Random Shuffling Permutations of Nucleotides™

Shiquan Wu and Xun Gu
Center of Bioinformatics and Biological Statistics

lowa State University, Ames, [A 50011, USA

Abstract

In this paper, we discuss a shuffling sequence prob-
lem: Given a DNA sequence, we generate a ran-
dom sequence that preserves the frequencies of all
mononucleotides, dinucleotides, trinucleotides or some
high order base-compositions of the given sequence.
Two quadratic running time algorithms, called
Frequency-Counting algorithm and Decomposition-
and-Reassemble algorithm, are presented for solving
the problem. The first one is to count all frequencies of
the mononucleotides, dinucleotides, trininucleotides,
and any high order base-compositions in the given
sequence. The second one is to generate a random
DNA sequence that preserves the mononucleotides,
dinucleotides, trinucleotides, or some high order base-
compositions. The two algorithms are implemented
into a program ShuffleSeg (in C) and is available at
http://www.cs.iastate.edu/™ sqwu/ShuffleSeq.html.

Keywords Sequence, r—let, frequency, random,
Decomposition-and-Reassemble algorithm.

1 Introduction

Markov Chain Monte Carlo (MCMC) method is ex-
tensively applied to gene finding and motifs identify-
ing. Given a collection of known genes, we at first
do training on the genes to get the initial and tran-
sition probabilities for nucleotides. Then based on
these probabilities, we use Bayesian method to iden-
tify other unkown genes and the most significant pat-
terns in any sequences based on posteriori probabili-
ties (cf. [3, 5]). When apply MCMC method to finding
genes, we at first generate a large number of sequences
that preserve the initial and transition probabilities
and then predict the locations of genes by expecta-
tions.

It is important to generate random sequences
preserving the frequencies of all mononucleotides,

*Research supported in part by NIH Grant ROI1
GM62118(to X.G) and NSF of China (19771025).

SYSTEMICS, CYBERNETICS AND INFORMATICS

dinucleotides, trinucleotides, and certain base-
compositions (in high order Markov Chain Mod-
els) for finding genes in DNA sequences and iden-
tifying various motifs or other secondary and ter-
tiary structures from the linear sequences of proteins
(cf.[1, 4, 8]). Much work had been done for this prob-
lem on either algorithms and programs, or applica-
tions (cf.[1, 4, 8, 6, 7, 9]). However, algorithms for
solving the problem are usually based on lower orders
of base-compositions. For example, the algorithm de-
signed by Kandel et al (cf.[8]) deals with lower or-
der cases. The running time of the algorithm be-
comes exponential with respect to the orders of base-
compositions when the orders are not fixed. More ef-
ficient algorithms are needed for solving the problem.
On the other hand, fewer programs are available for
generating such random sequences. In this paper, we
discuss how to efficiently generate random sequences
that preserve the frequencies of all mononucleotides,
dinucleotides, trinucleotides or some high order base-
compositions and design two quadratic running time
algorithms and a program for the purpose.

Problem
Generally, the problem can be described as: Given a
DNA sequence, we generate another random sequence
that preserves the frequencies of all mononucleotides,
dinucleotides, trinucleotides or any base-composition
up to some orders.

For any sequence S; = $183---Sp, a segment (or
a block) s;si41 - Sipr—1(1 < i < n) is called a k—let
of Sy (cf.[1, 4]), or a base-composition of order k. For
k=1,2, and 3, a k—let is a mononucleotide (singlet),
dinucleotide (doublet), trinucleotide (triplet), respec-
tively. Formally, we rephrase the problem in the fol-
lowing.
Shuffling Sequence Problem Let S; = s1s5---s,
be a DNA sequence and r an integer. Find a random
DNA sequence S5 such that for any k < r, any k—let
has the same frequency in both S; and Ss.

When r = 1, S5 is any permutation of all nu-
cleotides s;(1 < ¢ < n) of S;. When r = 2, Sy is

VOLUME 1- NUMBER 4 47



a dinucleotide permutation of S;. The shuffling se-
quence problem is trivial for » = 1. Generally, for
r=1,2,---, when ris getting bigger and bigger, there
are more and more (but then less and less) such Ss.
When r is big enough, say r = n, there is a unique

Sy = Sp (cf. [1, 4, 8]).

Previous work

Shuffling sequence problems were discussed by many
researchers. Dinucleotide composition usage was dis-
cussed for sequence similarity based on permutation
distances, and some methods were used to simu-
late random /nonrandom dinucleotide and codon us-
age (cf.[6, 7, 9]). Based on Euler tours in a directed
graph, Altschul et al (cf.[1]) designed an algorithm
to generate a random sequence with equal probabil-
ity that preserves all mononucleotides, dinucleotides
and codons. A swapping-based algorithm is given by
Unger et al (cf.[13]). By “swapping operations” and
Euler tours in a directed graph, Kandel et al pre-
sented a linear running time algorithm for solving a
shuffling sequence problem that preserves all r—lets
(cf.[8]). Coward designed a program for generating
shuffling sequences that preserve all k—lets for each
k < r (cf.[4]). However, both Kandel’s algorithm and
Coward’s program only deal with small r—lets. The
running time becomes exponential with respect to r if
r 1s not fixed and small.

This problem has great potential applications.
Most studies directly or indirectly apply base-
compositions in finding genes and identifying vari-
ous motifs or other secondary and tertiary structures
from the linear sequences (cf.[2, 4, 11]). Our purpose
here is to design better algorithms and programs that
improve Kandel’s algorithm and Coward’s program.
These may be some useful tools for Monte Carlo meth-
ods 1n finding statistical significance for biological se-
quences.

Main results

In this paper, we design two quadratic running time
algorithms and a program for finding solutions for the
shuffling sequence problem.

(1) Frequency-Counting algorithm is to count the
frequencies of all r—lets.

(2) Decomposition-and-Reassemble algorithm is to
generate a random DNA sequence that preserves the
frequencies of all k—lets for each k& < r.

(3)The two algorithms are implemented into a pro-
gram ShuffleSeq (in C).

Our algorithms are better than those designed by
Altschul et al (cf.[1]), Kandel et al (cf.[8]), etc. The

program is more general than Coward’s (cf.[4]).

SYSTEMICS, CYBERNETICS AND INFORMATICS

2 Algorithms

In this section, we design the two quadratic running
time algorithms: Frequency-Counting algorithm and
Decomposition-and-Reassemble algorithm. We at first
obtain the principle of the algorithms by analysizing
the structures of shuffling sequences and then design
the algorithms based on the principle.

Principle of the algorithm

First of all, we analyze the structures that a new gen-
erated shuffling sequence must have so as to preserve
all k—lets (k < r) for the given sequence Sj.

If » = 1, then any rearrangement of all s; of S; can
always preserve all singlets. If » > 2, we can not arbi-
trarily rearrange all s; without changing the doublets.
We must rearrange S; block by block. For example,
for r = 2, by Kandel’s “Swapping Algorithm” (cf.[8]),
when we exchanges two blocks B and D in Sy, all
singlets and doublets are still preserved (see Fig. 1(a)
and (b)). Generally, all blocks can only be moved or
swapped along S; under the restriction that all k—lets
(k < r) must be preserved.

We now improve the “Swapping Algorithm”. De-
note Sy = ABCDE, where A, B, C, D, E are blocks of
Si. Let by and by be (r — 1)—lets. Each block (but A)
starts with either b, or by as shown in Fig. 1. At first,
we take BC away from S;. Because BC'is followed by
by in D, we can then form a cycle with BC' (i.e., BC
is a cycle). The cycle contains by (in C), we split the
cycle at by and get a new block C'B. Finally, we insert
CB between D and E. During the whole process, all
k—lets (k < r) are preserved (i.e., while taking BC
from Sy, A is still followed by 47 in D. While forming
the cycle, C' 1s connected to b, in B. While splitting
the cycle and inserting C'B, D is followed by by in
CB and CB is connected to by in E. Therefore all
k—lets are preserved in Ss) (see Fig. 1(c) and (b)).
Fig. 1(d) and (e) show that S, = ACBD is obtained
from S; = ABCD by the process in Fig. 1(c), but not
“Swapping Algorithm”. Moreover, in order to pre-
serve all k—lets (k < r), each b; must be an (r—1)—let.
Otherwise, if some b; is a k—let (k < r—2), then some
r—lets will be broken or created.

We can construct a series of cycles from S; and
insert them back to S; one after another to form
a new S;. We call this a cycle Decomposition-and-
Reassemble process. It has an advantage over the
“Swapping Algorithm” (cf.[8]). The “Swapping Algo-
rithm” each time choose four (r—1)—lets and gives rise
to an O(n*) running time of the algorithm. We scan
Sy for two (r — 1)—lets in our cycle Decomposition-
and-Reassemble process and can design a quadratic

VOLUME 1- NUMBER 4



algorithm. Therefore, we take this process as the prin-
ciple of our algorithm.

Principle of Decomposition-and-Reassemble If
we take a cycle from Sy, split the cycle at some (r —
1)—let b, and insert it at some (r—1)—let b in Sy, then
all k—lets (k < r) are preserved (Fig. 1(c)).

gt g

bt L b b2
a S — o =,
@ 5 = B C D E
bt E_ bs bz
B8 T b C B E
B ©
bt bz
—_— —_— //?
B Ch L
bz b
a_
(€] B
B, B by \Lbz
© S >
A B @ D E
b b bt
@ S
@ 2 = B @ D
L bi bt
&) S
A C B D

Figure 1: Structure analysis: b; and by are (r —
1)—lets.  (a)Kandel’s “Swapping Algorithm” ex-
changes Block B and D in S;. (b)S: = ADCBE
is obtained from S; = ABC'DE by (a) or (¢). (c)The
process of cycle Decomposition-and-Reassemble: At
first, BC' is taken from S; to form a cycle. Next, the
cycle is split into a new block C'B. And then, C'B is
inserted between D and E. (d)The process in (c) can
be applied to ACBD, which contains three copies of
an (r — 1)—let b;. (e)S, = ACBD is obtained from
S, = ABC'D by the process in (c), but (a).

Frequency counting algorithm

This is an obvious algorithm. It loops over all
positions s;(1 < ¢ < n). At each position
s;, the algorithm check all possible k—lets: R =
$iSit1 - -Sivk—1(k =1,2,--- 7). Compare R with all

SYSTEMICS, CYBERNETICS AND INFORMATICS

k—lets Ri, Ra, - - - , R, that had been previously found,
if R = R;, then augment the frequency of R; by one.
Otherwise, R is a new k—let, i.e., R # R; for any
J. Denote R,41 = R and define that its frequency
is equal to one at this moment. When the algorithm
terminates, the frequencies of all k—lets (k < r) are
obtained.

Algorithm  Frequency-Counting

Input DNA sequence: S = 5189 8,.
Output  Frequencies of all k—lets (k < 7).

Initial: p=1; R =0 (all k—lets).
F = 0 (all frequencies).
Loop: Fori:=1,2--- n.
Fork=1,2--- r
Compare each R = $;8;41 - Sitk—1
with all R; e R(j =1,2,---,p).
If R = R;, then f; + +.
If R # R; for all R; € R, then
p++,define R, = R, f, =1,
add them to R, F respectively.
Theorem 1 The running time of the Frequency-
Counting algorithm is O(n?r?).

Proof There are O(n?r) pairs of k—lets. We can know
whether each pair is the same by comparing at most
r positions of them. This follows the running time

O(n?r?).

Decomposition-and-Reassemble algorithm

The Decomposition-and-Reassemble algorithm is to
generate a random DNA sequence that preserves the
frequencies of all k—lets of the given DNA sequence
(k < 7). Tt is based on the principle of Decomposition-
and-Reassemble and consists of two steps: Decompo-
sition step and reassemble step. In the decomposition
step, we decompose the given DNA sequence into a
series of cycles and a path. Each cycle shares some
common (r — 1)—let with the path or some other cy-
cles. In the reassemble step, we reassemble all the
cycles into a DNA sequence. If we reassemble each
cycle in the exact reverse order as we get in the de-
composition step, then we can get the original DNA
sequence. However, for many cycles, they can be put
back to either their original places, or other places
with the same/similar structures in the sequence. In
this way, many new DNA sequences can be generated.
The details of the steps are described in the following.

Decomposition Step Let S = sys5---5,. Denote
Py = 51 as the initial path. We now decompose it into
a cycle and a path. Start from sq, for i = 2,3,--- | n,
compare s; with all s; (7 <4). If 55,85, 41 Si,4r—2 =
SiSit1 - Siyr—2. Then s;,8;,41---s; 1s a cycle. The

VOLUME 1- NUMBER 4 49



50

path
Po =518y 8i,-18i, i, 41 Sisig1 s (1)

is then decomposed into a cycle C7 and a new path
Py (see the first step in Fig. 2):

{ Ch = 84,841 Si, (2)

Py = 5153 ---5;,_15{Si41 " Sn.

C; and P; share a common part D; =
SiySig41 " Sij4e,- To preserve all r—lets, we must
have ¢; > r — 2. We call this part the support of Cy
on P;.

Decompose P; again, we can get another cycle Cs
and another new path P; with a support Dy of Cy
on P,. Repeat the decomposition preccess again and
again, we get a series of cycles C; and paths P; to-
gether with supports D;(1 = 1,2,--- ,m). We can also
express the decomposition by some equations similar
to Eq. (1) and (2). It is possible that some support D,
will be decomposed into other cycle Cy(q > p) later.
P, contains an (r — 1)—let common to some cycles.
The whole decomposition process is shown in Fig.2 for
a short DNA sequence.

81 t—a—rC—rg—ra—r0—> g—r A—> C—r —> A —>C—rg

VA
N

3 t—a—%c—=*g—+a—+c—t—ra—>c—g
e
Cln
P2 t—a=—=+¢¢—rt—a—c—rg

2
VAR

Ps a=fc=Fg
N
Figure 2: The decomposition process for S; =

tacgacgactacg : (1)Py(= S1) is decomposed into Cy =
acga and Py = tacgactacg with Dy = {a,c,g}. (2)P;
is decomposed into Cy(= C}) and Py = tactacg with
Dy = {a,c}. (3)P3 is decomposed into C3 = tact and
the final path P3 = acg. D3 = {a,c}.

Reassemble Step The reassemble step pursues an
inverse process to the decomposition step. We begin
with the final path P,, and insert all cycles back to the

SYSTEMICS, CYBERNETICS AND INFORMATICS

path one after another to get a new DNA sequence.
If we choose each cycle C; in the exact reverse or-
der and put them into the same places as they were
generated in the decomposition step, we then get the
original DNA sequence S;. However, we can choose
different orders and various inserting positions while
inserting these cycles. Since we are required to pre-
serve all k—lets (k < r), the number of possible ways
depends on r. If r is small, then there are more ways
for inserting the cycles. For example, for r = 1, we can
insert all cycles arbitrarily. If r is bigger, then fewer
options we can have. We have the following cases:

Case 1 r = 1. In this case, we can insert all cy-
cles arbitrarily and get a sequence that preserves the
same numbers of all nucleotides. It is equivalent to
rearranging all s; for the given Sj.

Case 2 r = 2. This is a simple case, in order to pre-
serve all mononucleotides and dinucleotides, we can
insert a cycle C' into a path P if and only if C' and
P share a common nucleotide, 1.e., a 1—let. We split
both C' and P at the common nucleotide and then join
them together as shown in Fig.3.

e ()

P . —ag——sc¢ —g— ..

e g——w

v —@——C C=A2C C—rg— o

S — ) — C—D—a—i—c—i—g—i—

Figure 3: Reassemble Step: Insert C' into P preserving
all 1—, 2—lets. (1)P and C share a common nucleotide
“c”. (2)Split P and C at “c”. (3)Join P and C at “c”.

Case 3 r = 3. In order to preserve all mononu-
cleotides, dinucleotides, and trinucleotides, we can in-
sert a cycle C into a path P if and only if C' and P
share a common dinucleotide, i.e., a 2—let. Suppose
C and P contains a dinucleotide s;s;41 in common.

P =5189--8_15541542 " 5n,
C = cCpCp1 - Ci—18Si41Cit2 - " Cq

3)

VOLUME 1- NUMBER 4



We at first split both C' and P at s; (or s;41):

Py = 51895180
Py = 5i8i415i42 " Sn, (4)
Cr=cpepy1---Cim18i
Ca = siSiy1Cip2 - Cq.
And then join them together at s;, which goes this
way: Py — Cy — reverse(Cy) — Py. We have

P= s189---8,_18;8;41Ci42 -~ -Cq

(5)

Cp—1'"+ Ci—1 SiSi418i42 " Sn.

The process is shown in Fig.4.

P —a—c—g— C a—rc—rg
e ——g—C C—rg—> ... a—>=C C—rg
\/ a—>c><c—>g

o —ra—re’ ey —

|

- —»a—»c—»g—»a—»c—» g_‘

Figure 4: Reassemble Step (r = 3): Insert C into P
preserving all r—lets (r < 3). (1)P and C share a
common 2—let “cg”. (2)Split P and C at ¢. (3)Join
P and C at c.

(a) Split (b) Join

Figure 5: Reassemble Step (general r): (a) C' and P
share a common (r — 1)—lets: [z,y] = [X,Y]. Split C
and P at D. (b) Join P and C at D. [z+,y+] is pre-
served as [+, Y+]. [x—, y—] is preserved as [z—,Y —].
[X+,Y+] is preserved as [X+,y+]. [X—,Y—] is pre-
served as [X—, y—].

Case 4 General case: r < n This case is similar
to that for » = 3. In order to preserve all r—lets, we

SYSTEMICS, CYBERNETICS AND INFORMATICS

can insert a cycle C into a path P if and only if both
C and P share a common (r — 1)—let. The process of
splitting and joining is the same as that for » = 3 and
is shown in Fig. 5, where we denote X+ (or X—) a
position on the right (or left) hand side of X. Then
[X+,Y —] stands for a segment from some position on
the right of X to some position on the left of Y.

We now design the algorithm based on our previous
discussions. The algorithm consists of decomposition
step and reassemble step.

Algorithm  Decomposition-and-Reassemble
Input  DNA sequence: S = s189---5,.
Output New DNA sequence preserving all
frequencies of all k—lets (k < r).
Decomposition Step:
p=1.P =518y -5Si41" " Sn.
Fori=1,2--- n.j=1,2--- i—1.
If s; =55, -+ ,Sj4r—1 = Sitr—1, then
define a cycle Cp, = s;8;41---5;. p++;
Update P = 5153 -5;_15iSi41 " 5n.
Repeat the process until convergence.
Reassemble Step:
Denote P the final path and Cp(1 < p < m)
all cycles obtained in the decomposition step.
Fori=1,2---,m, randomly choose a cycle
C; that shares a common (r — 1)—let with P.
Split and join C and P as shown in Eq. (3,4,5)
and Fig. (3,4,5).

Theorem 2 The running time of Decomposition-
and-Reassemble algorithm is O(n?r?).

Proof By Theorem 1, the decomposition step and
the reassemble step.

Our two algorithms have a running time O(n?r?).
However, r can not be too large in practical applica-
tions. Therefore we can assume that r is a constant
(e.g., » < 1000). The two algorithms then have a
running time O(n?).

Our Decomposition-and-Reassemble algorithm is
better than previous algorithms, such as the Euler-
tour-based algorithm and the swapping-based algo-
rithm designed by of Kandel et al (cf.[8]).

If we choose each cyccle with an equal probability
and insert 1t into all possible positions with an equal
probability, then each possible valid random sequence
is uniformly generated.

3 Experimental examples

The two algorithms, Frequency-Counting algo-
rithm and Decomposition-and-Reassemble algorithm,

VOLUME 1- NUMBER 4 51



52

are implemented into a program ShuffleSeq in
C and is available at http://www.cs.iastate.edu/”
sqwu/ShuffleSeq.html.

The program takes a DNA sequence in FASTA for-
mat as the input, then finds the frequencies of all
k—lets (k < r). Finally it generates a random se-
quence that preserves the frequencies of all k—lets
(k < r). The program deals with r—lets for any
r < 1000 and is more general than Coward’s (cf.[4]).
We now use the program to some DNA sequences.
Example 1 For S7 = acgaccgacctta and r = 2. The
program each time uniformly generates one of its 18
dinucleotide permutations.

acccgacgactta acccgacttacga acccttacgacga
accgaccgactta accgaccttacga accgacgacctta
accgacttaccga accttaccgacga accttacgaccga
acgacccgactta acgacccttacga acgaccgacctta
acgaccttaccga acgacgaccctta acgacttacccga
acttacccgacga acttaccgaccga acttacgacccga

Example 2 Choose a gene from E.Coli K12:
S1 = teagtttctgtaccegegtgattggagtaaatga
tgcagtictcgaaaatgcatggccatiggecaa
For r = 6, by the program, we obtain
Sy = teagtttctgtaccegegtgattggagtaaat
gatgcagtictcgaaaatgcatggecatiggcaa.
They have the same r—lets and frequencies (r < 6).

4 Discussion

We discuss the shuffling sequence problem for DNA
sequences. The algorithms and program are valid
for other biological sequences. The shuffling sequence
problem has great potential applications in gene find-
ing and motif identifying. Whenever the MCMC
method is applied, our algorithms can be used to gen-
erate a collection of random sequences for finding sta-
tistical significance, especially for predicting genes and
motifs, or any kinds of genomic data processing.

For example, coiled-coil-like motifs are some kinds
of segments that highly repeat some patterns in linear
sequences. Some programs were designed to detect
the coiled-coil-like motifs for viral membrane-fusion
proteins (cf.[10, 12]). Our algorithms and program
can be applied to this topic for predicting the locations
that coiled-coil-like motifs mostly possible occur.

It is interesting to search for genes by using base-
composition statistics. Our algorithms and program
can be some useful tools in this area.

References

[1] Stephen F. Altschul and Bruce W. Ericksont, Sig-
nificance of Nucleotide Sequence Alignments: A

SYSTEMICS, CYBERNETICS AND INFORMATICS

[10]

[11]

[12]

[13]

Method for Random Sequence Permutation That
Preserves Dinucleotide and Codon Usage, Mol.
Biol. Evol. 2(6): 526-538.1985.

Pierre Baldi and Pierre-Francois Baisnee, Se-
quence analysis by additive scales: DNA structure
for sequences and repeats of all lengths, Bioinfor-

matics 16: 865-889. 2000.

Borodovsky M. and MclIninch J. GeneMark: par-
allel gene recognition for both DNA strands, Com-
puters and Chemistry, 17:123-133. 1993

Eivind Coward, Shufflet: shuffling sequences
while conserving the k-let counts, Bioinformatics

15: 1058-1059.1999.

Eddy, S. R, Profile hidden Markov models, Bioin-
formatics 14(9):755-63, 1998.

Fitch, W. M., Calculating the expected frequencies
of potential secondary structure in nucleic acids
as a function of stem length, loop size, base com-
position and nearest-neighbor frequencies, Nucleic

Acids Res. 11:4655-4663. 1983.

Fitch, W. M. ,Random sequences J. Mol. Biol.
163:171-1 76. 1983.

Kandel, D. , Y. Matias, R. Unger, P. Winkler,
Shuffling Biological Sequences, Discrete Applied
Mathematics, 71: 171-185, 1996.

Lipman, D. J., W. J. Wilbur, T. F. Smith, and
M. S. Waterman, On the statistical significance of
nucleic acid similarities, Nucleic Acids Res. 12:2

15-226.1984.
Malashkevich, V. N.; M. Singh, and P. S. Kim

The trimer-of-hairpins motif in membrane fu-

ston: Visna virus, PNAS, 98: 8502-8506. 2001.

Peter Schattner, Searching for RNA genes us-
g base-composition statistics, Nucleic Acids Re-

search, 30(9).2002.

Singh, M., B. Berger, and P. S. Kim LearnCoul-
VMF: Computational Evidence for Coiled-coil-
like Motifs in Many Viral Membrane-fusion Pro-
teins, J. Mol. Biol. 290:1031-1041. 1999.

Unger, R., G. Avrahami, D. Harel, and J. L.
Sussman, Simple general shuffling scheme which
preserves fragment frequencies up to any required
length. In Proc. Macromolecules, Genes, and
Computers Conference, 1986.

VOLUME 1- NUMBER 4



