
Comparative Analysis of Sparse Matrix Algorithms
For Information Retrieval

Nazli Goharian, Ankit Jain, Qian Sun

Information Retrieval Laboratory
Illinois Institute of Technology

Chicago, Illinois
 {goharian,ajain,qian@ir.iit.edu}

Abstract

We evaluate and compare the storage efficiency of
different sparse matrix storage formats as index structure
for text collection and their corresponding sparse matrix-
vector multiplication algorithm to perform query
processing in information retrieval (IR) application. We
show the results of our implementations for several sparse
matrix algorithms such as Coordinate Storage (COO),
Compressed Sparse Column (CSC), Compressed Sparse
Row (CSR), and Block Sparse Row (BSR) sparse matrix
algorithms, using a standard text collection. Evaluation is
based on the storage space requirement for each indexing
structure and the efficiency of the query-processing
algorithm. Our results demonstrate that CSR is more
efficient in terms of storage space requirement and query
processing timing over the other sparse matrix algorithms
for Information Retrieval application. Furthermore, we
experimentally evaluate the mapping of various existing
index compression techniques used to compress index in
information retrieval systems (IR) on Compressed Sparse
Row Information Retrieval (CSR IR).

1. Introduction

The mounting available information necessitates the
invention of enhanced information retrieval systems. The
decisive factors in the performance evaluation of an
information retrieval engine are the disk space
consumption and query processing time. The terabytes of
information available on the Internet poses a grave
challenge before experts to investigate into distinctive
algorithms that can be used for the purpose and not to
mention that information available on the Internet is
growing with an explosive rate.
For years inverted index algorithm is treated as the de
facto standard for information retrieval systems. Inverted
index structure supports a fast query processing.
Furthermore it uses compression techniques to achieve a
better storage on disk. Inverted index has it’s own
limitations, such as complexity of update to inverted
index and parallelization of inverted index. An alternative
approach to inverted index is given in [1], to store the
index of text collection in a sparse matrix structure and

perform query processing using sparse matrix-vector
multiplication. The approach is parallelized and achieved
a substantial efficiency over the sequential inverted index
[2]. In this paper we investigate the standard BLAS sparse
matrix algorithms [3], namely Coordinate Storage (COO),
Compressed Sparse Column (CSC), Compressed Sparse
Row (CSR) and Block Sparse Row (BSR). In this paper
we give a comparative analysis among the sparse matrix
algorithms for information retrieval. We compare these
storage structures and the efficiency of their
multiplication algorithms to perform query processing.
Furthermore, we evaluate various compression techniques
used to compress inverted index on CSR IR. A
comparison of compression ratio and query processing
timing of several different conventional index
compression schemes is given in [4]. The readers are
referred to [5; 6; 7] for information retrieval topics. The
remaining of this paper is organized as the following:
Section 2 gives a brief introduction of information
retrieval engine architecture. Section 3 gives a brief
description of each sparse matrix algorithm in the context
of an IR application, with the aid of an example. The
experiments and the results of experimental evaluation of
the implementations and the analysis are given in sections
4 and 5. The results and analysis of index compression
techniques on CSR IR are presented in section 6. Finally,
we conclude the paper in section 7.

2. Architecture

First significant component of an information retrieval
system (IR) is the indexing component. Indexing involves
creating an index structure that provides fast access to the
data for query processing. Figure 1 shows the architecture
of such system. The Parser component eliminates the tags
and extracts the text to be parsed from the documents.
Furthermore, parser eliminates the stop words from the
text and passes the text to the indexer. Stop word
elimination is a technique to effectively remove the
frequently used insignificant words such as “a”, “an”,
“the”, to reduce the size of the index. The Indexer
component of an IR system then associates a weighing
factor defined as inverse document frequency (idf) with
each token and calculates term frequency (tf) for each
term in a document. (tf is the number of occurrences of a

3

* This work is supported in part by the National Science Foundation under contract # 0119469.
SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 18

term in a document; idf is the inverse of document
frequency, i.e., an indicator to show the importance of a
term, often calculated as log(d/df), where d is the number
of documents in collection and df is the number of
documents in which a given term appears). Indexer stores
the information about every term in every document of
the collection in a storage structure called index, so that it
can be efficiently accessed at the query time.

The query processor component takes the query from the
user, accesses the index to process the query by
generating similarity scores for documents that are
retrieved for a given query. The similarity scores are then
ranked to indicate the relevance of each retrieved
document to the user query. The reader is referred to [8]
for detailed description of the architecture.

Figure 1: Information Retrieval System Architecture

3. Algorithms

3.1 Coordinate Storage (COO)
 A sparse matrix stores only non-zero elements to save
space [9]. The simplest sparse matrix storage structure is
COO. The index structure is stored in three sparse vectors
in COO. The first vector (non-zero vector) stores non-
zero elements of the sparse matrix. Non-zero elements of
the sparse matrix in information retrieval system
correspond to the distinct terms that appear in each
document. The term weight (tf-idf) of the term in a
particular document represents the importance of a term
in a document. Hence we store (tf * idf) for each element
in non-zero vector. Second vector in COO is the column
vector. Each element of column vector stores the term

identifier or the column index for the corresponding term
in non-zero vector. The third vector is the row vector that
stores the respective document identifier or the row index
for each term in the non-zero vector [10].

An example of building index structure is shown with a
sample collection in figure 2 with documents D0, D1, D2,
D3, D4, and query Q. Table 1 gives the document
frequency (df) and term weight (idf) of the terms in the
whole sample collection. The matrix representation of the
document collection is shown in table 2. Figure 3 is the
COO representation of sample collection. The COO
sparse matrix-vector multiplication algorithm to perform
query processing is shown in figure 4.

Using the algorithm given in figure 4, index structure of
figure 3, and the query vector of figure 2, presented as
Query Vector: <0.22, 0, 0, 0, 0.4, 0, 0, 0, 0>, the results of
query processing and relevance ranking are shown in
table3 and table 4.

Figure 2: Sample Document Collection and Query

Term ID Term df Idf
0 apple 3 0.22
1 eve 2 0.4
2 adam 1 0.7
3 portable 1 0.7
4 computer 2 0.4
5 big 1 0.7
6 new 1 0.7
7 york 1 0.7
8 fast 1 0.7

Table 1: Document frequency (df) and Inverse Document

Frequency (Idf) for the Sample Collection

3.2 Compressed Sparse Row (CSR)
CSR permits indexed access to rows. Similar to COO,
CSR storage structure also consists of three sparse
vectors, non-zero vector, column vector and row vector.
Index structure differs in the formation of row vector. In
CSR row vector consists of pointers to each row of the
matrix. The row vector consists of only one element for
each row of matrix and the value of element is the
position of the first non-zero element of each row in non
zero vector. Figure 5 shows CSR storage structure for
sample collection shown in figure 2.

D0: apple apple eve eve
D1: eve adam eve adam
D2: apple portable computer
D3: big apple new york
D4: fast computer
Q: apple computer

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 1 39

 apple eve adam portable computer Big new york fast
 0 1 2 3 4 5 6 7 8
D0 0 0.44 0.8 0 0 0 0 0 0 0
D1 1 0 0.8 1.4 0 0 0 0 0 0
D2 2 0.22 0 0 0.7 0.4 0 0 0 0
D3 3 0.22 0 0 0 0 0.7 0.7 0.7 0
D4 4 0 0 0 0 0.4 0 0 0 0.7
Q 0.22 0 0 0 0.4 0 0 0 0

Table 2: Matrix Generated for the Sample Collection

non_zero_vector 0.44 0.8 0.8 1.4 0.22 0.7 0.4 0.22 0.7 0.7 0.7 0.4 0.7
column_vector 0 1 1 2 0 3 4 0 5 6 7 4 8
row_vector 0 0 1 1 2 2 2 3 3 3 3 4 4

Figure 3: COO Storage structure

non_zero_vector 0.44 0.8 0.8 1.4 0.22 0.7 0.4 0.22 0.7 0.7 0.7 0.4 0.7
column_vector 0 1 1 2 0 3 4 0 5 6 7 4 8
row_vector 0 2 4 7 11 13

Figure 5: CSR Storage Structure

doc_id = 0;
for (count=0; count<M; count++)

if(doc_id != row_ind[count])
 COO_output[doc_id] = temp;
doc_id = row_ind[count];
temp=0;
endif
col_ind = col_vector[count];
temp = temp + non_zero_vector[count] * Q[col_ind];

endfor
Where M is the number of elements in the non_zero vector

 Figure 4: COO Vector Matrix Multiplication Algorithm

Document
ID

Score

D0 (0.44) * (0.22) +(0.8)*0 = 0.097
D1 (0.8) * 0 + (1.4) * 0 = 0
D2 (0.22) * (0.22) + (0.7) * 0 + (0.4) *

(0.4) = 0.21
D3 (0.22) * (0.22) + (0.7) * 0 + (0.7) * 0+

(0.7) * 0 = 0.05
D4 (0.4) * (0.4) + (0.7) * 0 = 0.16

 Table 3: COO Query Processing and Similarity Scores

Document ID Rank
D2 1
D4 2
D0 3
D3 4

 Table 4: COO Document Rankings

It can be noticed here that CSR storage structure saves space
on disk because unlike COO that stores one entry per non-
zero element in row vector, CSR stores only one element for
each row of the matrix. The CSR sparse matrix-vector
multiplication algorithm to perform query processing is
shown in figure 6.

Using the algorithm of figure 6, index structure of figure 5,
and the query vector of figure 2, results of query processing
and relevance ranking are shown in table 5 and 6.

for (count=0; count<M; count++)
 temp=0;
 for(row_ind=row_vector[count];
 row_ind<=(row_vector[count+1]-1);

row_ind++)
 col_ind = col_vector[row_ind];
 temp = temp + non_zero_vector[row_ind] * Q[col_ind];
 endfor
 CSR_output[count] = temp;
Endfor
Where M = number of documents

Figure 6 : CSR Vector Matrix Multiplication Algorithm

Document ID Score
D0 (0.44) * (0.22) +(0.8)*0 = 0.097
D1 (0.8) * 0 + (1.4) * 0 = 0
D2 (0.22) * (0.22) + (0.7) * 0 + (0.4) * (0.4)

= 0.21
D3 (0.22)*(0.22)+ (0.7)*0+ (0.7)*0+ (0.7)= 0.05
D4 (0.4) * (0.4) + (0.7) * 0 = 0.16

Table 5: CSR Query Processing and Similarity Scores

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 140

Document ID Rank
D2 1
D4 2
D0 3
D3 4

Table 6: CSR Document Rankings

3.3 Compressed Sparse Column (CSC)
CSC in deviation to CSR and COO permits indexed
access to column of the matrix. Similar to COO and CSR,
CSC storage structure also consists of three sparse
vectors, non-zero vector, column vector and row vector.
Non-zero vector stores the non-zero elements of each

column of the matrix and column vector stores pointer to
the first non-zero element of each column. Row vector
stores the row index associated with each non-zero
element. Figure 7 shows storage structure for CSC for
sample collection shown in table 1. The CSC sparse
matrix-vector multiplication algorithm to perform query
processing is shown in figure 8.

Using the algorithm given in figure 8, index structure of
figure 7, and the query vector of figure 2, the results of
query processing and relevance ranking are shown in
table 7 and 8.

Figure 7: CSC Storage Structure

 Apple eve adam Portable computer big new york fast
 0 1 2 3 4 5 6 7 8 9
D0 0 0.44 0.8 0 0 0 0 0 0 0 0
D1 1 0 0.8 1.4 0 0 0 0 0 0 0
D2 2 0.22 0 0 0.7 0.4 0 0 0 0 0
D3 3 0.22 0 0 0 0 0.7 0.7 0.7 0 0
D4 4 0 0 0 0 0.4 0 0 0 0.7 0
 5 0 0 0 0 0 0 0 0 0 0

Table 9: Modified Matrix Generated for the Sample collection for BSR

non_zero_vector 0.44 0.8 0 0 0.22 0 0 0.7 0.4 0 0 0 0.4 0 0.7 0
 0 0.8 1.4 0 0.22 0 0 0 0 0.7 0.7 0.7 0 0 0 0
column_vector 0 2 0 2 4 6 4 8
Row_vector 0 2 6 8

Figure 9: BSR Storage Structure

for (count=0; count<M; count++)
 for(col_ind=col_vector[count];
 col_ind<=(col_vector[count+1]-1);col_ind++)
 row_ind =row_vector[col_ind];
 CSC_output[row_ind] = CSC_output[row_ind] +
 non_zero_vector[col_ind] * Q[col_ind];
 endfor
endfor

Where M = number of distinct terms

Figure 8: CSC Vector Matrix Multiplication Algorithm

Calculation Document Score
0.44 * 0.22 = 0.097 D0 = 0.097
0.22 * 0.22 = 0.05 D2 = 0.05
0.22 * 0.22 = 0.05 D3 = 0.05
0.8 * 0 = 0 D0 = 0.097
0.8 * 0 = 0 D1 = 0
1.4 * 0 = 0 D1 = 0
0.7 * 0 = 0 D2 = 0.05
0.4 * 0.4 = .16 D2 = 0.05 + 0.16 = 0.21
0.4 * 0.4 = .16 D4 = 0.16
0.7 * 0 = 0 D3 = 0.05
0.7 * 0 = 0 D3 = 0.05
0.7 * 0 = 0 D3 = 0.05
0.7 * 0 = 0 D4 = 0.16

 Table 7: CSC Query Processing and Similarity Scores

non_zero_vector 0.44 0.22 0.22 0.8 0.8 1.4 0.7 0.4 0.4 0.7 0.7 0.7 0.7
column_vector 0 3 5 6 7 9 10 11 12 13
row_vector 0 2 3 0 1 1 2 2 4 3 3 3 4

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 1 41

Document ID Rank
D2 1
D4 2
D0 3
D3 4

Table 8: CSC Document Rankings

3.4 Block Sparse Row (BSR)
BSR is different from the other three algorithms that we
discussed so far. Each element of non-zero vector in BSR
is mapped to a non-zero square block of n dimensions.
The block row algorithm assumes that the number of non-
zero elements in each row is a multiple of block size.
Additional zeros are stored in a block to satisfy this
condition. In BSR a non-zero vector is a rectangular array
that stores non-zero blocks in row fashion, column vector
stores the column indices of the first element of each non-
zero block and row vector stores the pointer to each block
row in the matrix. Figure 9 shows storage structure for
BSR for sample collection shown in table 1, taking a
block size of 2. As earlier discussed that additional zeros
can be added to make n dimensional blocks, we added a
dummy document as the last row and a dummy term as
the last column with all zero elements to the initial matrix
shown in table 2. The modified matrix is presented in
table 9. The BSR sparse matrix-vector multiplication
algorithm to perform query processing is shown in figure
10. We consider a 2x2 block size. Using the algorithm
given in figure 10, index structure of figure 9, and the
query vector of figure 2, the results of query processing
and relevance ranking are shown in tables 10 and 11.

for(count = 0; count < M; count++)
 doc_n = 2 * count;
 temp = 0;
 for(row_ind = row[count]; row_ind <= row[count+1] -1;
 row_ind++)
 col_ind = col[row_ind];
 non_ind = row_ind * 2;
 temp = Q[col_ind];
 if (temp > 0)
 BSR_output[doc_n] = BSR_output[doc_n]
 + non_zero[0,non_ind] * temp;
 BSC_output [doc_n+1] = BSR_output [doc_n+1]
 + non_zero[1,non_ind] * temp;
 temp = Q[col_ind+1];
 endif
 if (temp > 0)
 BSC_output [doc_n] = BSR_output [doc_n]
 + non_zero[0,non_ind + 1] * temp;
 BSC_output [doc_n+1]= BSR_output [doc_n+1]
 + non_zero[1,non_ind + 1] * temp;
 endif
 endfor
endfor
Where M = number of documents/2 or (number of document+
1)/2 if number of documents is odd

Figure 10: BSR Vector Matrix Multiplication Algorithm

Calculation Document Score
0.44 * 0.22 = 0.02 D0 = 0.097
0 * 0.22 = 0 D1 = 0
0.22 * 0.22 = 0.05 D2 = 0.05
0.22 * 0.22 = 0.05 D3 = 0.05
0.05 + 0.4 * 0.4 = 0.21 D2 = 0.21
0.05 + 0 * 0.4 = 0.05 D3 = 0.05
0.4* 0.4 = 0.16 D4 = 0.16

Table 10: BSR Query Processing and Similarity Scores

Document ID Rank
D2 1
D4 2
D0 3
D3 4

Table 11: BSR Document Rankings

4. Experimental Results of Sparse Matrix
Algorithms for IR

We performed our experiments with a standard
benchmark of text collection provided by Text Retrieval
Evaluation Conference (TREC) sponsored by National
Institute of Standard and Technology (NIST) [11]. We
use TREC disks 4 and 5 data, a 2 Gigabytes text
collection. We choose 50 TREC topic and descriptive
queries to compare the query processing efficiency of the
sparse matrix algorithms. Topics are the small queries
each having 1 to 4 words. Descriptive queries are usually
longer queries, each with 5 to 30 words. The benchmark
text collection statistics are in table 12.

Document Collection Size 2GB
Number of Files Parsed 2,295
Number of Documents Parsed 527,580
Total Number of Terms in Collection
(distinct in each document & excluding
Stop Terms)

77,234,607

Number of Distinct Terms in Collection
(excluding Stop Terms)

994,243

 Table 12: TREC disks 4-5 Text Collection Statistics

The experiments are performed on a 1 GHz, 4 GB RAM,
Sun ES 450 server. For each of sparse matrix storage
structures, described on the previous sections and used to
implement our retrieval engine prototype, the disk storage
requirement is measured and provided in table 13 and
figure 11. The experimental results demonstrate that CSR
storage structure takes the least amount of disk space
compare to the other three structures.

To study the query processing time, we used 50 TREC
topic and descriptive queries on our collection using each

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 142

storage structure and the corresponding sparse matrix
vector multiplication to perform query processing. The
average query processing time for each set of 50 queries
for each approach is recorded. The results for topics and
descriptive queries are shown in figures 12 and 13.

Storage Formats Disk Space Consumption
in Megabytes

COO 1541
CSR 1021
CSC 1147
BSR 1581

Table 13: Disk Space Requirements for CSR, CSC, COO, and

BSR Sparse Matrix Structures for TREC disks 4-5 Text
Collection

Figure 11: Disk Space Requirements for CSR, CSC, COO, and
BSR Sparse Matrix Structures for TREC disks 4 -5 Text

Collection

Figure 12: Query Processing Time for each Algorithm using 50
TREC Topic Queries

As shown in figure 12 and figure 13, in both cases of
topic and descriptive, i.e. short and medium size of
queries, the Compressed Sparse Row (CSR) performs the
best in terms of query processing timing.

Figure 13: Query Processing time for each Algorithm for 50
TREC Descriptive Queries

TREC
 disks 4-5

Number of
Elements in
Non-Zero
Vector

Number of
Elements in
Column
 Vector

Number
of Elements i
Row
Vector

CSR 77,234,607 77,234,607 527,580
CSC 77,234,607 994,243 77,234,607
COO 77,234,607 77,234,607 77,234,607
BSR
(2x2 blk)

298,622,476

74,655,619

263,790

Table 14: Number of TREC Data Elements in each Sparse

 Matrix Storage Formats

5. Analysis

The sparse matrix storage formats, COO, CSR and CSC,
are quite similar to each other. All three formats store the
total number of non-zero elements, i.e., total number of
terms in the collection calculated based on the total
number of unique terms of each document in collection.
The difference among these three structure formats is in
column and row vectors. COO stores row and column
indices for each non-zero element that makes it the least
efficient structure when using it for text collection domain
as compare to CSR and CSC. CSR in deviation to COO
and CSC stores only the pointers to each row in row
vector and this marks the improvement in the storage in
CSR over both COO and CSC, since we store only one
element per document in row vector. As shown in table
14, the row vector of CSR is about 78 times smaller than
the row vector of COO and CSC for our 2 GB TREC text
collection. The fact that average document length of
TREC documents is approximately 80-100 words,
explains the numbers. For column vector, CSC stores the
pointers to the columns and that means only one value in
column vector for each unique term as compared with
COO and CSR that store the number of non-zero elements
in their column vectors.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 1 43

Table 14 shows that CSC storage will have a definite
advantage over COO, but loose to CSR, because of less
compression achieved in column vector of CSC than
compression in row vector of CSR. BSR consists of
blocks that include non-zero elements, along with zero
elements. A zero block size BSR will result in a similar
structure as COO. In order to make square blocks in BSR,
we end up in storing as well zero elements in blocks. The
two-dimensional blocks in BSR contain many zeros.
Thus, the BSR storage structure takes much larger disk
space compare to the other structures we discussed. The
larger the dimension of the block in BSR, the higher is the
number of zeros to be stored, which consequently requires
more disk space.

To process a query, we have to traverse through all the
elements of non-zero vector, column vector and row
vector to calculate the score of all the documents and then
sort the documents on their relevance scores to get the top
relevant documents. This signifies that the query
processing time will also be proportional to the size of
storage structure i.e. the more number of elements are
stored in the index, the more elements we have to process
and consequently the more time is needed for query
processing. Based on our analytical and experimental
results, the CSR format is identified the best storage
format for storing the index of text collection and perform
query processing when implementing information
retrieval system as the application of sparse matrix vector
multiplication.

6. Experimental Results of Index Compression
Techniques on CSR IR

We mapped several of the index compression techniques
that are used to compress an inverted index on
Compressed Sparse Row Information Retrieval (CSR IR).
Among these methods are Flat Huffman compression,
Byte-Aligned, Interpolative, Elias Gamma and Golomb
compression schemes. The implementation detail for each
of these techniques on CSR IR can be found in [12]. In
this section we give a brief description of each technique,
followed by our experimental results.

In a Flat Huffman compression scheme [13; 14], to
encode a number in the range 0 to n takes  nlog bits.
That is a straight binary encoding. The last bit is not
always necessary. To encode without wasting bits, a flat
encoding can be used. It is equivalent to having a
Huffman tree with all of the leaves within one level of
each other.

Byte Aligned compression scheme [6] is a fixed length
encoding technique that creates a byte boundary to

represent the encoded integer to achieve a faster access.
As we noticed that the gap calculated between every two
term identifiers belonging to a given document in on our
collection is less than 1215 − , thus each integer needs a
maximum of 2 bytes to be encoded. In our
implementation of this approach we used blocks of 7 bits,
plus an additional bit to indicate if an additional byte is
needed. For example, the integer 2 would be encoded as 0
0000010. The first bit indicates that no additional byte is
followed.

Elias Gamma compression scheme [6] represents an
integer x for  xlog as unary, followed by a zero marker

and  xlog bits for the remainder of  xx log2− . The
number of the bits in the unary part indicates the number
of the bits needed to code the number. For example
integer 7 is encoded as 11011.

Golomb compression scheme [15] assigns a parameter b,
which is to represent the approximate distribution of the
values, and encodes an integer x in two parts. The first

part is 



 −

b
x 1

 coded in unary; the remainder

11 −



 −−= b

b
xxr is coded in binary with  blog

or  blog bits. For x = 9 and b = 3, the integer 9 is
encoded in 11011. The value b can be calculated in
different ways. In our implementations, we calculated

p
b 2ln= , where p is the probability of the item

occurring in a given position. If the item occurs in a out

of b places,
b
ap = , it amounts to dividing n by b. The

quotient is encoded in unary, and the remainder is
encoded with a flat Huffman tree.

Interpolative compression scheme [15] treats the array of
indices of the occurrences as a binary search tree. It
performs a preorder traversal. At each step, the range of
the index is further limited.

Figure 14 shows the comparison of index space
requirement for CSR IR before and after mapping various
conventional index compression techniques using the 2
GB TREC data collection. As mentioned earlier we used
Interpolative, Golomb, Gamma, and Byte-Aligned index
compression techniques on CSR IR. We performed
combination of compressions on the term identifier and
term frequency. For example Golomb-Gamma indicates
that the term identifier is compressed using Golomb

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 144

compression and term frequency is compressed using
Gamma compression scheme. We performed our
experimentations on the following combinations of
schemes on the term identifier and term frequency:
Interpolative-Huffman, Golomb-Gamma, Byte Aligned-
Byte, and Gamma-Gamma. The size of the index
compressed with the Interpolative-Huffman scheme is
23% of the raw index. This number is 29% for Golomb-
Gamma, 28% for Gamma-Gamma, and 38% for the Byte-
Aligned scheme. In Figure 15, we illustrate the query
processing timing comparisons for all these cases. The
results indicate that when the index compressed using the
fixed length compression technique, such as Byte-Aligned
that has the byte boundaries, it provides a much faster
access and thus, reduces the query processing timing.

100

23 29
38

28

0

20

40

60

80

100

120

No Com
pre

ssi
on

Int
erp

olative
-Huffm

an

Golo
mb-Gam

ma

Byte
-Align

ed-B
yte

Gam
ma-G

am
ma

Si
ze

 in
 %

Figure 14: Index Size Comparison in Percentage in CSR IR

100

170 165

85

125

0
20
40
60
80

100
120
140
160
180

No Com
pre

ssio
n

Inte
rpo

lative
-Huffm

an

Golo
mb-Gam

ma

Byte
-Align

ed-B
yte

Gam
ma-G

am
maQu

ery
 P

ro
ce

ss
ing

 Ti
mi

ng
 in

 %

Figure 15: Query Processing Timing Percentage using
Uncompressed and Compressed Index in CSR IR

7. Conclusion

We demonstrated the results of our comparative analysis
and experiments on Compressed Column (CSC),
Compressed Row (CSR), Column Coordinate (COO), and
Block Sparse Row (BSR) sparse matrix algorithms for
text information retrieval applications. Our results
indicate that CSR storage structure takes the least storage
space on the disk and performs the best for the query
processing in comparison to COO, CSC and BSR, using 2
GB TREC standard benchmark text collection.
Furthermore, We demonstrated experimentally the
mapping of the existent compression schemes applied on
the inverted index in information retrieval (IR) onto the
CSR IR. We used several of the known compression
schemes used to compress the inverted index such as Byte
Alinged, Golomb, Gamma and Interpolative compression
for our experiments. We noticed that same as in the
inverted index, a good compression ratio can be achieved
by mapping the same compression schemes onto the CSR
IR. As far as the query processing timing, depending on
the compression technique, the efficiency might decrease
or increase.

References

[1] N. Goharian, T. El-Ghazawi, D. Grossman,“Enterprise
Text Processing: A Sparse Matrix Approach”, IEEE
International Conference on Information Techniques on:
Coding & Computing (ITCC 2001), Las Vegas, Nevada
April 2001.

[2] A. Jain, N. Goharian, “On Parallel Implementation of
Sparse Matrix Information Retrieval Engine”, The 2002
International Multi-conferences in Computer Science: on
Information and Knowledge Engineering (IKE'02), Las
Vegas, Nevada, June 2002.

[3] BLAST Forum, “Documentation for the Basic Linear
Algebra Subprograms”, http://www.netlib.org/blast/blast-
forum, 1999.

[4] F. Scholer, H. Williams, J. Yiannis, J. Zobel,
“Compression of Inverted Indexes For Fast Query
Evaluation”, proceedings of ACM SIGIR, 2002.

[5] G. Salton, “Automatic Text Processing”, Addison
Wesley, Massachusetts, 1989.

[6] D. Grossman and O. Frieder, “Information Retrieval:
Algorithm and Heuristics”, Kluwer Academic Publishers,
1998.

[7] ACM Special Interest Group in Information Retrieval
conference Proceedings, http://sigir.acm.org

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 1 45

[8] D. Grossman and O. Frieder, “Anatomy of a Search
Engine: A Java-based Introduction to Scalable
Information Retrieval”, manuscript 2002.

[9] Sergio Pissanetsky, “Sparse Matrix Technology”,
Academic Press, London, 1984.

[10] Nawaaz Ahmed, Nikolay Mateev, Keshav Pingali,
and Paul Stodghill. “A Framework for Sparse Matrix
Code Synthesis from High-level Specifications", SC2000,
Dallas, TX, November 2000.

[11] Text Retrieval Conference, http://trec.nist.gov

[12] S. Stein, N. Goharian, “On the Mapping of Index
Compression Techniques on CSR Information retrieval”,
IEEE International Conference on Computing and
Coding (ITCC’03), April 2003.

[13] D. A. Huffman, “A Method for the Construction of
Minimum Redundancy Codes”, Proceedings of the
Institute of Radio Engineers, 40 (1951), 1098-1101.

[14] Thomas H. Cormen, et al., “Introduction to
Algorithms”, 2nd edition, McGraw Hill Publisher, 2001.

[15] Witten, Moffat, and Bell, “Managing Gigabytes”,
Morgan Kaufman Publishers, 1999.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 146

http://trec.nist.gov/

	Comparative Analysis of Sparse Matrix Algorithms
	For Information Retrieval
	Nazli Goharian, Ankit Jain, Qian Sun
	Information Retrieval Laboratory
	Illinois Institute of Technology
	Chicago, Illinois

	A
	Abstract
	1. Introduction
	For years inverted index algorithm is treated as the de facto standard for information retrieval systems. Inverted index structure supports a fast query processing. Furthermore it uses compression techniques to achieve a better storage on disk. Inverted
	Architecture
	Algorithms
	Coordinate Storage (COO)
	A sparse matrix stores only non-zero elements to save space [9]. The simplest sparse matrix storage structure is COO. The index structure is stored in three sparse vectors in COO. The first vector (non-zero vector) stores non-zero elements of the sparse
	
	
	
	
	Using the algorithm given in figure 4, index structure of figure 3, and the query vector of figure 2, presented as Query Vector: <0.22, 0, 0, 0, 0.4, 0, 0, 0, 0>, the results of query processing and relevance ranking are shown in table3 and table 4.

	D4: fast computer

	D0
	Where M is the number of elements in the non_zero vector
	
	
	
	
	
	D2

	Where M = number of distinct terms

	TREC
	Figure 15: Query Processing Timing Percentage using Uncompressed and Compressed Index in CSR IR
	Conclusion
	References

