row Information Retrieval (CSR IR). 
Among these methods are Flat Huffman compression, 
Byte-Aligned, Interpolative, Elias Gamma and Golomb 
compression schemes. The implementation detail for each 
of these techniques on CSR IR can be found in [12].  In 
this section we give a brief description of each technique, 
followed by our experimental results. 
 
In a Flat Huffman compression scheme [13; 14], to 
encode a number in the range 0 to n takes  nlog  bits. 
That is a straight binary encoding. The last bit is not 
always necessary.  To encode without wasting bits, a flat 
encoding can be used.  It is equivalent to having a 
Huffman tree with all of the leaves within one level of 
each other.   
 
Byte Aligned compression scheme [6] is a fixed length 
encoding technique that creates a byte boundary to 

represent the encoded integer to achieve a faster access. 
As we noticed that the gap calculated between every two 
term identifiers belonging to a given document in on our 
collection is less than 1215 − , thus each integer needs a 
maximum of 2 bytes to be encoded. In our 
implementation of this approach we used blocks of 7 bits, 
plus an additional bit to indicate if an additional byte is 
needed. For example, the integer 2 would be encoded as 0 
0000010. The first bit indicates that no additional byte is 
followed. 
 
Elias Gamma compression scheme [6] represents an 
integer x for  xlog  as unary, followed by a zero marker 

and  xlog  bits for the remainder of  xx log2− . The 
number of the bits in the unary part indicates the number 
of the bits needed to code the number. For example 
integer 7 is encoded as 11011. 
 
Golomb compression scheme [15] assigns a parameter b, 
which is to represent the approximate distribution of the 
values, and encodes an integer x in two parts. The first 

part is 



 −

b
x 1

 coded in unary; the remainder 

11 −



 −−= b

b
xxr  is coded in binary with  blog  

or  blog  bits. For x = 9 and b = 3, the integer 9 is 
encoded in 11011. The value b can be calculated in 
different ways. In our implementations, we calculated 

p
b 2ln= , where p is the probability of the item 

occurring in a given position. If the item occurs in a out 

of b places, 
b
ap = , it amounts to dividing n by b.  The 

quotient is encoded in unary, and the remainder is 
encoded with a flat Huffman tree. 
 
Interpolative compression scheme [15] treats the array of 
indices of the occurrences as a binary search tree. It 
performs a preorder traversal.  At each step, the range of 
the index is further limited.  
 
Figure 14 shows the comparison of index space 
requirement for CSR IR before and after mapping various 
conventional index compression techniques using the 2 
GB TREC data collection. As mentioned earlier we used 
Interpolative, Golomb, Gamma, and Byte-Aligned index 
compression techniques on CSR IR. We performed 
combination of compressions on the term identifier and 
term frequency. For example Golomb-Gamma indicates 
that the term identifier is compressed using Golomb 
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compression and term frequency is compressed using 
Gamma compression scheme. We performed our 
experimentations on the following combinations of 
schemes on the term identifier and term frequency: 
Interpolative-Huffman, Golomb-Gamma, Byte Aligned-
Byte, and Gamma-Gamma. The size of the index 
compressed with the Interpolative-Huffman scheme is 
23% of the raw index. This number is 29% for Golomb-
Gamma, 28% for Gamma-Gamma, and 38% for the Byte-
Aligned scheme.  In Figure 15, we illustrate the query 
processing timing comparisons for all these cases. The 
results indicate that when the index compressed using the 
fixed length compression technique, such as Byte-Aligned 
that has the byte boundaries, it provides a much faster 
access and thus, reduces the query processing timing.  
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Figure 14:  Index Size Comparison in Percentage in CSR IR 
 

100

170 165

85

125

0
20
40
60
80

100
120
140
160
180

No Com
pre

ssio
n

Inte
rpo

lative
-Huffm

an

Golo
mb-Gam

ma

Byte
-Align

ed-B
yte

Gam
ma-G

am
maQu

ery
 P

ro
ce

ss
ing

 Ti
mi

ng
 in

 %

 
 

Figure 15:  Query Processing Timing Percentage using 
Uncompressed and Compressed Index in CSR IR 

 

7. Conclusion 
 
We demonstrated the results of our comparative analysis 
and experiments on Compressed Column (CSC), 
Compressed Row (CSR), Column Coordinate (COO), and 
Block Sparse Row (BSR) sparse matrix algorithms for 
text information retrieval applications.  Our results 
indicate that CSR storage structure takes the least storage 
space on the disk and performs the best for the query 
processing in comparison to COO, CSC and BSR, using 2 
GB TREC standard benchmark text collection. 
Furthermore, We demonstrated experimentally the 
mapping of the existent compression schemes applied on 
the inverted index in information retrieval (IR) onto the 
CSR IR. We used several of the known compression 
schemes used to compress the inverted index such as Byte 
Alinged, Golomb, Gamma and Interpolative compression 
for our experiments.  We noticed that same as in the 
inverted index, a good compression ratio can be achieved 
by mapping the same compression schemes onto the CSR 
IR. As far as the query processing timing, depending on 
the compression technique, the efficiency might decrease 
or increase. 
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